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A ubiquitously expressed cytokine, transforming growth factor-beta (TGF-β) plays a
significant role in various ongoing cellular mechanisms. The gain or loss-of-function of
TGF-β and its downstream mediators could lead to a plethora of diseases includes
tumorigenesis. Specifically, at the early onset of malignancy TGF-β act as tumour
suppressor and plays a key role in clearing malignant cells by reducing the cellular
proliferation and differentiation thus triggers the process of apoptosis. Subsequently,
TGF-β at an advanced stage of malignancy promotes tumorigenesis by augmenting
cellular transformation, epithelial-mesenchymal-transition invasion, and metastasis.
Besides playing the dual roles, depending upon the stage of malignancy, TGF-β also
regulates cell fate through immune and stroma components. This oscillatory role of TGF-β
to fight against cancer or act as a traitor to collaborate and crosstalk with other tumorigenic
signaling pathways and its betrayal within the cell depends upon the cellular context.
Therefore, the current review highlights and understands the dual role of TGF-β under
different cellular conditions and its crosstalk with other signaling pathways in modulating
cell fate.

Keywords: TGF-β 1, signaling pathways, metastasis, tumor suppressor, tumorigenesis

INTRODUCTION

What if your confidant turns into a foe?What if a trustworthy becomes a traitor? Does it hold true for
transforming growth factor-beta (TGF-β) mediated signaling networks? This review highlights the
story of TGF-β signaling and its betrayal within. The exciting story of TGF-β began nearly 4 decades
ago, when in 1978, the ground-breaking efforts of De Larco, George Todaro (De Larco and Todaro,
1978) and later in 1981 the work carried out in the Harold Moses and Michael Sporn-Anita Roberts
laboratory at the National Cancer Institute (NCI) resulted in the discovery and understanding of
TGF-β (Todaro et al., 1981). The early experiments lead to the notion that TGF-β could be a key
factor for tumorigenesis. This was based on the ability of TGF-β to “transform” the behaviour of
normal fibroblasts forming progressively growing colonies hence the name “transforming” growth
factor (Huang et al., 2014). The tumour suppressive role of TGF-β came as another twist when
experiments involving epithelial and lymphoid cells showed growth-suppressive effects of TGF-β
(Roberts and Wakefield, 2003). Further, evidence suggest that TGF-β promotes the activation of
tumor suppressor genes such as p15, p21 and attenuates the tumour promoting gene c-MYC
expression thereby supports its antitumor effect (Katz et al., 2013). There was a division among the
researchers, some believed that TGF-β could be tumour promoter, and some ended up saying that it
has a role in tumour suppression. Dysregulation of TGF-β signaling hijacks the complexes of
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biological functions that plays critical role in developmental
processes and tumorigenesis, thus emerges as a promising
signaling pathway to be targeted for the anticancer drug
development at preclinical and clinical stages (Aashaq et al.,
2021). TGF-β signaling pathway has a decisive and dual role
in the human cancer progression. Besides promotes apoptosis,
cell cycle arrest and autophagy in tumor cells, TGF-β also
augments cell stemness, cell motility, angiogenesis, EMT and
invasion of tumor cells, suggests that TGF-β plays both tumor
supportive and suppressive role (Jena et al., 2021). Thus, TGF-β
displays a tumor suppressor phenotype in normal cells and early
stages of tumorigenesis, whereas in the later stages of cancer
progression, it functions as proto-oncogene and promotes
oncogenesis. Cellular signaling pathways are finely
interconnected networks which regulate various cellular
mechanisms such as cell proliferation and differentiation,
embryonic development, angiogenesis, and apoptosis through
a series of regulated molecular interactions (Kubiczkova et al.,
2012). The complex molecular architecture of signaling pathways
is controlled through a defined hub of various protein–protein
interactions (Pawson and Warner, 2007). Aberrant alterations of
key signaling molecules such as TGF-β could perturb the fine
balance of signaling networks thereby leads to the acquisition of
hallmark capabilities of cancer (Guo andWang, 2009). Therefore,
the current review highlights and summarizes the recent
developments in TGF-β associated tumorigenesis, its
antitumor effect as well as cross talks with associated signaling
pathways. These findings could resurface new potential
therapeutic targets of TGF-β associated signaling pathways in
modulating cell fate and could predict new tumor biomarkers for
future diagnostics.

TGF-β Signaling
TGF-β, a pleiotropic cytokine, plays a plausible role in a
plethora of various physiological processes including growth,
differentiation, cell death and migration (Neuzillet et al.,
2015; Hata and Chen, 2016). The TGF-β family is further
classified into two subfamilies: 1) TGF-β subfamily, which
includes TGF-β, activin beta chains, and the protein Nodal,
and 2) Bone Morphogenetic Protein (BMP) subfamily that
includes BMPs, growth differentiation factors (GDFs), and
mullerian inhibitory factor (MIF) (Akhurst and Hata, 2012;
Caja and Vannucci, 2015). All these proteins which act as
ligands are synthesized as dimeric pre-proprotiens. The pre-
proproteins are processed for cleavage by proteases to
generate mature functional growth factors which are then
finally secreted as latent forms but remains interacted
noncovalently with their respective polypeptides (Rossetti
et al., 2020). Although, TGF-β activation requires release
of active ligands, however, reports suggest that the
precursor form of the protein nodal binds to the receptors
directly to activate signaling without being processed
(Schmierer and Hill, 2007). Mammalian TGF-β ligands
exist in three isoforms; TGF-β1, TGF-β2, and TGF-β3.
Each of these isoforms binds to their respective
transmembrane serine/threonine kinases that bind to type
I (TGF-βRI) and type II (TGF-βRII) receptors. Seven TGF-

βRI (also known as activin-like receptor kinases {ALKs},
ALK1–7), five TGF-βRII (TGFBR2, BMPR2, ACVR2,
ACVR2B, and AMHR2) and two TBRIIIs (betaglycan and
endoglin) have been identified so far. Structurally, TGF-β
receptors consist of a ligands binding extracellular
N-terminal domain, an inner transmembrane region and a
C-terminal cytoplasmic serine/threonine kinase domain
(Santibañez et al., 2011; Kubiczkova et al., 2012; Hata and
Chen, 2016). Binding of TGF-β to the receptors activates
signaling via phosphorylation of Smads resulting in the
formation of Smad complexes that are translocated to the
nucleus where they bind to their respective DNA sequences to
regulate the transcription of various target genes (Miyazawa
et al., 2002) (Figure 1).

