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Abstract

Background: SNP genotyping arrays have been developed to characterize single-nucleotide polymorphisms (SNPs)
and DNA copy number variations (CNVs). Nonparametric and model-based statistical algorithms have been
developed to detect CNVs from SNP data using the marker intensities. However, these algorithms lack specificity to
detect small CNVs owing to the high false positive rate when calling CNVs based on the intensity values. Therefore,
the resulting association tests lack power even if the CNVs affecting disease risk are common. An alternative
procedure called PennCNV uses information from both the marker intensities as well as the genotypes and
therefore has increased sensitivity.

Results: By using the hidden Markov model (HMM) implemented in PennCNV to derive the probabilities of
different copy number states which we subsequently used in a logistic regression model, we developed a new
genome-wide algorithm to detect CNV associations with diseases. We compared this new method with association
test applied to the most probable copy number state for each individual that is provided by PennCNV after it
performs an initial HMM analysis followed by application of the Viterbi algorithm, which removes information
about copy number probabilities. In one of our simulation studies, we showed that for large CNVs (number of
SNPs ≥ 10), the association tests based on PennCNV calls gave more significant results, but the new algorithm
retained high power. For small CNVs (number of SNPs <10), the logistic algorithm provided smaller average p-
values (e.g., p = 7.54e - 17 when relative risk RR = 3.0) in all the scenarios and could capture signals that PennCNV
did not (e.g., p = 0.020 when RR = 3.0). From a second set of simulations, we showed that the new algorithm is
more powerful in detecting disease associations with small CNVs (number of SNPs ranging from 3 to 5) under
different penetrance models (e.g., when RR = 3.0, for relatively weak signals, power = 0.8030 comparing to 0.2879
obtained from the association tests based on PennCNV calls). The new method was implemented in software
GWCNV. It is freely available at http://gwcnv.sourceforge.net, distributed under a GPL license.

Conclusions: We conclude that the new algorithm is more sensitive and can be more powerful in detecting CNV
associations with diseases than the existing HMM algorithm, especially when the CNV association signal is weak
and a limited number of SNPs are located in the CNV.

Background
Single-nucleotide polymorphisms (SNPs), variable num-
ber of tandem repeats (VNTRs) (e.g., mini- and microsa-
tellites), presence or absence of transposable elements
(e.g., Alu elements), and structural alterations (e.g., dele-
tions, duplications, and inversions) are the common
forms of genomic variability [1]. Ranging from one kilo-
base to several megabases, copy number variations

(CNVs) are segments of DNA that differ in copy num-
bers when two or more genomes are compared [2]. Ori-
ginally, the definition of CNV was borrowed from the
concept of segmental duplication that was arbitrarily
defined as 1 kb in length. Actual CNV size may be far
smaller than those defined in HapMap samples [3]. As
the technologies have developed, CNVs no longer need
to be greater than 1 kb to be detectable [4]. One may
study CNVs at a single nucleotide level if the false posi-
tive rate in a CNV calling algorithm can be controlled
to a low level. CNVs may be inherited, but they can also
be produced by de novo mutations [5]. In 2006, a total
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of 1,447 copy number variable regions (CNVRs) were
identified through a study of 270 HapMap samples from
four populations using SNP genotyping platforms and
clone-based comparative genomic hybridization technol-
ogies, and these were estimated to affect 12% of the gen-
ome [6]. In a more recent study using a specialized and
sensitive technique called fosmid cloning, 1,695 sites of
structural variation (including 747 deletions, 724 inser-
tions and 224 inversions) were validated across nine
diploid human genomes; when compared to previous
published results of CNVs, 40% of the insertion/deletion
events were novel [7].
According to the Database of Genomic Variants, at

least 25% of the human genome shows some evidence
of copy number variation (hg17.v2) [8]. CNVs can
account for a substantial amount of human phenotypic
variability, complex traits, and disease susceptibility
through the differential levels of gene expression of the
involved genes [1,6]. Studies have shown associations
between CNVs and phenotypic variations or disease
risks including autism, schizophrenia, idiopathic learning
disability, human HIV infection, systemic lupus erythe-
matosus, inflammatory autoimmune disorders, Crohn’s
disease, body mass index, psoriasis, and osteoporosis etc.
[2,4,9-17].
Methods and technologies for detecting genome-wide

