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ABSTRACT
We consider the multiple senses of several key terms that are used to discuss the ongoing 
COVID-19 pandemic and clarify meanings of the corresponding concepts. Topics addressed 
include: 1) the meaning of immunity to an infectious agent in varying medical and scientific 
contexts, 2) the scientific factors that influenced the rapid generation and clinical implementation 
of safe and effective vaccines for COVID-19, 3) the difference between mutational abrogation of 
reactivity with B- or T-cell antigen receptors (immune escape) versus active interference with host 
immune mechanisms mediated by gene products encoded within the genome of the infectious 
agent (immune evasion), 4) the different ways by which the COVID-19 pandemic has “caused” 
deaths, and 5) briefly, the challenge of precisely defining the term pathogen. 
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INTRODUCTION
Although it is more than 75 years since George Orwell published his widely known and often ad-
mired essay, “Politics and the English Language” (PEL), his indictment of then-current writing for 
the broader public remains highly relevant [1]. In PEL, he severely criticized hackneyed phrases 
and imagery, the lack of precision in the use of words, and pretentious language. Of equal impor-
tance, Orwell forcefully supported the argument that however arrived at, widespread degradation 
in the use of language to convey nuance and complexity in ideas can then favor further decline in 
the quality of thought in an unfortunate cycle that harms politics, social interactions, and culture.

The shortcomings in communication Orwell highlighted are still with us in many contexts. Our 
focus is on the ways that language can be unclear or misleading in connection with coverage of 
the COVID-19 pandemic, a topic of broad interest for now more than 2½ years. Since non-scien-
tists, as well as biomedical researchers and physicians with varying areas and extents of expertise 
are routinely commenting about viruses and their capabilities, antibodies, vaccines, epitopes, and 
various forms of immunity, the potential complexities in the meanings of these and other terms 
are not always fully recognized or adequately conveyed. 

We are interested in the underlying scientific concepts and mechanisms and the importance of 
precision in the language employed to discuss these ideas and phenomena. Therefore, we think it 
is a suitable moment to discuss what some of these key words or phrases are intended (by a writer 
or speaker) or interpreted (by a reader or listener) to mean. In succession, we discuss a series of 
terms and concepts pertinent to the pandemic and that are routinely commented on in newspa-
pers and magazines as well as on radio and television and in podcasts. We acknowledge that the 
topics we cover are illustrative and do not constitute a comprehensive exploration of the words 
and concepts that are relevant for understanding and conversing about COVID-19.

Before discussing the language specific for the COVID-19 pandemic, we offer some generaliza-
tions based on the first author’s roughly 45 years of immersion in immunology and related fields 
of biomedical science. Summarizing this experience, a tentative conclusion is that in too many 
instances, individuals communicating about biomedical matters use words and concepts without 
having thought sufficiently about the precise meanings they attach to them [2, 3]. This supposi-
tion may bear some resemblance to the ideas that motivated Socrates to probe the thought pro-
cesses of his fellow citizens in ancient Athens. Specifically, we suggest that individuals often fail 
to clarify for themselves precisely where to draw the defining boundaries for the categories these 
terms are intended to reference.

THE MEANINGS OF IMMUNITY
In discussions of COVID-19 and SARS-CoV-2, physicians, journalists, and scientists often com-
ment on the presence, absence, or extent of immunity to the virus. However, in different contexts, 
immunity can take on different senses such that the distinctions among these varying meanings 
may be clinically or scientifically significant. 

Below, are several plausible different meanings for immunity in the context of a pandemic:
1.  There is an immune response of some sort that exhibits specificity for a pathogen (ie, an 

infectious agent that causes tissue damage and/or perturbs physiologic function) or for patho-
gen-associated antigens. 
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2.  There is an immune response of some sort that exhibits specificity for a pathogen or for patho-
gen-associated antigens expected to be targets of protective responses. 