Smads are small intracellular effector proteins which are
activated by TGF-β receptors to mediate intracellular TGF-β
signaling (Kit Leng Lui et al., 2017). Smads are well conserved
and classified into, the receptor-regulated Smads (R-Smads),
which include Smad-1, -2, -3, -5 and -8; the common
mediator Smad (Co-Smad), Smad-4; and the inhibitory Smads
(I-Smads), Smad-6 and -7. R- and Co-Smads are characterized by
two highly conserved domains at their N- and C-termini, known
as Mad homology domains MH-1 and MH-2, respectively
(Wrana and Attisano, 2000). The MH-1 and MH-2 domains
are separated by a proline rich and serine/threonine rich linker
domain that aids in phosphorylation (Lai, 2001). The linker
region also contains phosphorylation sites for mitogen protein
kinase and ubiquitin ligase SMURF1 for its recognition (Kamato
et al., 2013). Besides, interact with DNA, MH1 domain can also
bind with associated proteins which includes transcriptional
factors, co-activators, and co-repressors as well as
ubiquitination adaptors, and contains a nuclear localization
sequence (NLS), whereas MH2 is responsible for
oligomerization of Smads, transactivation of Smad nuclear
complexes and transcription of key genes involved in various
cellular signaling pathways (Xie et al., 2014; Macias et al., 2015;
Ahmed et al., 2017). I-Smads have highly conserved C-terminal
MH2 domain but lacks the MH1 domain in the N-termini.
I-Smads, Smad-6 and Smad-7, function as negative-feedback
regulators of TGF-β signaling. Smad-6 prevents the formation
of R- and Co-Smad complexes, whereas Smad-7 recruits E3
ubiquitin ligases SMURF1 and SMURF2 for binding to
activated TGF-β receptors leading to the ubiquitin-mediated
proteasomal degradation (Xie et al., 2014; Tu et al., 2019).

Smad2 is proposed to be a tumor suppressor protein and
encoded by the gene present at chromosome 18q21 (Samanta and
Datta, 2012). Various malignancies where the mutation rate of
Smad2 occurs at a low frequency are non small cell lung
carcinoma (NSCLC) 2%, hepatocellular carcinoma (HCC) 3%,
colorectal cancer 8% and cervical cancers 8% (Kim et al., 2000).
Mutational analysis suggest that majority of mutations of MH1
andMH2 domains of Smad2 are missense mutations, however, in
colon cancer Smad2 had two cases of homozygous deletion
mutations (Macias et al., 2015). Besides act as a tumor
suppressor, Smad2 plays crucial role in development. Smad2
knockout results in early embryonic lethality in mice (Liu
et al., 2016). Smad2 missense or homozygous deletion
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mutations alters phosphorylation, nuclear translocation, and
promotes Smad2 auto inhibition thereby leads its degradation.
Smad2 is critical for the induction of p21 which regulates cell
cycle by acting as a key CDK inhibitor (Moren et al., 2000).

Reports suggest that human tumors have increasing frequency
of loss of expression of Smad3 (Vidakovic et al., 2015). Decreased
TGF-β responsiveness was observed when Smad3 expression was
lost in gastric carcinoma cells, however, TGF-β-mediated tumor
suppressor activity was restored when ectopic expression of
Smad3 was reintroduced in gastric carcinoma cells, suggests
the Smad3 not only acts as tumor suppressor but might also
be the target for epigenetic inactivation in gastric carcinoma (Li
et al., 2015). Recent evidence suggests that loss of Smad3
expression downregulates TIMP1 expression in
choriocarcinoma. This further promotes MMPs activity,
thereby plays critical role in tumor invasion (Xu et al., 2003;
Rah et al., 2012). Additionally, altered expression of Smad3 is
reported to impair the TGF-β-mediated inflammatory response
and immune suppression to contribute in tumorigenesis (Hao
et al., 2019). Despite Smad3 plays crucial role as a tumor
suppressor, recent reports suggest that no embryonic lethality
was promoted when Smad3 gene was silenced or knockout.
However, it does modulates immune function which later

develops colon adenocarcinomas with ability to metastasise to
distant secondary sites (Bellam and Pasche, 2010). Another
important gene of Smad family located on chromosome 18q is
Smad4 (Maru et al., 2004). Smad4 gene is remarkably absent in
various cancers such as cervical, prostate, breast, pancreatic, and
neuroblastoma due to greater frequency of loss of heterozygosity
(LOH) of 18q (Zhao et al., 2018; Rah et al., 2021). The inactivation
of Smad4 occurs by various mechanisms which includes
frameshift, loss of entire chromosome segment, nonsense and
small deletion mutations (Hata et al., 2018). Identified first as
deleted in pancreatic carcinoma (DPC-4), Smad4 mutations
mainly occurs in pancreatic cancer (Rah et al., 2021). Presence
of germ line mutations in MADH4 of juvenile polyposis families
further supports that the Smad4 act as a tumor suppressor
(Harradine and Akhurst, 2006). Besides, playing critical role in
regulating tumorigenesis in various gut associated cancers,
Smad4 has been reported to have a crucial role in metastasis
(Cheng et al., 2016). Using a cellular and mouse model of TGF-β-
induced breast cancer progression, Dekers et al. demonstrated
that Smad4 is required for TGF-β induced EMT and bone
metastasis of breast cancer cells (Deckers et al., 2006). Further,
Smad four knockdown in MDA-MB-231 resulted in the
attenuation of EMT transition and bone metastasis thereby