CNVs include comparative genomic hybridization to
arrays, clone and PCR-product arrays, oligonucleotide
arrays, and SNP genotyping arrays [18]. Among these
methods, SNP genotyping arrays have shown some
advantages in mapping CNVs. High-density SNP arrays
offer high genomic coverage but, most importantly,
allele-specific information from genotyping arrays pro-
vides an opportunity to discover CNVs in a two-dimen-
sional level format that involves the patterns of
heterozygous and homozygous genotypes available in
SNP data along with the signal intensities [19]. Both
PennCNV and QuantiSNP take into account the inten-
sity values of Log R Ratio (LRR) and B allele frequency
(BAF), and implement similar hidden Markov models
(HMMs) [20,21]. These algorithms both assume that
LRR and BAF are independent given the hidden states
[20,21]. QuantiSNP implemented an objective Bayes fra-
mework. It used a resampling method to set some
hyper-parameters in the priors, and applied the maxi-
mum marginal likelihood method to the training data to
set other parameters [20]. In contrast, PennCNV writes
the emission probabilities of LRR and BAF into the
same likelihood function, and estimates the model para-
meters by maximizing the likelihood of observing the
training data [21]. Subsequently, parameters in transi-
tion and emission probabilities are fixed in the HMM
when analyzing different data. However, PennCNV pro-
vides specific parameter sets for different SNP

genotyping arrays. Intuitively, in a two-dimensional
space, by using both LRR and BAF, we may obtain more
reliable predictions of copy number changes. In addi-
tion, we may even derive the genotype at a particular
site with an abnormal copy number change [19]. Model-
based two-dimensional approaches (so-called generalized
genotyping approaches) have shown improved power
and considerable advantages, but are more computation-
ally demanding and require more complex algorithms to
work with both sources of data [19]. All of the current
algorithms call CNVs on an individual level. For exam-
ple, although PennCNV provides some tools such as
handling trio data or performing case-control compari-
son after calling CNVs on each individual, these down-
stream analyses have already lost power, because they
do not use all the available data. PennCNV uses the
Viterbi algorithm to derive a single most probable set of
copy numbers for each person at each position leading
to a loss of information compared to the information
available from the probabilities of CNV states. For the
generalized genotyping approaches, another limitation
lies in the sensitivity of detecting copy number changes.
At one position, the product of the transition probability
of the previous state to the current state and the emis-
sion probability of being a particular state given the data
needs to be relatively large to emit a copy number
change, because the transition probability of being in a
same state tends to be much larger than that of a
change. Owing to the properties of HMM and subse-
quent application of the Viterbi algorithm, these meth-
ods may not be able to detect some small CNVs, and
even called small CNVs may not be reliable. Finally, the
Viterbi algorithm of HMM eliminates the possible case
that multiple copy number states associate with the dis-
ease risk, because only the most probable chain is pro-
vided as the final result. In studies of somatic changes
in tumors, for example, one can anticipate heterogeneity
of states due to heterogeneity of cell populations in the
tumor. In germline samples, tissues can sometimes
show mosaicism, with heterogeneity of cells showing dif-
ferent numbers of copies of DNA in a region. In addi-
tion, the hidden CNV state may not be called with
complete certainty even when normal samples are
studied.
In our recent assignment of finding the missing herit-

ability in genome-wide association studies (GWAS),
CNV is one of our major concerns and needs to be
further studied [22,23]. Particularly, we should pay more
attention on investigating small CNVs since the distri-
bution frequency of small CNVs (<1 kb) is much higher
than that we expected in human genome [24]. In this
research, we focused on developing a new genome-wide
algorithm for SNP genotyping data to solve these pro-
blems, but this algorithm can easily be extended to
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other platforms if the HMM and Viterbi algorithm were
implemented.