3.  There is an immune response that can specifically target and eliminate the pathogen but where 
it is unclear if the magnitude of this response is sufficient to confer protection from infection.

4.  There is an immune response that can specifically target and eliminate the pathogen but where 
it is unclear if the magnitude of this response is sufficient to confer protection from severe 
disease, hospitalization, or death. 

5.  There is actual protection from infection. 
6.  There is actual protection from symptomatic disease but not infection. 
7.  There is actual protection from severe disease but not infection or less severe disease.
8.  There is actual protection from death but not infection or disease of any lesser degree  

of severity.

Immunity, although less commonly, could also mean protection against transmission, as has been 
considered in vaccine development for malaria caused by Plasmodium falciparum (Pf), generally 
the cause of the most severe forms of disease caused by parasites of any of the Plasmodium species 
that infect humans. In the case of vaccination against Pf, immunity to gametocytes, the sexual 
stage of the parasite, protects not the direct vaccine recipient but rather the individuals to whom 
the vaccine recipient might transmit gametocytes via mosquito vectors. Although we do not cur-
rently have any such vaccines approved and in clinical use, such a vaccine remains plausible.

As implied above, protective immunity can encompass more than the mere production of anti-
gen-specific antibodies or T cells. Laboratory methods may indicate whether an individual has 
produced either of these mediators of immunity in response to a pathogen but fail to definitively 
indicate whether these elements of immunity are of sufficient magnitude to be effective at pre-
venting clinical manifestations of infection through destruction and/or clearance of the pathogen. 
The mere presence of an immune response, even of the right sort and specificity, does not neces-
sarily equate to any particular degree of pathogen destruction or clearance or any particular level 
of protection against different unwelcome outcomes. Of course, it is well-known that host im-
mune and inflammatory responses elicited by infectious agents can be of such intensity that they 
cause damage to host tissues, as is the case for SARS-CoV-2 [4]. 

Generally speaking, T cells alone cannot provide a complete barrier to infection or detectable clin-
ical effects, whereas antibodies can sometimes provide a degree of immunity able to prevent any 
obvious clinical manifestations even if infection is not absolutely prevented. While T cells may be 
limited in their ability to prevent disease, they have been credited with effectively clearing a patho-
gen from host cells and tissues to resolve an infection, for example, for infections caused by influ-
enza A viruses [5–8]. Frequently, humoral and cell-mediated immune mechanisms, along with 
innate immune mechanisms, will contribute to pathogen clearance and recovery from infection.

Differences in the intended meanings of immunity may stem from professionals’ differing roles 
and goals. For example, physicians, public health workers, and public servants may feel the need 
to simplify their language when communicating with the general public. This sort of action is 
taken with the intention of informing people who to varying degrees may lack knowledge about 
infectious diseases and agents, the dangers associated with infection, and relevant safety proto-
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cols. On the other hand, news reporters and journalists may feel compelled to use language and 
concepts that while more accessible compromise accuracy to some extent. These actions can blur 
the nuances in meaning of important terms such as immunity. It is imperative that scientists 
and biomedical researchers remain cognizant of these complexities of communication and be 
explicit about how a given term is being used in their written or spoken statements. 

THE SOURCE(S) OF OUR GOOD FORTUNE IN THE RAPID PRODUCTION OF SAFE AND EFFECTIVE 
COVID-19 VACCINES
How is it that effective and safe vaccines for COVID-19 were produced in about 1 year from the 
beginning of the outbreak caused by SARS-CoV-2? For most pathogens, vaccine developers have 
historically required several years or more from the time an infectious agent is identified as the 
cause of a disease to produce a safe and effective vaccine formulation [9, 10]. Therefore, some 
have attributed the extraordinarily rapid development of vaccines for COVID-19 to the unique 
talents of those involved, referring to them as heroes [11, 12]. These contributors include the 
research scientists and corporate specialists in a range of roles that are necessary to transform 
laboratory discoveries into clinical-scale vaccines for which the Food and Drug Administration 
has granted either emergency use authorization or approval [13]. There is certainly some truth to 
this assessment. 