FIGURE 1 | Activation of TGF-β signaling by dimerization of respective receptors followed by phosphorylation and translocation of Smads into the nucleus to
regulate transcription of genes involved in cell proliferation, apoptosis and differentiation.
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highlighting the role of Smad4 in both tumor suppression and
progression (Zhang et al., 2015). Collectively, the recent evidences
suggest that Smad4 is a key player in regulating tumor
progression and tumor suppression depends upon type and
stage of malignancy. The inhibitory SMADs (I-SMADs), Smad
6 & 7 with conserved carboxy-terminal MH2 domains regulate
TGF-β signaling through a negative feedback mechanism. The
I-Smads inhibit TGF-β signaling through interaction with
R-Smads and type I receptors. The inhibitory Smads prevent
the complex formation of R-Smads and co-Smads. Smad6
particularly inhibits TGF-β signaling by BMP type I receptors
ALK-3 and ALK-6 whereas Smad7 inhibits both TGF-β and
BMP-induced Smad signaling. SMAD6 and SMAD7 have been
shown to play a critical role in tumor progression. Aberrant
expression of SMAD6 has been reported in many human cancers.
The inhibition of Smad six is known to contribute to the
reinstatement of TGF-β homeostasis and is one of the factors
for poor survival in patients with NSCLC (Goto et al., 2007).
SMAD6 has also been reported to determine the invasiveness of
breast cancer cells in BMP-regulated zebrafish xenograft model.
SMAD7, first identified in endothelial cells has a conservative
Mad homology 2 (MH2) at its C-terminal with no SXSS domain
and Mad homology 1 (MH1) domain at N-terminal which is
different from the R-Smads and Co-Smads. The feedback
inhibition of TGF-β signaling by Smad seven is due to the
interaction of L3 loop of MH2 domain and L45 loop of the
TGFβR1 kinase domain. In addition to L3 loop, a three finger-like
structure in Smad seven provides additional support to bind to
TGFβRI (Miyazawa and Miyazono, 2017). The binding of
SMAD7 and TGFβRI blocks SMAD2/3 which further prevents
the formation of R-Smad/Co-Smad complex, thereby inhibiting
core signalling pathway (Pan et al., 2020). In a similar manner,
BMP and activin membrane-bound inhibitor (BAMBI) forms
BAMBI/SMAD7/TGFβRI complex which inhibits the activation
of SMAD3 (Hernandez et al., 2018). Also, a number of proteins
can interact with Smad seven to induce the degradation of
TGFβRI. For example, the binding of E3 ubiquitin ligase
SMAD ubiquitination regulatory factors (Smurfs) to the Smad
7 N-terminal region results in the degradation of TGFβRI
(Koganti et al., 2018). In addition to the feedback regulation
of TGF-β signaling, Smad7 also interacts with cellular pathways
in an independent manner. SMAD7 is known to antagonizeWnt/
β-catenin signalling. Smad seven forms complexes with β-
catenin/Smurf2 which results in the degradation of β-catenin
via proteasome (Vallée et al., 2017). In human prostate cancer
cells, the SMAD7/β-catenin interaction plays a crucial role to
provoke c-Myc transcription (Tripathi et al., 2019). Smad7 also
promotes TNF-induced apoptosis by inhibiting the expression of
several anti-apoptotic NF-κB target genes. In addition, Smad7
abrogates NF-κB activity by regulating the activation of TGF-β-
activated kinase 1 (TAK1) (Gingery et al., 2008). Smad 7
augments STAT3 activation by directly interacting with the
co-repressor gp130, an intracellular domain of leukemia
inhibitory factor (LIF) resulting in the disruption of SOCS3-
gp130 or SHP2-gp130 complex. Smad7 plays critical role in
coordinating gp-130/STAT3 and TGF-β/Smad signalling
pathways that promotes pathophysiological processes such as

inflammation and tumorigenesis (Yu et al., 2017). Taken
together, these findings revealed that I-Smads, Smad 6 and 7
regulate plethora of physiological and pathophysiological
processes both TGF-β dependent and independent manner.

TGF-β as a Tumour Suppressor
TGF-β attains its tumour suppressive role by regulating cell
proliferation, apoptosis and immune cell modulation. TGF-β
signaling prominently abrogates malignant cell growth through
both canonical SMAD-dependent and non-canonical pathway.
Through canonical pathway, TGF-β inhibits cell cycle
progression through G1-arrest by activating cyclin dependent
kinase (CDK) inhibitors p21 and p15. TGF-β suppresses an
important oncogene, c-Myc, which stimulates the proliferation
and inhibits the transcriptional activation of p21 and p15
(Mukherjee et al., 2010; Katz et al., 2013). In addition, TGF-β
inhibits DNA-binding protein inhibitor (ID1, 2, 3) and nuclear
factors which plays a crucial role in cell differentiation and
progression from G1 to S phase of cell cycle (Katz et al., 2013;
Yoshida et al., 2018). TGF-β induces apoptosis in a variety of cell
types by modulating the expression of B-cell lymphoma-2 (Bcl-2)
family members, death receptor fibroblast associated antigen
(FAS), growth arrest and DNA damage-inducible (GADD) 45-
β, death-associated kinase (DAPK), and caspases to induce both
the intrinsic and extrinsic apoptosis (Zhang et al., 2017). The role
of TGF-β as a tumour suppressor has been demonstrated in
several cancers (Meulmeester and Ten Dijke, 2011). The non-
canonical TGF-β promotes tumor suppressor activity via p38
MAPK pathway to activate caspase-8-dependent programmed
cell death. Besides induces tumor suppressive role by activation of
programmed cell death, TGF-β promotes tumor suppressive role
by regulating immune cell function in favour of tumor cell death
(Schrantz et al., 2001). Taken together, TGF-β at the initial stage
of tumorigenesis promotes tumor suppression activity, by
arresting cell cycle, induces DNA damage and apoptosis is
malignant cells.