Methods
An HMM can efficiently describe the LRR and BAF
intensity data from SNP genotyping arrays. The Viterbi
algorithm, which is a dynamic programming algorithm,
is generally applied to reach the goal of predicting the
Viterbi path, which provides the most likely sequence of
hidden states representing the different copy numbers
along the chromosomes. PennCNV is currently a popu-
lar CNV calling algorithm for SNP genotyping data,
especially for the Illumina platform. It implements a
first-order HMM that assumes that the hidden copy
number state at each SNP depends only on the copy
number state of the most preceding SNP [21]. It uses
the Viterbi algorithm to calculate the most probable
sequence of hidden states chromosome by chromosome
[21]. We found in study of one dataset that PennCNV
provided higher concordance on repeated assay of the
same samples than did QuantiSNP overall [25] and
PennCNV is an open source free software utilizing an
HMM software package UMDHMM (http://www.
kanungo.com/software/software.html) [26]. Six hidden
states were defined in PennCNV for autosomes, corre-
sponding to deletion of 2 copies, deletion of 1 copy,
normal state, copy-neutral with loss of heterozygosity
(LOH), single copy duplication, and double copy dupli-
cation or higher [21]. We developed our new genome-
wide logistic regression algorithm based on the HMM
implemented in PennCNV.

Definition of the probability of being in a hidden state at
a position
PennCNV calls the Viterbi algorithm to predict the
most likely path of hidden copy numbers. In the Viterbi
algorithm, the total probability of obtaining the path
from the beginning to the current position is recorded.
In every iteration, for all the jumps of any current state
to any next state, the probabilities (p) of observing this
jump are calculated, given the observed data, and are
added into the total probability. For every possible next
state, only the path with the largest total probability is
recorded. Every p is calculated as the product of emis-
sion and transition probabilities at that particular posi-
tion. Assuming that there are six hidden states, six
paths with different ending states are recorded simulta-
neously. In each iteration, 36 probabilities are calculated.
Each probability is a product of an emission probability
and a transition probability. For every hidden state k at
SNP i, six probabilities from different hidden states at
SNP i - 1 are computed. One then accumulates these
six probabilities to the previous six paths. Then the one
with the largest cumulative probability will be recorded

as the new path with ending state k. Six new paths with
different ending states will be forwarded to the next
iteration. At the end, the Viterbi path will be selected as
the one with maximum cumulative probability from the
six paths obtained. From the description of the Viterbi
algorithm, if we take the summation of the six probabil-
ities from different states to ending state k at position i,
we may be able to define the probability of being in
state k at position i. In mathematical form, let pi, jk be
the probability of the jump from state j to state k at
position i (it is possible that j = k), then

pi,jk = p(ri ,bi|zi = j)p(zi + 1 = k|zi = j)

where {ri, bi, zi} is the triple of LRR, BAF, and hidden
copy number state at SNP i. On the basis of the HMM
defined in PennCNV, we can define the probability of
being in a hidden state k as

∑

j

pi−1,jk

at position i. The probability of being in any hidden
state can be defined in the same manner at that
position.
One thing to notice is that the emission probability

defines the probability of observing the data given a
hidden state. When observations are discrete symbols,
one can easily adopt discrete probability density for
each hidden state in an HMM [27]. However, when
observations are continuous signals, defining the emis-
sion probabilities becomes more complex. Usually a
mixture of continuous probability density functions
(PDFs) is used to define the emission probabilities in
this situation [27]. PennCNV uses functions of normal
densities in defining the emission probabilities of LRR
and BAF [21]. Hence, continuous PDFs are used in
defining the emission probability distributions in our
case because LRR and BAF both take continuous values.
And P(ri, bi|zi) = P (ri|zi) · P (bi|zi) is a product of den-
sity values. To define the probability of being in a hid-

den state k as
∑

j
pi−1,jk at position i, a normalization

procedure is needed over all the possible hidden states
since this product may not define a PDF. By simply
dividing each product value by the summation of all the
product values, we obtain normalized probabilities at
each position, and they sum to 1.

Logistic regression model on the defined probabilities
In PennCNV, there are six hidden states. So for each
individual, at each position, we can obtain six probabil-
ities of being in any hidden copy number state. For a
large case-control study, these position-specific probabil-
ities allow us to run a genome-wide association (GWA)
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test to identify CNV SNPs that are related to the disease
risk. An intuitive model to fulfill the above GWA test is
logistic regression. One way to reach the goal is to
define a logistic regression model for each copy number.
Let pd be the probability of having the disease and Ck, k
= 1, ..., 6 be the probability of being in state k at a parti-
cular position i. Then at position i,

logit(pd) = β0 + βkCk, k = 1, . . . 6.

