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Abstract Introduction: Previous neuroimaging studies of Parkinson’s disease (PD) patients have shown
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changes in whole-brain functional connectivity networks. Whether connectivity changes can be de-
tected in the early stages (first 3 years) of PD by resting-state functional magnetic resonance imaging
(fMRI) remains elusive. Research infrastructure including MRI and analytic capabilities is required to
investigate this issue. The National Institutes of Health/National Institute of General Medical Sciences
Center for Biomedical Research Excellence awards support infrastructure to advance research goals.
Methods: Static and dynamic functional connectivity analyses were conducted on early stage never-
medicated PD subjects (N 5 18) and matched healthy controls (N 5 18) from the Parkinson’s Pro-
gression Markers Initiative.
Results: Altered static and altered dynamic functional connectivity patterns were found in early PD
resting-state fMRI data. Most static networks (with the exception of the default mode network) had a
reduction in frequency and energy in specific low-frequency bands. Changes in dynamic networks in
PD were associated with a decreased switching rate of brain states.
Discussion: This study demonstrates that in early PD, resting-state fMRI networks show spatial and
temporal differences of fMRI signal characteristics. However, the default mode network was not
associated with any measurable changes. Furthermore, by incorporating an optimum window size
in a dynamic functional connectivity analysis, we found altered whole-brain temporal features in
early PD, showing that PD subjects spend significantly more time than healthy controls in a specific
brain state. These findings may help in improving diagnosis of early never-medicated PD patients.
These key observations emerged in a Center for Biomedical Research Excellence–supported research
environment.
� 2018 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
Keywords: Resting-state fMRI; Empirical mode decomposition; EMD; Intrinsic mode function; Group ICA; Functional con-
nectivity; PPMI; Parkinson’s disease
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1. Introduction

Functionally related regions of the resting brain show a
high degree of temporal correlation in blood-flow fluctua-
tions, as measured by the blood-oxygenation level-depen-
dent (BOLD) functional magnetic resonance imaging
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(fMRI) signal [1]. Using either seed-based methods or data-
driven approaches such as independent component analysis
(ICA), brain regions that fluctuate in synchrony and consti-
tute reliable and reproducible functional networks in the
human resting brain can be identified [2–6], named resting-
state networks. Resting-state networks were assumed to be
static in nature in the past, and approximately a dozen of
such static networks have been discovered and investigated
in relation to how they are impacted by neurodegenerative
disorders. However, more recently, it has been shown that
resting-state networks are dynamic in character and change
on a time scale of several seconds to a minute [7–10].
Analyzing the temporal dynamics of resting-state connectiv-
ity provides a more accurate picture of the working brain and
can help in the early detection of neurological disorders and
in monitoring effects of potential treatments.

Both static and dynamic analysis methods have been
applied to study resting-state functional networks in major
neurodegenerative diseases, for example, Alzheimer’s dis-
ease (AD). One of the major brain networks affected in AD
is the so-called default mode network (DMN), which is
heavily involved in memory formation and retrieval [11].
In normal subjects, the DMN shows functional connections
between the posterior cingulate cortex, angular gyrus, hip-
pocampus, and the medial prefrontal cortex. In AD pa-
tients, amyloid-beta (Ab) protein has been found to
accumulate in DMN and other regions, which may disrupt
connections and lead to the symptoms of memory and
cognitive impairment [12–14]. Early Ab accumulation is
associated with reduced static functional connectivity
within the DMN and between the DMN and the
frontoparietal network (FPN), a network that is involved
in attention-demanding tasks [15,16]. The dynamic
aspect of the DMN shows significant changes in AD as
well [17]. It has been reported that AD subjects spend
less time in brain states with strong posterior DMN contri-
butions and more time in states with dorsal medial prefron-
tal cortex contributions.

Parkinson’s disease (PD) is, after AD, the second most
common neurodegenerative disorder in the elderly and is
characterized by degeneration of dopaminergic neurons in
the substantia nigra pars compacta with resulting striatal
dopaminergic deficiency [18]. Previous neuroimaging
studies of PD patients have shown that whole-brain func-
tional networks such as the DMN and networks involving
the motor pathway are affected, leading to different func-
tional connectivity patterns when compared to those
found in normal controls (NC) [19]. Studies of the tempo-
ral characteristics of fMRI resting-state brain networks
have also shown abnormal spontaneous low-frequency
content in PD [20]. The dynamic aspects of brain net-
works have been widely studied using electrophysiolog-
ical recordings. Intraoperative electrophysiological data
have shown that the occurrence of motor symptoms in
PD is associated with changes in synchronizations within
and between brain regions and changes in phase-
amplitude coupling between brain regions [21,22].
However, it is not clear if static changes in resting-state
networks are present in the very early stages (first 3 years)
in drug-na€ıve never-medicated patients with PD. Further-
more, whether changes in temporal dynamics occur in
resting-state functional networks in de novo PD subjects
is unknown.