TGF-β as a Tumor Promoter
In the later stages of cancer, TGF-β can paradoxically result in
tumor progression and metastasis (Katz et al., 2013).
Dysregulated expression of TGF-β signaling has been reported
in many cancers such as hepatocellular carcinoma, colon,
prostate, lung, and breast cancers (Sheen et al., 2013; Zhao
and Chen, 2014; Villalba et al., 2017). TGF-β plays an
important role in tumorigenesis and promotes tumour
development by stimulating epithelial-to-mesenchymal
transition (EMT), cell proliferation, invasion, metastasis,
angiogenesis and evasion of immune surveillance (Melzer
et al., 2017, 2019; Dufour et al., 2018). In vitro studies have
demonstrated that increase in EMT is associated with the
overexpression of Smad-3/4. TGF-β also promotes the
secretion of matrix metalloproteases (MMP)-2 and -9, and
inhibits the activity of tissue inhibitors of MMPs (TIMPs)
(Moustakas and Heldin, 2016; Tan et al., 2017). Collectively,
these reports suggest that constitutive activation or dysregulation
of TGF-β signalling modulates the expression of various
molecules which in turn can promote cell proliferation,
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invasion, EMT and metastasis to distant sites during late stage
malignancies.

TGF-β as a Therapeutic Target
The complex role of TGF-β in cancer necessitates the
comprehensive understanding in order to strategize effective
therapeutic approach. A number of pharmacological
interventions that target different signaling components of
TGF-β have shown promising results in number of preclinical
and clinical trials. Different strategies including neutralizing
antibodies, ligand trapping, small-molecule inhibitors and
antisense oligonucleotides are being explored to target TGF-β
signaling. In phase-I clinical trial for malignant melanoma
patients, IgG4κ monoclonal antibody, fresolimumab (GC1008),
has shown anti-cancer activity by neutralizing TGF-βI, II, and III
(Morris et al., 2014). In addition, treating non-small cell lung
cancer patients with fresolimumab is still in phase-II clinical
trials. Studies in animal models have shown that IgG1
monoclonal antibody, an anti-TGF-βRII (LY3022859) blocks
the binding of TGF-β to ectodomain of TGF-βRII which
results in significant decrease in tumor growth and metastasis
(Zhong et al., 2010). TGF-β ligand trapping by AVID200, a
chimeric fusion protein, prevents binding of TGF-β to the
receptor. In vivo study by Sanjabi et al., demonstrated that

AVID200 enhanced the anti-cancer activity in
immunocompetent host mice (Sanjabi et al., 2017).
AVID200 is currently in phase-I clinical trials for
advanced solid tumor patients (Yap et al., 2020).
Galunisertib (LY2157299), a small-molecule inhibitor,
binds to TGF-βRI thereby inhibiting its kinase activity.
Preclinical study by Yingling et al., in in-vitro and in-vivo
models demonstrated anti-tumour activity of galunisertib
(Yingling et al., 2018). Phase-I clinical trials of galunisertib
revealed promising anti-cancer activity in patients with
pancreatic cancer, glioma, HCC and advanced solid
tumours (Fujiwara et al., 2015; Ikeda et al., 2019; Wick
et al., 2020). LY3200882, a potent ATP-competitive TGF-
βRI inhibitor has shown antitumor activity in both preclinical
mouse model of TNBC as well as patients with metastatic
cancers (Pei et al., 2017). Another strategy is antisense
oligonucleotides (AON) which are specifically designed to
block the translation of genes. Trabedersen (AP12009), an
AON, targeting TGF-βRII mRNA has shown promising
effects in phase-I clinical trials for patients with pancreatic
cancer, colorectal cancer and melanoma (Oettle et al., 2011).
Nemunaitis et al., has shown that Belagenpumatucel-L or
Lucanix, an AON vaccine targeting TGF-βRII improved the
overall survival of NSCLC patients after chemotherapy

FIGURE 2 | Pharmacological intervention of TFG-β signaling and potential targets Signaling Cross Talk between TGF-β/Smad with other Signaling Pathways.
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(Nemunaitis et al., 2009). Collectively, these evidences
indicate that TGF-β is a promising therapeutic target to
inhibit tumorigenesis in plethora of cancers as described in
Figure 2.

PI3K/Akt Signaling
The PI3K/Akt signaling pathway is a master regulator of various
physiological and cellular processes including cell proliferation,
growth, and survival (Rodgers et al., 2017). PI3Ks are classified
into three classes based on the structure, distribution, substrate
specificity and mechanism of action. PI3Ks are phospholipid
kinases, existing as a heterodimer of a regulatory subunit p85
(p85α, p85β, p55α, p55γ and p50α) and a catalytic subunit p110
(p110α, p110β, p110γ, and p110δ) (Piddock et al., 2017; Giordano
and Kiger, 2020). The multiple receptor tyrosine kinases (RTKs)
or G-protein-coupled receptors (GPCRs) activate PI3K which
inturn phosphorylate phosphatidylinositol 4,5-bisphosphate to
form phosphatidylinositol 3,4,5-trisphosphate (PIP3)
(Mantamadiotis, 2017). PIP3 binds to the pleckstrin homology
(PH) domains of various signaling proteins, including
phosphoinositide-dependent kinases (PDK1) and its
downstream target protein kinase B/Akt (Krygowska and
Castellano, 2018; Gesmundo et al., 2019). The phosphorylation
of the two critical amino acid residues, Thr308 and Ser473 is
essential for full Akt activation (Yu and Cui, 2016). Akt has three
isoforms: Akt1, Akt2 and Akt3, that are expressed from distinct
genes located on separate chromosomes (Rahmani et al., 2020).
Akt1 and Akt2 are ubiquitously expressed in human tissues, while
Akt3 is restricted to brain and testes (Ji et al., 2015; Tian et al.,
2019).