But we should note that researchers and company scientists of comparable skill and dedication 
have been working on other vaccines for much longer without comparable or even any success. 
For example, in the case of HIV-1, scientists have been working to develop a vaccine for almost 40 
years with no clearly effective formulation identified so far [14, 15]. Similarly, the same caliber of 
scientists and other personnel have been working to develop vaccines for Pf for at least 60 years  
[16]. The first vaccine approved for malaria just gained approval within the past year, and it is 
unlikely to be more effective than the best vaccines being used for COVID-19 in the United States 
and other countries [17].

If we have a future epidemic with a totally new virus, or other infectious agent, for which the 
antigens mutate much more rapidly than do those of SARS-CoV-2 or for which we are uncertain 
about which antigens can reliably elicit protective immunity, development of a safe and effective 
vaccine could take far longer. Even with people who were as skilled and as hard working as those 
who generated the COVID-19 vaccines, we might wait years for an effective vaccine to such a 
pathogen despite existing mRNA vaccine technology, established adenovirus vectors, and other 
methods pressed into service for vaccine production in the current pandemic. Although SARS-
CoV-2 may be a “resourceful” and “devious” pathogen in several ways, it presents a relatively 
simple challenge in terms of basic vaccine design. 

So why was success so rapid for the vaccine targeting SARS-CoV-2? We wish to focus in some 
detail on the scientific factors that contributed to the rapid pace of development for COVID-19 
vaccines and refer the interested reader to Kuter et al [18] for discussion of factors relating pri-
marily to modifications of the testing and production processes involved in the vaccine pipeline.

We focus on 3 primarily scientific reasons, 2 of which are related, for the ability to so quickly 
identify a successful immunization approach (see Figure 1). First, the outbreak of severe acute 
respiratory syndrome (SARS) in 2002-2003 caused by a coronavirus we could now term SARS-
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CoV-1, which, as the name suggests, is closely related to SARS-CoV-2, prompted a great deal of 
high-quality research [19]. The current work on SARS-CoV-2 built on these studies, similar work 
on the Middle East Respiratory Syndrome (MERS) virus, and on studies of less virulent coronavi-
ruses associated with the common cold. This research has been proceeding in a number of labs on 
the less virulent coronaviruses for decades [20].

 

Figure 1. Scientific factors contributing to the relatively rapid development of safe and effective 
SARS-CoV-2 vaccines. The schematic diagrams from left to right allude to the roles of prior research on 
structure-guided vaccine design, previous work focused on the immunologic attributes of coronaviruses 
similar in key respects to SARS-CoV-2, critical features of SARS-CoV-2 itself, and past efforts to develop 
the use of nucleic acids that encode immunogens to be produced by recipient cells as well as viral vectors 
and nanoparticles for vaccine delivery to host cells.

SARS-CoV-1 is closely related to SARS-CoV-2 in many attributes relevant for understanding 
immunity and designing vaccines. For instance, studies from over 15 years ago showed that anti-
bodies against the SARS-CoV-1 spike protein could protect experimental animals against infec-
tion and disease [21–23]. Investigators learned how to stabilize the SARS-CoV-1 spike protein, 
and later the MERS virus spike protein, through mutation to enhance immunogenicity and elicit 
protective antibodies able to neutralize the virus [24, 25]. 

In this work, Barney Graham and Jason McLellan and their colleagues at the National Institute of 
Allergy and Infectious Diseases and later McLellan’s group at the University of Texas determined 
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that a small change in the amino acid sequence of the spike protein could stabilize the conforma-
tion of the molecule that exists prior to binding of the spike protein to the receptor, ACE2, on the 
host cell membrane [25]. 