In the present study, as part of the National Institutes of
Health/National Institute of General Medical Sciences Cen-
ters of Biomedical Research Excellence grant to the Center
for Neurodegeneration and Translational Neuroscience, we
investigated low-frequency BOLD fluctuations of major
resting-state networks in early PD using data from the Par-
kinson’s Progression Marker Initiative (www.ppmi-info.
org). Previously, frequency-specific analysis of resting-
state networks has been carried out using bandpass filtering
in which the frequency intervals were specified using infor-
mation from electrophysiological data [23] or simply by
dividing the possible frequency range into equal intervals
that were specified by the user [24,25]. An alternative
approach toward finding frequency intervals in resting-
state data is by Empirical Mode Decomposition (EMD)
[26,27]. EMD is a data-adaptive analysis method for study-
ing the naturally occurring frequency bands in time series
[28]. EMD can be used, in particular, for nonstationary sig-
nals and allows the decomposition of time series into nearly
orthogonal modes spanning narrow frequency bands. The
oscillatory modes are called intrinsic mode functions
(IMFs) and are obtained by a sifting algorithm. The novelty
of our EMD approach lies in the adaptive decomposition of
fMRI data using EMD and identification of resting-state net-
works based on energy and period (inverse of frequency)
characteristics of IMFs. These novel energy-period relation-
ships of resting-state networks in PD may allow use of imag-
ing biomarkers in characterizing or detecting PD in the early
stages of the disease. Early stage identification of PD may
improve diagnostic accuracy, enrollment in clinical trials
of disease-modifying agents, and allow for more effective
treatments.

In a second investigation, we explored the dynamic as-
pects of functional connectivity using the same data set. In
previous research studies, dynamic functional connectivity
analysis was carried out mainly by using a sliding-window
method, in which pairwise linear correlations among
network components are captured in subsequent temporal
windows with a fixed window size and further clustered
into multiple dynamic functional brain states [29,30]. To
find an appropriate window size is challenging because the
windows size should be small enough to capture existing
temporal transients and large enough to produce stable
results [10]. The EMD method, however, provides us an
alternative way to compute a time-dependent optimum win-
dow size in the sliding-window analysis. IMFs obtained
from EMD track local periodic changes of nonstationary
time series and an optimum window size can be determined
at each time point. We incorporated the optimum window
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size in the sliding-window method to explore dynamic func-
tional connectivity within and between the major resting-
state networks in early PD.
2. Materials and methods

2.1. Empirical mode decomposition and intrinsic mode
functions

EMD is a method defined by an algorithm to decompose
any time series, whether nonstationary or nonlinear, into a
set of IMFs. This decomposition is based on local character-
istics of the time series, which transforms instantaneous
amplitude and instantaneous frequency information into
meaningful quantities to be computed by the Hilbert trans-
form of the IMFs. Although Fourier and wavelet transforms
use preassigned basis functions, the EMD basis functions are
data-derived IMFs. The EMDmethod operates at the scale of
one oscillation and is fully data-driven. An IMF represents a
simple oscillatory mode but is more general than a harmonic
function of one frequency component. An IMF can have var-
iable amplitude and frequency along the time axis.

In general, an IMF is a function that must satisfy two con-
ditions: (1) For the entire time series, the number of extrema
and the number of zero crossings must be equal to or can
differ at most by one and (2) the mean value of the envelope
defined by the local maxima and the envelope defined by the
local minima is zero at every time point. A signal x(t) can be
decomposed in terms of its K IMFs fk(t) by

xðtÞ 5
XK
k51

fkðtÞ1rKðtÞ (1)

where K is the number of IMFs, fk(t) is the k-th IMF, and rk(t)
is a small monotone residual (trend) function. The basic al-
gorithm for obtaining the decomposition is an iterative
sifting algorithm described in detail in the study by Huang
et al. [28]. This iterative process sequentially explores the
natural constitutive scales of a time series. The IMF with in-
dex 1 (IMF1) contains the highest frequencies, and IMF with
index K contains the lowest frequency components. It has
been shown that the frequency arrangement in IMFs mimics
that of a dyadic filter bank [31]. Instantaneous frequency and
amplitude of the IMFs can be computed by extending the
signal into the complex plane with the Hilbert transform.
In the literature, EMD combined with the Hilbert transform
is referred to as the Hilbert-Huang Transform.