Akt activation causes the phosphorylation of many
downstream targets in the cytoplasm and nucleus, explaining

its relatively broad range of downstream effects and increases cell
proliferation, invasion, and angiogenesis (Hinz and Jücker, 2019)
(Figure 3). Activated Akt inturn phosphorylated wide range of
target proteins including glycogen synthase kinase-3β (GSK-3β)
(Hinds et al., 2016), forkhead box O transcription factor (FOXO)
(Norambuena-Soto et al., 2017), Mouse double minute two
homolog (MDM2) (Li et al., 2020), inhibitor of IkB kinase
(IKK) (Ghoneum and Said, 2019), Bcl-2 interacting mediated
cell death (BIM) (Kapoor et al., 2020), Bcl-2 associated agonist of
cell death (BID) and Bcl-2 associated X protein (Bax) (Liu et al.,
2020). The PI3K/Akt pathway is tightly regulated by lipid
phosphatase enzyme phosphatase and tensin homolog
(PTEN), which negatively regulates the kinase activity of PI3K
(Haddadi et al., 2018).

Hyperactivation of the PI3K/Akt pathway is frequently
seen in many cancers (Rasool et al., 2017; Rodgers et al.,
2017). PI3K/Akt can activate NF-kB signaling by
phosphorylation IKK or by stimulating nuclear
translocation of NF-kB (p65) thereby inducing cell
proliferation and apoptosis evasion (Tilborghs et al., 2017).
Akt is known to inhibit proapoptotic proteins such as Bax,
Bad and procaspase-9 (Wang et al., 2018). Akt also
antagonizes p53-mediated apoptosis by phosphorylation
MDM2 contributing to chromosome instability in cancer
(Cao et al., 2020). Several studies have documented an
increase in the expression of PI3K and Akt with
suppression of PTEN in various human cancers (Han
et al., 2018). Recent evidences suggest that PI3K/Akt
pathway has been extensively linked with TGF-β signaling
pathway majorly in stem cells and tumor cells of various
tissues (Yeh et al., 2018). Although the cross-talk of these
pathways is intricated, mutual regulation depends upon

FIGURE 3 | A schematic representation of the PI3K/Akt signalling and its downstream targets.
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cellular context and associated pathophysiological processes.
Depending on cellular context this crosstalk can result in
either inhibition or activation of various downstream
molecules critical for biological processes. TGF-β can
directly or indirectly activate PI3K-Akt pathway. The key
components of TGF-β family Smad2/3 activation in
coordination with hyperactivation of PI3K, modulates cell
fate of human embryonic stem cells (hESCs) by upregulated
the expression of Nanog which is a key pluripotent gene
essential for self renewal (Gordeeva, 2019). Moreover,
increased expression of PI3K inhibits ERK/MAPK
signalling which results in GSK 3B activation leading to
b-catenin inhibition. Since Smad2/3 in association with
b-catenin is required for mesendoderm gene expression
initiation, low PI3K activity allows β-catenin and Smad2/3
complex for direct mesoderm differentiation (Jason et al.,
2015). In epithelial and lymphoid cells, smad dependent
TGF-β signalling in known to inhibit cell proliferation and
induces apoptosis in hepatocytes and resting B cells. PI3K/
Akt signaling antagonizes TGF-β-mediated proapoptotic
effect in B cells and hepatocytes by allowing interaction of
Akt with Smad3 in cellular milieu. The binding of Akt to
smad three results in sequestering smad3 which prevents
Smad3 dependent apoptosis in hepatocytes (Papoutsoglou
et al., 2019). Another study suggests that the cytostatic effect
of TGF-β/Smad3 signaling is promoted via Akt-mediated
phosphorylation of FOXO. The phosphorylated FOXO
interacts with Smad3 to block its translocation into the
nucleus thereby preventing transcription of genes involved
in apoptosis (Yadav et al., 2018). This inhibition promoted by
PI3K/Akt signaling switches the role of TGF-β from tumor
suppression in early tumorigenesis to tumor promotion in the
late stage tumorigenesis (Syed, 2016). Additionally, PI3K/Akt
pathway in coordination with TGF-β signaling regulates
EMT, cell invasion, and metastasis in various types of
malignant cells (Luo, 2017). TGF-β phosphorylated Akt at
Ser-473 and activates its kinase activity via integrin-linked
kinase (ILK) (Tsirtsaki and Gkretsi, 2020). This activation
promotes optimal transcriptional activity of Smad3 to
upregulated expression collagen I in mesangial cells. A
mechanistic study by Runyan et al. has demonstrated that
PI3K/AKT signalling influences the expression of collagen I
in mesangial cells stimulated by TGF-β (Runyan et al., 2004).
Cancer cells in the tumor microenvironment require
enhanced glycolysis to survive and proliferate. In
glioblastoma cells, Smad dependent TGF-β signalling is
known to target p38 MAPK and PI3K/Akt signaling
pathway which in turn increases the expression of PFKFB3
and induces glycolysis (Rodríguez-García et al., 2017). Also,
in normal murine mammary gland epithelial cells, TGF-β
promotes the expression of connexin43 gene expression by
activation p38 and PI3K/AKT signaling (Tacheau et al.,
2008).

Together, these evidences suggest that PI3K/Akt signaling is
linked with TGF-β signaling at multiple crosstalk points during
tumor development. Depends upon the cellular context and
influence of other signaling pathways, TGF-β could act as

tumor suppressor by promotes apoptosis and/or tumorigenic
regulates critical events such as EMT, invasion and metastasis
of malignant cells (Figure 7).