By immunizing against the spike protein in its stabilized conformation, it is more likely that the 
elicited antibodies will prevent the virus from successfully entering host cells, ie, neutralize the 
virus. This key research performed with the SARS-CoV-1 and other coronavirus spike proteins 
was readily applied to the SARS-CoV-2 spike protein. 

Second, SARS-CoV-2, like SARS-CoV-1, presents an unusually straightforward challenge for vac-
cine development compared to infectious agents such as HIV-1, hepatitis C virus (HCV), Pf, or 
Mycobacterium tuberculosis (Mtb). These pathogens are associated with much greater genome se-
quence diversity (HIV-1 and HCV), possess the ability to become latent in host cells (HIV-1 and 
Mtb), infect and inhibit the function of key cells involved in immune responses (HIV-1 and Mtb), 
have multiple life stages with different sets of antigens at each stage (Pf), or produce a multitude 
of antigens (Mtb) such that the best targets for protective immunity are difficult to determine with 
certainty [15, 26, 27]. 

For the coronaviruses, a single antigen encoded by a single viral gene suffices as a target for 
protective immunity elicited by vaccination and mediated by antibodies, which is the form of 
immunity that has been studied most extensively after vaccination [28]. The prior experience 
with SARS-CoV-1 and MERS virus, in conjunction with extraordinary similarities between these 
2 coronaviruses and SARS-CoV-2, provided a strong rationale for immediately focusing vaccine 
development efforts on the SARS-CoV-2 spike protein [29, 30]. 

The third reason for the rapid success involves the 2 to 3 decades of both academic and corpo-
rate research that paved the way for successful immunization with nucleic acids or viral vectors 
containing genes encoding 1 or more relevant pathogen-associated proteins. Immunization by 
administering “naked” nucleic acids encoding immunogenic proteins capable of eliciting immu-
nity was initiated first by Liu and colleagues with DNA and later extended to RNA by Kariko and 
Weissman [31, 32].

Also relevant is the work begun years ago on the use of nanoparticles of various compositions for 
delivery of nucleic acids for one or another purpose [33, 34]. In fact, as noted by Robert Langer, a 
co-founder of Moderna, in a recent interview, as of early 2020 when the threat of COVID-19 was 
first recognized in the United States, Moderna, BioNtech, and Curevac already had initiated clin-
ical trials with a variety of mRNA-based vaccines for other pathogens [35]. Work with a variety 
of viral vectors for vaccination, including adenoviruses like those used for 2 of the widely used 
COVID-19 vaccines, goes back 25 years [36, 37]. 

There is now growing advocacy for developing schemes able to facilitate extremely rapid (ie, with-
in 100 days) production of vaccines against newly identified pathogens with pandemic potential  
[38]. Others have advocated for using the genomic sequence of a newly identified viral pathogen 
with pandemic potential to directly produce a vaccine mRNA encoding the presumed key im-
munogen based on analogies to known pathogens in the same virus family [39]. We believe these 
ideas, although intended to address real and important needs, should be viewed with a measure of 
caution due to still incompletely fathomed complexities of both vaccine safety and effectiveness. 
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VIRUS ESCAPE  VERSUS VIRUS EVASION OF IMMUNITY 
During a surge of cases caused by the Delta variant of SARS-CoV-2, some commenting on the 
increasing case numbers suggested that this version of virus was better able to evade the immune 
response. Others have referred to the same phenomenon as immune escape by the Delta variant.

We propose to make a distinction between 1) the processes by which viruses, or other pathogens, 
evolve on relatively short time scales so as to reduce the effectiveness of antigen-specific immune 
mechanisms dependent on either B or T lymphocytes, and 2) the processes by which these infec-
tious agents produce gene products that directly inhibit or otherwise interfere with the functions 
of host gene products that mediate adaptive or innate immune pathways (Figure 2). 