2.2. Energy versus period relationship of intrinsic mode
functions

The time series in fMRI data are known to contain struc-
tured as well as white noise sources. Because the IMFs are
basis functions that are derived from the data rather than
functions that satisfy given analytic expressions, it is impor-
tant from a statistical perspective to understand the IMFs of
data that contain only noise sources so that IMFs of noisy
signals can be compared with IMFs of pure noise data. Com-
parison with artificial noise data provides a reference stan-
dard of results obtained by EMD and allows a statistical
significance to be associated to IMFs. Of particular impor-
tance is the relationship of the mean energy as a function
of the mean inverse of the frequency (mean period) for
each IMF. The mean energy per unit time, Ek, of the k-th
IMF, fk(t), is defined by the mean instantaneous squared
amplitude of the IMF. This definition leads to

Ek 5
1

N Dt

XN
t51

fkðtÞ2 (2)

where N is the number of data points and Dt is the sampling
time which is equal to the TR in fMRI. The mean period, Tk,
is defined by the mean value for the inverse of the instanta-
neous frequency obtained from the Hilbert transform, that is,

Tk 5
1

N

XN
t51

1

nkðtÞ : (3)

However, owing to outliers in the estimation of the instan-
taneous frequency spectrum, especially for frequencies close
to zero, Eq. (3) does not provide robust values of Tk. Instead,
we determine the density of vk(t) using kernel density esti-
mation (with a Gaussian kernel). For white Gaussian noise,
it has been shown that [32]

logðEkÞ 5 0:1220:934 logðTkÞz2logðTkÞ (4)

Thus, y 5 log(Ek) as a function of x 5 log(Tk) is distrib-
uted approximately along the diagonal line y 5 2x for all
IMFs of white noise data.

2.3. Time-dependent window size in dynamic functional
connectivity analysis

The time-dependent window size at each time point of
two fMRI time series x1 (t) and x2 (t) can be computed
from the instantaneous period pk(t) and average energy den-
sity Ek of the k-th IMF. The instantaneous periods p(t) cap-
ture the local nonstationarity of the original signal [33],
and the average energy densities Ek summarize the energy
contributions of each IMF to the original signal. A time-
dependent period, T(t), for each time course is then deter-
mined as an average of pk (t) weighted by Ek, that is,

TðtÞ5 1P
kEk

X
k

pkðtÞ!Ek: (5)

The final time-dependent window size, Td(t), of x1 and x2
to obtain an optimal sliding-window correlation is chosen to
be the maximum of T1(t) and T2(t) (where T1(t) and T2(t) are
the time-dependent window sizes of x1 and x2, respectively)
to ensure that the data in one instantaneous period are
included in calculating the correlation coefficient [34].
Thus, Td(t) captures the local nonstationarity of original



Table 1

The distribution of participants with hypercholesterolemia, hypertension,

and diabetes between the two study groups

Number of subjects

has the condition PD NC

Differences

(P-value)

Hypertension 3 8 .07

Hypercholesterolemia 5 6 .72

Diabetes 0 1 N/A

Abbreviations: PD, Parkinson’s disease; NC, normal controls.
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time courses, summarizes different contributions of each
IMF to original signals, ensures that the data in one period
are included in calculating the correlation coefficient, and
therefore is optimum in capturing temporal dynamics be-
tween fMRI time series, as compared to a fixed window
size. Dynamic functional connectivity analysis is then car-
ried out using a sliding-window approach with this time-
dependent window size Td(t).