By combining appropriate Ck’s, we may define the
probability of a deletion or duplication. For example, C1

+ C2 can be defined as the probability of a deletion at
position i. Then the model can be written as

logit(pd) = β0 + βdeletion(C1 + C2).

Similarly, the logit model for duplication can be
expressed as

logit(pd) = β0 + βduplication(C5 + C6).

Note that in the logit model for deletion, only hidden
states 1 and 2 that correspond to copy number 0 and 1
were involved. We did not add hidden state 3, which
represents LOH in this model. One of the reasons is
that the likelihood of LOH was not well defined for
close markers due to linkage disequilibrium (LD) in the
PennCNV HMM, so the probabilities for LOH may not
be reliable. Since LOH remains a copy number neutral
state, it is counted as no change from normal.

Results
We implemented the new genome-wide algorithm in
software GWCNV which is freely available online. Users
should first run a modified version of PennCNV, which
is included in the GWCNV package, to generate the
input file that contains all the defined probabilities at
each SNP. After running GWCNV, the association test
results for different copy numbers at each SNP are
reported in the output file specified by users. Step-by-
step instructions of installing and running GWCNV are
provided on the website.
Permutation tests and simulation studies were con-

ducted to test the validity and performance of the logit
algorithm, and to compare it with the association test
(Fisher’s exact test) based on PennCNV calls. We simply
use PennCNV association test or PennCNV in the fol-
lowing content to describe the association test based on
PennCNV copy number calls.

Introduction to melanoma data
We tested the new algorithm using melanoma data
obtained from The University of Texas MD Anderson
Cancer Center. Melanoma is a malignant tumor of the

melanocytes and, although not a common type of skin
cancer, it accounts for 75% of all skin cancer-related
deaths [28]. A total of 3,116 subjects of European conti-
nental ancestry were recruited for studies at MD Ander-
son Cancer Center between 1993 and 2009 in this
hospital-based case-control study. This dataset included
2,053 subjects with melanoma and 1,063 subjects as
age-, sex-, and ethnicity matched controls. Genotyping
was performed on the Illumina HumanOmni1-
Quad_v1-0_B array at the Center for Inherited Disease
Research. The median call rate was 99.97%, and the
error rate estimated from 69 pairs of study sample
duplicates was 1e - 5. Concordance of CNVs called by
PennCNV for the sample duplicates was 73.61%. Quality
control and data cleaning procedures were performed
by the Gene Environment Association Studies (GEN-
EVA) group at the University of Washington, Seattle
and the Section of Computational and Genetic Epide-
miology (CGE) at MD Anderson Cancer Center. Sam-
ples with gender discrepancy, unexpected related
samples, non-Caucasians, outliers, etc. were identified
and removed from the dataset, leaving a total of 3,021
samples. Sample data with LRR and BAF values were
exported from BeadStudio software.
The melanoma data are available on the dbGaP web-

site at the National Center for Biotechnology Informa-
tion (NCBI). A large number of replicate samples,
including 67 collected and 100 HapMap replicates, were
involved in the genotyping process. This design allowed
us to determine the quality of the data, and to compare
the consistency of CNV calls by different calling algo-
rithms. To verify the accuracy and performance of the
newly developed genome-wide logistic regression algo-
rithm, permutation tests and pseudo-simulation studies
were implemented using the melanoma dataset. By ran-
domly assigning the affection status over the samples in
melanoma data, we eliminated any systematic diver-
gence between the case and control groups. Then by
comparing the distributions of the p-values from the
model with the theoretical standard uniform, we were
able to interpret the effectiveness and preciseness of the
new algorithm. The Q-Q plots of p-value distributions
for deletion and duplication are presented in the Addi-
tional File 1. No inflation of false positive rate was
found in these plots for the logit algorithm and we con-
clude that the p-value distributions are approximately
uniformly distributed.

Simulation results
To further test the performance of the genome-wide
logistic regression algorithm and to compare it with
PennCNV, we designed a pseudo-simulation method.
We assumed four penetrance models using a log addi-
tive model for genotype (copy number) risks. Different
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relative risks (RRs) for a copy number deletion ranging
from 3.0 to 1.2 were embedded in these four models.
We assumed that a double copy deletion causes a high
risk of a disease and that a single copy deletion causes a
lower risk. Let the population frequencies be p2 and q2

for the double copy deletion and normal copy number
2, respectively (p = 1 - q). Let K, r0, r1, r2 represent the
population prevalence of the disease, penetrances for
copy numbers 0, 1, and 2, respectively. We assumed
that p = 0.05 and the penetrances for all other copy
numbers are 0. Hence K can be obtained by

K = p2r0 + 2pqr1 + q2r2.