Figure 2. Schematic illustration of the key differences between the mechanisms of what we suggest 
corresponds to immune escape (top) versus what corresponds to immune evasion (bottom). Our view 
is that immune escape should refer to one or more mutations in the genome of a virus or other infectious 
agent that meaningfully decrease recognition of a key pathogen-associated antigen by antibodies or T-cell 
receptors. In contrast, immune evasion should correspond to the situation where 1 or more gene products 
encoded in the genome of the infectious agent function to inhibit or otherwise undermine relevant 
immunological processes of the host, thereby hindering clearance or destruction of that agent by those 
host mechanisms. The example of viral proteins that interfere with the production or functioning of type I 
interferons is used to illustrate the concept of immune evasion. 
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These latter virus-initiated mechanisms will typically be the result of evolution and selection that 
took place over longer time intervals.

Our preference is to reserve escape for those instances in which, for example, a mutation in SARS-
CoV-2 spike protein renders a previously effective neutralizing antibody completely ineffective or 
at least much less able to inhibit the ability of the virus to infect host cells. Escape is a process re-
quiring as little as a single point mutation typically occurring, as noted above, on relatively short 
evolutionary time scales.

On the other hand, we would suggest that we label the mechanisms by which SARS-CoV-2-en-
coded proteins disrupt normal pathways through which host proteins cooperate to destroy or 
eliminate the virus as examples of evasion. For example, it has been reported that SARS-CoV-2 
produces several non-structural proteins that reduce the production by host cells of molecules 
known as type 1 interferons. These latter host-derived molecules alter host cells in ways that make 
those cells more resistant to virus infection [40–42]. This host pathway is generally classified as a 
type of innate immunity, meaning in part that it is not antigen-specific. 

Which precise words are used is ultimately less important than the ideas embodied by the distinc-
tion between escape and evasion for which we advocate. For example, a term that could be consid-
ered as an alternative for evasion of host immunity is subversion, which like evasion connotes an 
active process. 

Irrespective of the words selected, the distinction can matter because different types of interven-
tions may better address one sort of process versus the other. Irrespective of the words chosen to 
refer to these 2 processes, it is important to note that both escape and evasion, and other mecha-
nisms manifested by some infectious agents, can be employed more or less simultaneously by at 
least some viral or other pathogens. 

DEATHS “CAUSED” BY COVID-19
Every day, the New York Times lists statistics pertaining to the COVID-19 pandemic [43]. Among 
these numbers is a daily death toll attributed to infection by SARS-CoV-2. This prompts a question: 
What counts as a death due to infection by SARS-CoV-2 versus any other causal factor? Please note 
that throughout the following discussion we acknowledge the enormous significance of every death 
for family and friends of the deceased regardless of what factor or factors can be viewed as causal 
and that the motivation for making the arguments presented below is to permit more accurate as-
sessments of risks associated with this virus. An ability to compare relative risks posed by different 
infectious agents is a potential first step to limiting deaths due to infectious disease.

Elsewhere, in a different context, we have come to grips with the necessity, also noted by others 
before us, that to enumerate any entity it is necessary to have a definition of that entity that is clear 
enough to decide, literally, what counts and what does not [3]. This realization is accompanied by 
the likelihood that there may be different contexts that are best served by somewhat different defi-
nitions. Therefore, there may be reason to provide multiple answers to what sounds like a simple 
question. Nevertheless, many people, perhaps a majority of people, will expect there to be a single 
definitive answer. We must remember that reality feels no obligation to make life simple. 

So, it is not unreasonable to, along with journalists, list any death of an individual infected by 
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SARS-CoV-2 as a death caused by COVID-19. But what if a person infected by SARS-CoV-2 
has a pre-existing and severe lung condition and ultimately dies? Did the virus, the pre-existing 
condition, or both cause the death? Should this sort of case be included with deaths of individ-
uals with no known pre-existing conditions? At what magnitude of impairment in pulmonary 
function, or function of any critical organ (eg, heart, kidneys, or liver), if at all, does the balance 
of causal responsibility tip from the virus to the pre-existing organ pathology? If someone gets in-
fected and dies soon thereafter, before the infection can substantially degrade lung or other organ 
function, how should such a death be classified? These and other questions that could be asked 
suggest the potential complexities of what sound initially like simple matters of enumeration.