2.3.1. Simulation
The simulation aimed at demonstrating that the sliding-

window correlation computed with a time-dependent win-
dow size can capture local transients and avoid unstable fluc-
tuations, as compared to the correlation values computed
using a fixed window size. To provide a specific example,
two nonstationary time series

y1 5 0:8

�
1 1 0:25 cos

�
2p

400
t

��

cos

�
0:25t1 1:25 sin

�
2p

200
t

��

and

y2 5 0:6

�
1 1 0:25 sin

�
2p

400
t

��
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�
0:25t1 1:25 cos

�
2p

200
t

��

were simulated with a sample rate of 1 second (TR 5 1 s)
with a static correlation coefficient of 20.02. The dynamic
correlations between y1 and y2 were calculated and
compared using the sliding-window method with two fixed
window sizes, 10 TR and 50 TR, as well as the time-
dependent window size Td(t).
Table 2

Number of dynamic states computed from cross-validation and the

difference of frequency-of-state alternation between the two groups

obtained with the time-dependent window size and fixed window size used

in previous studies

Window size

Number of

dynamic states

Difference of frequency-

of-state alternation between

NC and PD (P value)

30 s 11 .05

60 s 7 .10

120 s 3 .24

Time-dependent

window size

(97.75 s 6 41.36 s)

3 .006

Abbreviations: PD, Parkinson’s disease; NC, normal controls.
2.4. Participants

The data used in this study were obtained from the pub-
licly available anonymized Parkinson’s Progression Marker
Initiative database [Marek et al., 2011]. We included 18 NCs
(14 male (M); age: 64.25 6 9.78 years (mean 6 SD); years
of education: 16.72 6 2.67 years) and 18 newly diagnosed,
early stage, and never-medicated PD subjects (10 M; age:
57.11 6 11.63 years; years of education:
17.00 6 2.77 years; disease duration: 0.83 6 0.84 years)
in our analysis. A chi-square test was performed to check
statistical significance for gender difference between the
two groups, and Wilcoxon rank-sum test was performed to
check for differences of age and year of education. Differ-
ences in age (P 5 .06), gender (P 5 .15), and years of edu-
cation (P 5 .76) were not significant between the two
groups.

Additional information about the distribution of partici-
pants with hypercholesterolemia, hypertension, and diabetes
was also obtained from the Parkinson’s Progression Marker
Initiative database and listed in Table 1. A chi-square test
was performed to check statistical significant difference
for each disease distribution between the PD and NC groups.
Differences in the distribution of participants with hypercho-
lesterolemia (P5 .72), hypertension (P5 .07), and diabetes
(one in the NC group only) were not significant between the
two groups.
2.5. MRI data acquisition and preprocessing steps

All subjects underwent resting-state fMRI scans on 3T
Siemens scanners. The resting-state fMRI involved an 8 mi-
nutes and 24 seconds echo-planar acquisition with 210 time
points (TR 5 2,400 ms, TE 5 25 ms, field of
view 5 22.4 cm, flip angle 5 80�,
resolution 5 3.3 ! 3.3 ! 3.3 mm3, and 40 axial slice). In
addition, a T1-weighted structural image was also acquired
for each subject (TR 5 2,300 ms, TE 5 2.98 ms, flip
angle 5 9�, and voxel size 5 1 ! 1 ! 1 mm3).

The first 5 time points (12 seconds) were removed to
allow the MR signal to achieve T1 equilibrium. Echo-
planar data were slice-timing corrected and realigned to
the mean echo-planar image in Statistical Parametric Map-
ping 12 (http://www.fil.ion.ucl.ac.uk/spm/), further coregis-
tered to the subject T1 space, and then normalized to the
standard Montreal Neurological Institute-152 2-mm tem-
plate using Advanced Normalization Tools software
(http://stnava.github.io/ANTs/). Six head motion parame-
ters, signals extracted from subjects’ white matter and cere-
brospinal fluid (3-mm cubes centered at Montreal
Neurological Institute [26, 212, 35] and [19, 233, 18]),

http://www.fil.ion.ucl.ac.uk/spm/
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were regressed out from each data set. fMRI data were
further spatially smoothed using an 8-mm 3D Gaussian
filter.
2.6. Static analysis of resting-state networks

To obtain the spatial resting-state networks, group ICA
[35] (based on the FastICA algorithm [36]) was performed
by stacking all data in the temporal domain to obtain 30
resting-state networks. Then, spatial regression was used
on the networks of the group time series data to obtain the
time series signatures for NC and PD. To get more detail
on the time signatures of the resting-state networks, we de-
composed the corresponding time signatures using EMD
into the first 5 IMFs for each spatial resting-state network.
These 5 IMFs covered a frequency range from 0.01 Hz to
the Nyquist frequency (0.5/TR) of the data. For each IMF,
the average instantaneous energy, period, and their standard
deviations were computed for NC and PD.
2.7. Dynamic functional connectivity analysis