Under the log additive model, the copy number fre-
quencies given the disease status can be derived. We
then randomly selected samples to simulate on the basis
of the permutation of case-control status. We used the
melanoma data for our simulation studies and 2,888
samples were included. In our simulations, generally, the
double copy deletion (copy number 0) represents a rela-
tively weak signal and the single copy deletion (copy
number 1) is a strong signal given the penetrance mod-
els and sample size. In fact, copy number 0 may not be
very weak or copy number 1 may not be strong if the
RR is high or low, respectively. In addition, for the four
penetrance models, we assumed penetrances as shown
in Table 1.
We used -5 as the theoretical LRR value for copy

number 0, and -1 as the theoretical LRR value for copy
number 1 to simulate the data. We chose a region on
chromosome 15 that contains no CNV calls from
PennCNV across all the samples. Theoretically, the data
in this region are just genomic noise. By adding the the-
oretical values of copy number 0 and 1 onto the data,
we shifted the LRR values and simulated 10 deletions
with different lengths and numbers of SNPs, ranging
from 3 to 58. Chromosome 15 has 34,862 SNPs in total.
The 58 SNP deletion encompassed a known high LD
region. By comparing the results from the logit algo-
rithm with those from the association tests based on
CNV calls from PennCNV, we could compare the sensi-
tivity and the ability to identify different types of CNV
associations of these two algorithms. Q-Q plots of -log10
(p - value) were obtained for each penetrance model,

CNV algorithm, and copy number change (0 or 1) and
are presented in the Additional File 1.
When the RR was high, both algorithms performed

similarly. As the RR decreased, the logit algorithm
picked up signals that the PennCNV association test did
not, especially when the signal was weak. When the RR
was low, for both algorithms the power was too low,
given the sample size, to detect such weak effects. Over-
all, for large CNVs, the association tests based on
PennCNV calls gave more significant results (e.g., over
several signals, average p-value p = 6.26e - 25 when RR
= 3.0), but the new algorithm retained high power, espe-
cially when the disease RR was high (e.g., average p-
value p = 3.12e - 11 when RR = 3.0). For small CNVs,
however, the logistic algorithm provided smaller average
p-values (e.g., p = 7.54e - 17 when RR = 3.0) in all the
cases and can captured signals that PennCNV did not
(e.g., p = 0.020 when RR = 3.0).

Contrasting results of PennCNV versus GWCNV
To further comprehend the difference between the logit
algorithm and the PennCNV association test and to
investigate the applicable conditions for both algorithms,
we compared the performance of these two algorithms
under different penetrance models graphically. We
divided the simulated deletions into two categories:
regions with at least 10 SNPs (large CNVs) and regions
with fewer than 10 SNPs (small CNVs). In our simula-
tions, five simulated CNVs fell into the first category,
and the other five belonged to the second category. We
calculated the average p-values for the five CNVs in
each category for each copy number and penetrance
model combination. We first plotted these means versus
different penetrance models for copy number 0 (Figure
1) and 1 (Figure 2) when the number of SNPs was at
least 10.
From Figure 1, we may conclude that when the num-

ber of SNPs is relatively large, the performance of the
two algorithms is very similar if the signals are not
strong. If the signals are strong, the PennCNV associa-
tion test provides more significant results in different
penetrance models than does the logit algorithm (Figure
2). The reason lies in the fact that for large CNVs,
PennCNV may capture most of the inserted deletions.
When the signals are strong, the association test applied
to inferred deletions can easily provide very significant
results. Whereas, the logit algorithm uses the probabil-
ities of being in different copy numbers for the case-
control comparison. In the situation of having strong
signals, however, the logit algorithm is also effective
because it can detect the associated CNVs.
From Figure 3, we see that when the number of SNPs

is relatively small, if the signals are not strong, neither
algorithm provides very significant results, but the