NF-kB Signaling
NF-kB was first discovered as a transcription factor in the nucleus
of B cells where it was reported to bind to the enhancer region of
the k-light chain of immunoglobulin family. The NF-kB proteins
are divided into two subfamilies, the ‘NF-kB’ proteins (p50/NF-
kB1, and p52/NF-kB2) and the ‘Rel’ proteins (RelA/p65, c-Rel,
RelB) (Tilborghs et al., 2017; Mitchell et al., 2019). These proteins
are characterized by a highly conserved domain (Rel homology
domain) of 300 amino acid residues essential for homo- or
heterodimer formation to interact with DNA and IkB family
of proteins (Kanapeckaitė et al., 2021). The C-terminal region of
the RHD has a nuclear localisation signals that helps in the
delivery of active form of NF-kB complexes into the nucleus,
whereas the N-terminal region contains the DNA-binding
domain (Serasanambati and Chilakapati, 2016). In addition,
Rel proteins comprises of a transactivation domain (TAD) at
C-terminal whereas NF-kB subfamily members contains multiple
copies of ankyrin repeats which act to auto-inhibit these proteins
(Collins et al., 2016). The activation of NF-kB can occur by two
separate pathways, classical (canonical) or non-classical (non-
canonical or alternate) pathway (Ichikawa et al., 2015; Park and
Hong, 2016).

The Canonical Pathway: This pathway is activated primarily in
response to many internal factors including tumor necrosis
factor-alpha (TNF-α), interleukin (IL)-1β, epidermal growth
factor (EGF), T- and B-cell mitogen, bacteria, and
lipopolysaccharides, viral proteins, double-stranded RNA, and
external agents involving physical and chemical stress (Chen
et al., 2018a; Taniguchi and Karin, 2018). Initially NF-kB is
inactive in naive cells that are not yet stimulated by external
signals and the p50/p65 heterodimer is retained in the cytosol by
inhibitor protein, IkB (Ghafoori et al., 2009). The IkB family
consisting of IkB-α, IkB-β and IkB-ε subunits comprises of six
ankyrin repeats that prevents the translocation of p50/p65 into
the nucleus by shedding the activity of nuclear localisation signals
of NF-kB (Morotti et al., 2017). The activity of IkB is tightly
regulated by IKK, a large multisubunit kinase complex consisting
of two kinase subunits, IKKα (IKK1) and IKKβ (IKK2), and a
regulatory subunit IKKε (NEMO). In response to NF-kB
inducing signals, both IKKα and IKKβ induce phosphorylation
and degradation of IKB proteins (Galluzzi et al., 2012). The
disintegration of IKB leads to the release and subsequent
translocation of NFkB p65-p50 heterodimer into the nucleus,
where it binds to the kB elements to mediate the transcription of
responsive genes involved in cell growth, differentiation and
survival, immune response, inflammation, apoptosis, invasion,
metastasis, and angiogenesis (Yuan et al., 2016; Sun, 2017;
Taniguchi and Karin, 2018).

The Non-canonical Pathway: Various members of TNF
cytokine family such as lymphotoxin, B-cell activating factor
belonging to the TNF family (BAFF), CD40 ligands or viruses
such as Epstein-Barr virus (EBV) and T-cell leukaemia virus
(Zhang et al., 2020b) activates the non-canonical pathway of or

Frontiers in Pharmacology | www.frontiersin.org February 2022 | Volume 13 | Article 7912727

Baba et al. Transforming Growth Factor-Beta (TGF-β) in Cancer

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


alternative NF-kB signaling pathway. This pathway involves
phosphorylation and activation of IKKα by the NF-kB-
inducing kinase (NIK) which in turn phosphorylated NF-kB2
(p52/p100) at Ser866 and Ser870 (Demchenko et al., 2014). The

phosphorylation of p52/p100 by IKKα results in the proteasomal
degradation of p100 leading to activation of RelB/p52
heterodimer (Roy et al., 2018). The active p52-RelB
heterodimer translocated into the nucleus binds to respective

FIGURE 4 | Activation of NF-kB signaling by phosphorylation of IkB with TLRs and proinflammatory cytokines to release and allow translocation of RelA, p50, RelB
into the nucleus to regulate transcription of genes involved in cell proliferation, antiapoptotsis, inflammation, cell survival, innate and adaptive immunity.

FIGURE 5 | NF-kB activation affects hallmarks of cancer trough the transcription of genes involved in cell proliferation, survival, and angiogenesis.
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elements and regulates the expression of genes required for lymph
organogenesis and B-cell activation (Park and Hong, 2016) as
depicted in Figure 4.

Several in vitro and in vivo studies have revealed the
constitutive activation of NF-kB and its association with many
types of cancers including breast, lung, colon, pancreas, head and
neck, oesophagus as well as melanomas, lymphomas (Xiao et al.,
2018), and its role has been associated with various tumour-
favouring cellular processes including cancer cell proliferation,
preventing apoptosis, and increasing a tumor’s angiogenic and
metastatic potential (Park and Hong, 2016). Figure 5 shows the
various target genes of NF-kB. NF-kB is activated in cancer either
from extrinsic signals in the tumor microenvironment or from
intrinsic deregulation of the pathway within the tumor (Lee et al.,
2017). Various factors such as autocrine secretion of
inflammatory mediators (chemokines and cytokines),
mutations and/or overexpression of ligands and receptors
(EGF, hepatocytes growth factors and integrins), activation of
kinases (IKK, NIK, GSK-3β, Akt/PKB, and mutation with
defective function of IkB-α contribute to constitutive
activation of NF-kB (Nagel et al., 2015; Lee et al., 2017).