How should we classify deaths of people with an ongoing serious medical condition for which 
they could not get timely treatment due to the changes in the availability of medical care caused 
by a surge in cases of COVID-19? These lives are lost because of a different condition but likely 
earlier than would otherwise have been the case specifically due to effects of the pandemic, an 
indirect but highly significant influence. This speculation is supported by the increased excess 
mortality in the United States during 2020 [44–46]. 

It is important to explain precisely what criteria are being employed when a given individual 
death is included or not in a given number because otherwise it will become difficult to track 
whether a given pathogen, such as SAR-CoV-2, is becoming more or less lethal. Lack of clarity 
regarding which instances of death count and which do not as pathogen-caused will also make 
reliable comparisons among viral or other pathogens difficult or impossible.

WHAT IS A PATHOGEN?
Finally, everyone agrees that infection by SARS-CoV-2 can cause tissue damage, reduced tissue or 
organ function, and in some cases death. That is generally what infectious disease experts, mi-
crobiologists of every subfield, immunologists, and other biomedical researchers and physicians 
mean when they refer to this coronavirus as a pathogen. 

Of course, as is well-known, some people infected by SARS-CoV-2 exhibit no or minimal symp-
toms and have no longer-term sequelae. Others may be asymptomatic in the acute phase but 
nevertheless have significant symptoms weeks and months later. Of course, many infected indi-
viduals have obvious symptoms during the acute phase of the infection including those who are 
sufficiently severely affected to be admitted to the hospital, be admitted to the hospital intensive 
care unit, be intubated, or die from what appear to be impairments caused directly by the virus or 
by inflammatory or immunological responses elicited by the virus.

So, it is no surprise that like other pathogens, even pandemic pathogens only exhibit virulence 
in some hosts and to varying degrees. This reality raises the question: “What are we then to label 
a microbe that exhibits virulence much less frequently but not never?” For example, in a study 
in mice from the Belkaid lab [47], infection by a recognized pathogen, Yersinia pseudotubercu-
losis, seems to make it possible for a microbe normally found in the human gut and regarded as 
a source of benefit, lactobacillus, to cause a chronic infection in mesenteric lymph nodes. Com-
menting on the Belkaid article in Science [48], Carl Nathan suggests that perhaps the prior infec-
tion with Y. pseudotuberculosis may provide a context within which lactobacilli become virulent 
in some sense, ie, pathogenic.
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We cannot in this space comprehensively address such a large and complex topic as the nature of 
pathogens and pathogenicity. Our limited purpose here is merely to hint at the scale of complex-
ity that is associated with such a familiar and widely used concept [49]. We also wish to highlight 
the inherent lack of clarity frequently associated with such critical terms, which we view as a 
notion of broader applicability within and beyond biomedical science [50]. An additional critical 
point to which we call attention about the label pathogen is that it refers not to an attribute intrin-
sic to a microbe or parasite, but to an attribute of the relationship between a particular microbe 
or parasite and a particular host. Thus, pathogenicity is a relational variable, like antibody affinity, 
which applies to a particular pairing of antibody and antigen under defined conditions and is not 
an inherent attribute of an antibody [51, 52]. 

CONCLUSION
Pandemics are characterized by great complexity in multiple respects. Discussions of pandemics 
typically employ many terms and numbers the meanings of which are inadequately explained 
or explored. Greater clarity of expression is to be strongly desired to enhance understanding of 
pandemic infectious diseases both among pertinent specialists and the general public, to facilitate 
further investigation, and to avoid costly errors in policy or medical practice. 
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