Table 1 Penetrance models for simulation

Model 1 Model 2 Model 3 Model 4

Pr(af f|CN = 0) 0.09 0.0324 0.0225 0.0144

Pr(af f|CN = 1) 0.03 0.018 0.015 0.012

Pr(af f|CN = 2) 0.01 0.01 0.01 0.01

RR1 3.0 1.8 1.5 1.2
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average p-values from the logit algorithm are smaller
than those from the PennCNV association test. This
indicates that some of the signals might only be cap-
tured by the logit algorithm since we averaged the p-
values over five signals. However, for strong signals in
this situation, the logit algorithm shows distinct
improvements in detecting the associations between
CNVs and diseases in different penetrance models

(Figure 4). This implies that most signals might be
caught by the logit algorithm especially when RR is
high. Hence, we conclude that the logit algorithm may
be more sensitive than the PennCNV association test in
detecting the disease associations with small CNVs. In
this simulation study, since only five signals were
inserted into the data for both large and small CNV
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categories, power calculations may not provide reliable
results (see Additional File 1).

Power comparison and model performance
To compare the statistical power (sensitivity) and model
performance of the two approaches especially for small
CNVs, we conducted another simulation study using the
pseudo-simulation method described above. In this
study, we simulated 33 regions on chromosome 16 with
11 of them consisting of 3 SNPs, 11 of 4 SNPs, 11 of 5
SNPs. Some simulated CNVs are close to each other in
this simulation. 132 SNPs were simulated in total.
Assuming a significant level of 0.001, we computed the
statistical power of the two methods for detecting the
disease associations with 132 CNV SNPs as shown in
Table 2.
From this table, the power of the logit algorithm is

higher than at of PennCNV association test in all the
scenarios, especially for weak signals and high RRs. For
the strong signals (CN 1), the logit algorithm performs
better than PennCNV association test under different
penetrance models in terms of capturing the signals.
When the signal is not strong (CN 0), the logit algo-
rithm shows remarkable improvements. When RR = 1.8
and 1.5, PennCNV association test could not pick up
any signal. Whereas, the logit algorithm retained power
of capturing the true signals at 0.4773 and 0.3106.
For a moderate RR 1.8 (penetrance model 2), we

plotted the receiver operating characteristic (ROC)
curves for the association test results from both meth-
ods to examine their performance. From both Figure 5
and 6, the logit algorithm performs well and gives better
results than those from PennCNV association test. For
Figure 5, the AUC for GWCNV and PennCNV associa-
tion test are 0.8879 and 0.7542, respectively. For Figure
6, although the two curves are very close, PennCNV
association test may take a higher false positive rate
than GWCNV does under similar circumstances.
Whereas, GWCNV performs almost perfectly. The false
positive hits from PennCNV may due to two reasons.
The transition probability for two adjacent SNPs may be
small, so PennCNV may call additional SNPs after
detecting a CNV. For two close CNVs, PennCNV tends
to segment them into one region, so the SNPs in the
middle may be called. The AUC are 0.9992 and 0.9826

for GWCNV and PennCNV association test in this case,
respectively.
In general, the new genome-wide logit model is valid

and performs well. It has advantages in handling the dis-
ease association tests with small CNVs. It is more
powerful in detecting associations especially when the
signal is not strong. It conducts association test directly
on a transformation of data without calling CNVs.

Table 2 Power for detecting disease associations with
small CNVs

RR1 = 3.0 RR1 = 1.8 RR1 = 1.5 RR1 = 1.2

CN 0 GWCNV 0.8030 0.4773 0.3106 0.0

PennCNV 0.2879 0.0 0.0 0.0

CN 1 GWCNV 1.0 0.9318 0.4394 0.0

PennCNV 0.8864 0.7045 0.4015 0.0

Chr16: Simulation ROC − CN 0 <RR = 1.8>
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Figure 5 ROC curve for simulated weak signals (RR1 = 1.8).
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Figure 6 ROC curve for simulated strong signals (RR1 = 1.8).
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Discussion
Currently, almost all the CNV calling algorithms call
CNVs at an individual level. For these algorithms, the
false positive rates are high, especially for small CNVs
due to the quality and properties of the intensity data,
and the association tests based on called CNVs lack
power in detecting CNV associations with diseases. The
proposed new genome-wide logistic regression algorithm
resolves the disadvantages of existing algorithms. It is a
combination of an existing well-developed HMM and
GWA test. It performs at a population level and con-
trols the false positive rate well. It is more sensitive and
more powerful than the existing algorithm in capturing
small CNVs.
The defined probabilities of being in different hidden