Aberrant activation of TGF-β in association with NF-kB
signaling has been documented in various cancers (Zappavigna
et al., 2020). Activation of NF-kB by TGF-β has been reported to
mediate the transcriptional activation of various TGF-β target
genes (Torrealba et al., 2019). A study by Kon et al. (Khafaga et al.,
2019), has shown that TGF-β triggers TNF-α or interleukin-1 to
activate type VII collagen gene expression through NF-kB-
binding site and SBE sites in various regulatory gene
sequences (De La Cuesta et al., 2019). Aberrant activation of
TGF-β/NF-kB signaling pathways has been documented to
promote EMT and angiogenesis. TGF-β activates transcription
of NF-kB target genes and promotes EMT in pancreatic cells as
well as proliferation and differentiation of keratinocytes
(Khatami, 2017). Activation of the NF-kB by TGF-β can be
mediated by both canonical Smad pathway and non-canonical
Smad pathway (Tripathi et al., 2019). In Canonical Smad
pathway, Smad3 is shown to interact with the core proteins of
NF-kB to activate various auxiliary proteins (Visconte et al.,
2019). The physical interaction of Smad3 and p52/RelB is
known to activate Jun B expression (Luo, 2017). Brandl et al.,
2010 demonstrated that TGF-β-SMAD signaling is regulated by
IKKα by interacting with SMAD3 thereby governing SMAD
complex formation on DNA. Furthermore, the TGF-β-IKKα-
SMAD signaling downregulates E-cadherin and activates
transcription of genes encoding Slug and Snail in pancreatic
cancer cells. In addition, IKKα also modulates canonical TGF-
β-SMAD signaling in human MDA-MB231 breast cancer cells
thereby highlighting the impact of IKKα on TGF-β-SMAD
signalling. (Brandl et al., 2010). In non-Smad pathway, TGF-β
can also activate NF-kB by TGF-β-activated kinase 1 (TAK1).
TAK1 activates IKK, which in turn phosphorylate IκBα, leading
to proteasomal degradation of IKBα and the release of NF-kB
p65-p50 heterodimer resulting in NF-κB activation. (Hydarpoor
et al., 2020). Studies have demonstrated that TGF-TAK1 also
induces NF-kB activation in murine B cells, hepatocytes and head
and neck squamous cell carcinoma (HNSCC) cells (Loren et al.,

2021). Freudlsperger et al. has demonstrated the aberrant TGF-
TAK1 expression and its association with nuclear NF-κB
activation in HNSCC tumors (Freudlsperger et al., 2013). In
response to TGF-β, TAK one also activates RhoA-Rho-associated
kinase (ROCK) resulting in the phosphorylation and activation of
IKKβ, leading to NF-kB activation (Kwon et al., 2018a). In
addition, TGF-β also evokes cellular response through
activation of PI3K-Akt pathway leading to the
phosphorylation of IKKα/β, IkB and NF-kB which results in
increased integrin expression and cell migration (Kwon et al.,
2018b). Thus, the key players in NF-κB signaling pathway not
only function as signaling components but also can act as the
crossroad between NF-kB and TGF-β pathways (Torrealba et al.,
2019). Although, many studies suggest the role of TGF-β in
activating NF-κB, repression of NF-κB signaling by TGF-β has
also been reported (Zhang et al., 2020a). Several studies have
suggested a critical role of inhibitory Smad, Smad7 in the
crosstalk between TGF-β and NF-κB signaling (Chen et al.,
2018b). The upregulation of Smad7 and its interaction with
NF-κB subunit p65 suppresses TGF-β-Smad signaling (Ciceu
et al., 2021). On the other hand, an increase in the expression of
Smad7 can also induce IκBα, thereby inhibiting NF-κB activation
(Lu et al., 2017). This inhibition of NF-kB by TGF-β could be
attributed to the negative feedback loop (Lang et al., 2020). A
study by Arsura et al. demonstrated that in murine B cells and
hepatocytes, the initial activation of NF-kB leads to the
transcriptional activation of IkB that eventually causes
inhibition of NF-kB signaling (Wang et al., 2017). This
feedback loop could act as an important target in attenuating
the cytostatic response of TGF-β during malignant progression.
Collectively, TGF-β signaling modulates NF-kB signaling and
promotes transcriptional activity of various genes which are
involved in cell proliferation, invasion, metastasis, EMT and
associated inflammatory signaling to promote tumorigenesis.
In conclusion, although some studies suggest that TGF-β is
also regulated by IKK to prevent tumorigenesis, however,
significant number of studies demonstrated that the cross talk
of TGF-β-mediated Smad/NF-kβ drives transcription of
tumorigenic genes for tumor cell proliferation, growth,
invasion, angiogenesis and metastasis to distinct secondary
sites (Figure 7).

The JAK/STAT Signaling
The JAK/STAT pathway mediates cellular responses to a wide
array of cytokines and growth factors (Maude et al., 2015;
Pencik et al., 2016). JAKs were initially named as “just
another kinase”, but were later changed to “Janus kinase”
which was attributed to being a unique class of tyrosine
kinases that contain both a catalytic and kinase-like
domain and possesses autoregulatory function (Genovese
et al., 2017). Abundant evidence has supported the role of
JAK/STAT in the regulation of various cellular processes
including proliferation, differentiation, migration,
apoptosis, and cell survival, depending on the signal,
tissue, and cellular context (Pencik et al., 2016; Rios-Fuller
et al., 2018). Mammalian JAK family contains four members:
JAK1, JAK2, JAK3, and TYK2 each binding to different
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receptors. STAT family is composed of seven members
STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b,
STAT6, each having the tendency to bind to different
cytokines (Siveen et al., 2018; Hammarén et al., 2019). The
JAK proteins are relatively large kinases with more than 1,100
amino acids with a molecular mass between 120–130 KDa
(Shahjahani et al., 2020). The JAK/STAT signaling is
relatively simple and is activated by binding of
extracellular ligands to the receptors that phosphorylated
intracellular JAKs associated with them (Jan et al., 2021).
Phosphorylated JAKs in turn create the docking site for
downstream substrates, including both the receptor and
the STATs (Bousoik and Montazeri Aliabadi, 2018). The
activated STATs form homodimers in the cytoplasm
followed by translocation to the nucleus where they bind
to specific enhancer regions in target genes, thus regulating
their transcription (Figure 6) (Hoi et al., 2016). Signal
transducers and activators of transcription (STATs)
belongs to a family of transcription factors, activated by
Janus kinases (JAK) through phosphorylation of tyrosine
residues in response to various cytokines and growth
factors including macrophage colony-stimulating factor 1
(CSF-1), platelet-derived growth factor (PDGF), epidermal
growth factor receptor (EGFR) (Singh et al., 2013) and
interleukin-6 (IL-6) (Loh et al., 2019). The activated
STAT3 forms a homodimers in the cytoplasm and
transmits cytokine receptor generated signals by

translocation into the nucleus (Mohassab et al., 2020).
STAT3 binds to specific DNA response elements and
regulates various processes that maintain the normal
cellular homeostasis (Batista and Helguero, 2018).