Dynamic functional connectivity analysis was carried out
using a sliding-window approach with the optimum time-
dependent window size as determined by EMD. Specifically,
whole-brain dynamic functional connectivity was captured
by computing the windowed correlation between time
courses from every pair of nodes, in which each node is a
network component. To obtain network components,
another group ICA with 100 components was performed
by stacking data from both PD and NC subjects. Seventy-
two ICA components were visually identified as network-
related components, and the corresponding subject-specific
ICA maps and time courses were calculated using dual
regression [37]. A voxel-wise comparison was conducted
for each of the 72 ICA components. Two sample t-tests
were performed with age and gender as covariates, and
each ICA component was spatially masked with the thresh-
olded group ICA component map.

The connectivity matrices for each subject were then
calculated using sliding-window correlations between each
pair of nodes with the time-dependent window size Td(t).
The connectivity matrices in each sliding window (size, 72
! 72) were concatenated in time for each subject and further
stacked for both PD and NC subjects. Standard k-means
clustering was performed in MATLAB (www.mathworks.
com) on the concatenated connectivity matrix from all sub-
jects to estimate dynamic functional states for both the
groups. The optimum cluster number K was determined by
a leave-one-out cross-validation. Finally, the time spent in
each state and the frequency-of-state alternations were
calculated for every subject separately and used to compare
the temporal dynamics between the PD and NC groups. Two
sample t-tests were carried out with age, gender, and the dis-
tribution of hypertension as covariates for these compari-
sons. To compare results with traditional methods which
are previously published, the same analyses were also
repeated with fixed window sizes of 13 TRs (w30 seconds),
25 TRs (w60 seconds), and 50 TRs (w120 seconds), as sug-
gested in other studies [10,29].
3. Results

3.1. Static functional connectivity analysis in early PD

Fig.1 shows the spatial maps and corresponding temporal
IMFs computed for the DMN. A t-test showed no significant
spatial differences in this network between NC and PD.
IMF1 of PD patients shows some variation in the amplitude
of the time series signal. All other IMFs have similar charac-
teristics for the same index in NC and PD participants. We
calculated the energy and period for each IMF and plotted
this information using group-specific markers in a log (en-
ergy) versus log (period) diagram. Standard deviations of
the markers are indicated by horizontal and vertical lines
for log (period) and log (energy), respectively. We found
no significant difference in energy or period for any of the
IMFs of the DMN for NC versus PD.

In Figs. 2 and 3, we show all six resting-state networks
(out of 30) in which the period of the IMF (with the same in-
dex) differed by a large effect size (Cohen’s d. 0.8 [38]) be-
tween NC and PD. The obtained networks are the executive
control network (ECN), the parietal network (PAR), the
cognitive control network (CCN), the prefrontal cortex
network (PFC), and the left/right frontoparietal network
(lFPN and rFPN). All these networks show spatial and tem-
poral differences. The ECN, CCN, and PFC have reduced
activations in PD, whereas the PAR, lFPN, and rFPN have
spatially extended activations in PD.

The temporal characteristic of these networks differ; the
ECN has increased frequency content (less period) for the
very low–frequency band in IMF5, which is in the drift range
(f, 0.01 Hz), whereas all other networks show a decrease in
low frequencies for some of the higher bands (IMFs with
index � 4). We found that the period for the same indexed
IMF is always larger for PD, for all networks except the
ECN, irrespective of the effect size being small (Cohen’s
d5 0.2) or large (Cohen’s d5 0.8). The amplitude of oscil-
lations of the IMFs as measured by log (energy) is generally
smaller for PD for most of the IMFs.

3.2. Dynamic functional connectivity analysis in early PD
3.2.1. Simulation
To illustrate the advantage of using a time-dependent

sliding-window size, Fig. 4A shows simulated nonstationary
time series y1 (blue) and y2 (red). Instantaneous periods of y1
(dashed blue) and y2 (dashed red) and the time-dependent
window size Td(t) between y1 and y2 (solid green) are plotted
in Fig. 4B at every time point. As shown in Fig. 4C, dynamic
correlations between y1 and y2 calculated with the time-
dependent window size (solid green) capture existing

http://www.mathworks.com
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Fig. 1. Top: The spatial DMN determined by group ICA for NC and subjects with Parkinson’s disease in the early stages (PD). There are no significant dif-

ferences in the spatial distribution of this network between NC and PD. Middle: Time signatures of the DMN for NC and for patients with PDwere decomposed

into five IMFs. Bottom: For each IMF, the average energy and period were calculated and displayed in a log (energy) versus log (period) diagram. The diagonal

line indicates the expected mean of Gaussian white noise. Different markers specify the IMF properties for NC (squares, connected by blue dotted line) and for