states reflect the statistical properties of the intensity
data. By performing the association tests directly on
these probabilities, power to detect the small CNVs is
enhanced. The new logit algorithm uses information
from all the available data, unlike existing programs
such as PennCNV and QuantiSNP, which collapse
much of the information into the most probable copy
number states. In addition, since we apply the logistic
regression model to different copy numbers at each
position, the algorithm we developed could detect asso-
ciations in the presence of sample heterogeneity, such as
may exist in tumors and other tissues that undergo
somatic changes. When there are multiple copy num-
bers associated with the disease at one locus, the
approach to hypothesis testing we adopted may lose
power since we fit tested separate models for different
copy numbers. Hotelling’s T2-test may be employed in
this scenario for a multivariate test. However, if only a
small number of “non-zero” probabilities appears in a
state, one may collapse these probabilities to a neighbor-
ing state to obtain a powerful test.
Unlike PennCNV our algorithm does not include a

segmentation step, and hence may more accurately
reflect the underlying differences among CNV states
between cases and controls. Because we do not employ
segmentation and use probabilities for each state, our
approach is more sensitive to small CNVs, but our
method does not borrow strength from neighboring
positions as much as PennCNV and hence could show
weaker power for large CNVs. In the current studies we
have evaluated the statistical performance of PennCNV
and GWCNV for detecting duplications and deletions
because we anticipate that disease risks are usually due
to one of these genomic features, but it would also be
possible to test for deviation from normal copy number
as an alternate testing procedure.
Moreover, when the sample size is sufficient, the logis-

tic regression model may be able to detect associations
with uncommon or rare CNVs. From the results of

permutation tests and simulations, we see that this algo-
rithm may be able to pick up fine differences between
cases and controls, and the false positive rate was well
controlled. Employing the logistic regression model lim-
its the use of this algorithm to case-control studies.
However, adoption for quantitative traits could use an
ANOVA based method.
This algorithm runs the logistic regression across the

samples on each position using the probabilities of
being in a hidden state. These probabilities are partially
determined by the genotype states, which may be spa-
tially correlated due to LD. LD among the genotypes
would lead to a weak correlation among the test statis-
tics. In our simulation studies we did not observe infla-
tion of type I error rates due to this potential
correlation. As one approach to evaluating any potential
for bias in the test statistic, evaluating the Q-Q plot for
case-control differences for deletions and duplications
separately would provide insights about the behavior of
the test in a particular sample. In addition, for target
regions if there are concerns that strong LD could be
inflating the type I error, thinning the data of SNPs in
very strong LD would eliminate this concern, although
it could also reduce power.
Incorporating family information into the CNV calling

procedure may improve the sensitivity of detection [21].
PennCNV provides a joint calling option in its main
program to detect CNVs using trio data. Studies have
shown the efficacy of this strategy [29-31]. Without call-
ing CNVs, our algorithm performs the association test
directly on a transformation of the data. Essentially,
case-control data are needed.
In the logit algorithm, because the association test is

performed on each position, good quality control proce-
dures may be required by this algorithm to ensure reli-
able results. However, sometimes the effect of factors
other than the affection status is hard to eliminate in
order to keep the power of the statistical tests at a desired
level. In analyzing the melanoma data, we found that
DNA degradation over time may strongly affect the qual-
ity of the intensity values. Furthermore, the method of
obtaining the blood samples may also create unexpected
divergence in the intensity values [25]. To attain valuable
results from these noisy data, attention to experimental
design may enhance power and reduce false positive
results. In particular, using the same DNA processing
procedures for cases and controls and including cases
and controls on the same genotyping plates will ensure
that the DNA signal intensities are comparable.

Conclusions
In this article, we described a new genome-wide algo-
rithm to detect CNV associations with diseases. Other
than implementing a CNV calling procedure on the
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intensity values from SNP genotyping arrays, this algo-
rithm performs association tests directly on the prob-
abilities of being in a copy number at each position
across case and control groups. We have proved that
this algorithm is more sensitive than the existing algo-
rithm especially when the signal is relatively weak, and
it is capable of detecting associations between small
CNVs and diseases.

Additional material

Additional file 1: Supplemental results for the permutation tests
and simulation studies.
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