The JAK/STAT signaling pathway plays a vital role in normal
physiological processes. However, during the multistep process of
carcinogenesis, JAK/STAT signaling pathway is persistently
activated (Hu et al., 2020). Once in the nucleus, STAT3
homodimers binds to specific regulatory sequences and
modulates the expression of many genes that have been shown
to suppress apoptosis and induce cellular transformation
(Abroun et al., 2015). Constitutive activation of JAK/STAT
signaling has been implicated in various cancers including
head and neck, gastric, breast, pancreatic, and prostate (Bose
et al., 2020). Aberrant activation of JAK/STAT3 can mediate the
recruitment of other molecules involved in tumorigenesis. STAT3
mediates its action by binding to the target genes involved in cell
cycle regulation, cyclin D1 and inhibiting apoptosis by targeting
anti-apoptotic Bcl-2, thereby contributing to cancer progression
(Shao et al., 2021). The IL-6 associated JAK/STAT signaling
pathway plays an important role in cancer development, and
has proven to exhibit multifaceted properties to be considered as
a therapeutic target for the treatment of cancer (Groner and von
Manstein, 2017).

Several reports have described the regulation of JAK-STAT by
TGF-β in either positive or negative manner. Interleukin12-
induced activation of JAK2 in T lymphocytes is inhibited by

FIGURE 6 | Binding of ligand to a cytokine receptor results in dimerization and conformational changes leading to activation of JAK, which in turn phosphorylates
downstream mediator STATs thereby allows dimerization followed by translocation into the nucleus to modulate transcription various genes involved in hematopoiesis,
immunity, growth and differentiation.
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TGF-β resulting in inactivation of STAT3 and STAT4 (Salas et al.,
2020). In contrary, TGF-β potentiates IL-6-induced STAT3
activation in hepatocytes and hematopoietic stem cells (HSC)
(Rao et al., 2017). Moreover, it is also reported that TGF-β and
Smad3 activation led to the elevated STAT3 phosphorylation in
fibrosis and cirrhosis patient samples (Tang et al., 2017). The
complex interaction between canonical Smads and STATS are
highly involved in pluropotency and differentiation processes
(Bertero et al., 2018). The Smad-mediated promoter activity
requires Smad3/4 complex formation followed by nuclear
translocation and activation of TGF-β responsive genes (Sakai
et al., 2019). Conversely, STAT3 is known to interact with Smad3
to block Smad3/4 complex formation which attenuates the
activity of TGF-β in inducing cell-cycle arrest and promoting
EMT (Hao et al., 2019). JAK/STAT pathway indirectly regulates
the activity of Smad3 by enhancing the expression of Smad7
(Syed, 2016). In human fibrosarcoma-derived cell line, INF-
gamma induces expression of Smad7 mediated by
phosphorylation and activation of the transcription factor
STAT1 through JAK1 thereby preventing the interaction of
Smad3 with TGF-β receptor (Majoros et al., 2017). Signal-
transduction pathways induced by JAK/STAT and TGF-β
signaling may be affected by transmodulating interactions
between Smads and STATs (Chauhan et al., 2021). In
conclusion, apart from regulating T-lymphocyte activation,
TGF-β cross connects with JAK/STAT signaling to regulate
plethora of pathophysiological process via Smads which
includes activation of hematopoiesis, TGF-β fibrogenic

responses in hepatic stellate cells, transcription of genes
regulating EMT and regulating pluropotency and
differentiations of cells (Figure 7).

CONCLUSION

Recent advances in the molecular biology led to deep
understanding in the areas of signaling networks and their
role in cancer. Signaling cross-talk between different pathways
orchestrates various cellular functions in an accurate, effective,
and balanced manner. However, aberrant activation of these
cellular signals and their targets could lead to catastrophic
events. Although, the dual role of TGF-β signaling has been
extensively studied in various biological processes including
cancer, it may still appear to be complex. TGF-β signaling
cross-talk is context dependent, and can be direct or indirect
or a part of feed-back mechanism. The key players of TGF-β
signaling and their interaction with other cellular networks play a
decisive role in embryonic development, stem-cell renewal,
differentiation and specify cell fate within the physiological
context. With the identification of new interconnections and
their targets, the TGF-β pathway has emerged as networking
hub of cell signaling. Several studies with different approaches
have provided clues about the versatility of TGF-β and its
interactions with other signaling pathways. Some studies have
shown the contradictory results to the established role the TGF-β
signaling. This discrepancy could be due to the disparities in

FIGURE 7 | Crosstalk of TGF-β with other major signaling pathways including PI3K/Akt, NF-kB, and JAK/STAT signaling pathways.
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experimental conditions such as cell type, physiological/
pathological status, developmental stage, localization of
proteins, nature of modifying enzymes, co-factors etc. A future
challenge for the researchers is to undergo in-depth mechanistic
studies to identify the specific convergence point of these cellular
pathways and to accurately predict biological outcomes. Recently,
the role of TGF-β and associated signaling cascade has also been
implicated in the regulation of microRNA, yet another
unexplored area of TGF-β research. In addition, a number of
studies have suggested the interconnection of TGF-β activity with
energy metabolism (glucose uptake/consumption, AMPK and
mTOR signaling) and NO (nitric oxide) signaling. The exciting
progress in genome-wide mapping technologies and
combinatorial approaches of therapies targeting the relevant
signaling pathways along with the current techniques in
genetics, molecular biology, and bioinformatics may reveal a
detailed signaling network cascade and can also assist in

elucidating the mechanism of the dual role of TGF-β, its
functions and regulation under varying physiological contexts.
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