PD (solid circles, connected by red dashed line). The horizontal and vertical bars through the markers indicate the standard deviation in log (period) and log

(energy), respectively. Abbreviations: ICA, independent component analysis; DMN, default mode network; NC, normal controls; PD, Parkinson’s disease; IMF,

intrinsic mode function.
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Fig. 2. Six ICA resting-state networks show different spatial patterns for NC and early PD. Note that the ECN and PFC networks show reduced spatial activity,

whereas the PAR and FPN show increased activity in PD. The CCN has decreased activity in the hippocampus but increased activity in the inferior temporal

lobes in PD. Abbreviations: ICA, independent component analysis; FPN, frontoparietal network; NC, normal controls; ECN, executive control network; PAR,

parietal network; CCN, cognitive control network; PFC, prefrontal cortex network; PD, Parkinson’s disease.
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Fig. 3. Different temporal characteristics of IMFs as measured by the log (energy) versus log (period) relationship for the six resting-state networks in Fig. 2. All

relationships shown with a “*” indicate a large effect size (Cohen’s d. 0.8) (either for energy or for period) for specific IMFs. The ECN was the only network

found where the period for PD was reduced (in IMF5). For all other networks that show a large effect size between log (period) of PD and NC (i.e., PAR, CCN,

PFC, lFPN, rFPN), the mean period is always larger for PD versus NC, indicating that these networks operate at lower frequencies in PD. The letter T in the

relational statements indicates the period. Abbreviations: PD, Parkinson’s disease; lFPN, left frontoparietal network; rFPN, right frontoparietal network; NC,

normal controls; IMFs, intrinsic mode functions; ECN, executive control network; PAR, parietal network; CCN, cognitive control network; PFC, prefrontal

cortex network.
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Fig. 4. Simulation. (A) Two nonstationary simulated time series: y1 (blue) and y2 (red). (B). Instantaneous period of y1 (dashed blue) and y2 (dashed red) and the

time-dependent window size (green) at each time point. (C). The dynamic correlation between two synthetic time series was calculated using sliding-window

method with different window sizes: 10 TR (dashed blue), 50 TR (dashed red), and time-dependent window size (solid green). The static correlation between

these two time series is indicated by the dashed purple line.
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local transients without creating unstable fluctuations, as
compared to the correlation computed with the fixedwindow
sizes of 10 TRs (10 seconds, dashed blue) or 50 TRs (50 sec-
onds, dashed red line).
3.3. Real fMRI data

A flow chart of the dynamic connectivity analysis is
shown in Fig. 5. Eight major resting-state networks, formed
by 72 network-related ICA components, were investigated,
including the subcortical network, auditory network, senso-
rimotor network, visual network, CCN, DMN, medial tem-
poral network, and cerebellum network (Fig. 6A). Both the
ECN and FPN obtained from the other ICA run with 30 com-
ponents are combined to be the CCN in the dynamic func-
tional connectivity analysis. A group comparison was
conducted for each of the 72 ICA components, and no signif-
icant spatial difference was found at a family-wise corrected
error rate of P , .05. A static correlation matrix between
each pair of nodes was converted to Fisher’s z statistics
and shown in Fig. 6B. Three dynamic functional states are
determined from the leave-one-out cross-validation in
k-means clustering for both PD and NC subjects (Fig. 7A)
with the time-dependent window size. The average window
size is listed in Table 2. Fig. 7B and C show that NC subjects
spend significantly more time in state II, which has stronger
connections, both between and within networks, whereas PD
patients tend to stay longer in the more weakly connected
functional states I and III. Furthermore, a significant reduced
frequency-of-state alternation (P 5 .006) is found in the PD
group (Fig. 7D). The same analysis was repeated with a fixed
window size of 30 seconds, 60 seconds, and 120 seconds.
The number of dynamic states determined by cross-
validation and the between-group comparison results of
frequency-of-state alternation are listed in Table 2.
4. Discussion

4.1. Static resting-state analysis

In this study, we developed a novel method for the iden-
tification of abnormal temporal signatures associated with
brain states in early PD using resting-state fMRI data. We
used EMD as a data-adaptive method to determine energy
and period characteristics of temporal signatures of major



Fig. 5. Whole-brain dynamic functional connectivity analysis flow chart. Abbreviation: ICA, independent component analysis.
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cortical networks that were obtained with ICA. The advan-
tage of using EMD is that the temporal signatures can be de-
composed into basic modes (namely the IMFs) that are
subject-specific, and each basic mode can be characterized
by energy density and period content. This analysis is
different from a Fourier or wavelet analysis because there
are no parameters that need to be adjusted (such as prede-
fined frequency intervals or wavelet types), and the analysis
is completely data-driven. We have obtained consistent fea-
tures of energy and period for all subjects as shown by the
small standard deviations about the mean values for average
energy and period content. EMD shares a frequency decom-
position feature with the discrete wavelet transform in which
both methods exhibit a dyadic filter bank decomposition.
However, the discrete wavelet transform has a frequency
decomposition in the sense of components at different but
fixed nonadaptive frequency scales. Using a discrete wavelet
transform, energy can be calculated based on wavelet coef-
ficients, and period information from the fixed frequency
ranges can be obtained. However, the period information is
nonadaptive to individual subject data, and one would obtain
the same period information for both PD and NC. An alter-
nate approach would be the use of a continuous wavelet
transform, but a relationship between its decomposition
level and frequency is not directly defined. For these reasons,
EMD is a superior time series analysis method because it de-
termines subject-specific energy densities and periods of
fundamental modes.
4.2. Comparison with other studies

FMRI resting-state data have several advantages over
other modalities such as fluorodeoxyglucose (FDG) positron
emission tomography (PET) imaging to detect characteristic



Fig. 6. (A) Spatial components from 72 network-related ICA components. (B) Whole-brain static functional connectivity matrix. Abbreviations: ICA, inde-

pendent component analysis; AUD, auditory network; SMN, sensorimotor network; Vis, visual network; CCN, cognitive control network; DMN, default

mode network; MTN, medial temporal network; CBN, cerebellum network.
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features in early PD. In previous studies using FDG-PET im-
aging in early PD, three disease-specific spatial covariance
patterns were found [39], namely the PD motor-related
pattern, the PD cognition-related pattern, and the PD
tremor-related pattern. Of particular importance is the
cognition-related pattern that showed metabolic reductions
in preSMA, medial prefrontal cortex, precuneus, and meta-
bolic increases in the cerebellum. Similar results with
fMRI have been shown in resting-state data [40]. However,
PD-specific resting-state networks were found using a
spatial analysis method and not by characteristics of tempo-
ral signatures of resting-state as we have proposed here.
Furthermore, the spatial covariance pattern was not obtained
for never-medicated first-3-year PD patients. For this reason,
previous spatial fMRI results are difficult to compare with
those of our temporal analysis.

Compared with [15O] H2O PET, fMRI has greater tem-
poral resolution, slightly greater spatial resolution, and
greater sensitivity. However, the BOLD signal is more
difficult to relate to dopamine deficiency, and how blood
flow, blood volume, and oxygen consumption (which
lead to the BOLD signal) are related to neurotransmitters



Fig. 7. (A) Three dynamic states were obtained from whole-brain dynamic functional connectivity analysis with the time-dependent window size. (B) Average

window fractions of time spent in each state (window in each state/total number of windows) for PD (orange) and NC (blue) groups. (C). Statistical comparisons

of window fractions spent in each state between PD and NC groups; *P, .05. (D). Statistical comparison of frequency-of-state alternations between PD and NC

groups. Abbreviations: PD, Parkinson’s disease; NC, normal controls.
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such as dopamine is currently unknown. In a recent study,
static spatial brain networks obtained by FDG-PET were
compared with resting-state fMRI in a larger cohort of
healthy nondemented subjects from the Alzheimer’s Dis-
ease Neuroimaging Initiative database [41]. Most net-
works obtained showed similar spatial covariance
patterns in FDG-PET and fMRI. However, discrepancies
were observed for some important networks. For example,
some of the anterior-posterior networks (e.g., the DMN
and lFPN) could only be partially obtained by FDG-
PET. Furthermore, reduced correlations were observed
in anterior-posterior correlations in FDG-PET when
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compared to BOLD networks, which may indicate
different signal mechanisms of metabolism for FDG-
PET and BOLD in fMRI. This discrepancy could also
arrive due to the different temporal scales of the imaging
modalities (seconds for fMRI and minutes for FDG-PET),
which lead to different inter-regional couplings [41]. The
detection of temporal changes of brain states’ dynamic
functional connectivity using FDG-PET may not be
feasible because of the lower temporal resolution of
FDG-PET.

We demonstrated that in early never-medicated PD,
there are no spatial or temporal changes detectable in
the DMN. However, we found 6 other cortical brain net-
works that showed spatial and temporal differences of
resting-state signal characteristics. These networks are
the ECN, PAR, CCN, PFC, lFPN, and rFPN which show
overlap with the cognitive resting-state pattern in previous
PD studies [39,40]. We have analyzed the first 5 IMFs of
the associated temporal profiles in terms of content in
average energy density and average period. We found
that in early PD, the PAR, CCN, PFC, lFPN, and rFPN
networks are driven by reduced frequencies (increased
period) for all IMFs in the low-frequency range of less
than 0.1 Hz (which is covered by IMFs with k 5 2, 3,
4, 5). Several of the IMFs also showed a large effect
size for reduced frequency content. In addition, most cor-
responding energy densities were lower in PD. There was
only one network, namely the ECN, with different but not
significant characteristics for frequencies above the drift
range (f . 0.01 Hz). Overall, most networks in early
PD were characterized by a reduction in frequency and
energy in specific low-frequency bands of less than
0.1 Hz as determined by EMD. For future studies, it
may be interesting to study early PD patients with mild
cognitive impairment to see if DMN abnormalities can
be detected because mild cognitive impairment occurs in
approximately 1 of 4 PD patients.
4.3. Time-dependent window size in dynamic functional
connectivity analysis

To date, the sliding-window method with a fixed window
size is most commonly used for examining dynamics in
resting-state functional connectivity [9,29,30]. Using
simulation, we have demonstrated that compared with the
fixed window size, the time-dependent window size TdðtÞ
computed from instantaneous period of IMFs can more pre-
cisely capture the local periodic changes without creating
unstable fluctuations. This advantage of using time-
dependent window size in dynamic functional connectivity
analysis is further demonstrated using real fMRI data from
PD and NC groups (Table 2). Significant (P , .01) reduced
frequency-of-state alternations in the PD group is found
when a time-dependent window size is used, which is not
observed with the fixed window size.
4.4. Altered functional dynamics in PD

In our analysis, three whole-brain functional dynamic
states are found for both PD and NC subjects. As shown in
Fig.7A, robust within-network functional connectivity is
observed in all three states, whereas stronger between-
network functional connectivity is observed in state II, as
compared to state I and III. Our results indicate that NC sub-
jects stay significantly longer in state II (Fig. 7B), which is
consistent with previous findings of increased between-
network functional connectivity in healthy aging [42]. The
altered dynamics of basal ganglia-cortical circuits in PD
subjects have been widely reported using electrophysiolog-
ical data. Specifically, unmedicated PD subjects exhibit
aberrant coherent activity patterns and excessive synchroni-
zation of neuronal activities in the basal ganglia-cortical
loop, which will in turn affect the neuronal circuits’ dy-
namics [21,43–46]. Using public neuroimaging data, we
observe a significant reduced frequency-of-state alternation
among the three dynamic functional states, which demon-
strates the limited dynamic range of whole-brain functional
connectivity in treatment-naive PD subjects.
5. Conclusions

We used EMD to study the energy and period content of
IMFs for static resting-state networks in early PD and found
a reduction in both IMF frequency content and energy for
PAR, CCN, PFC, lFPN, and rFPN. In contrast, ECN showed
increased low-frequency content. For the DMN, no spatial or
temporal changes were observed. We further studied the dy-
namic functional connectivity in the same cohort using a
sliding-window method with a time-dependent window
size computed from IMFs and obtained using EMD. Altered
temporal behaviors and reduced whole-brain temporal dy-
namics were found in early PD subjects.
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RESEARCH IN CONTEXT

1. Systematic review: The authors reviewed the litera-
ture using PubMed. The relevant citations are appro-
priately cited. Static and dynamic functional
connectivity in Parkinson’s disease subjects has not
been systematically study with Empirical Mode
Decomposition.

2. Interpretation: Our findings lead to a characterization
of resting-state data in early never-medicated Par-
kinson’s disease patients by providing static and
dynamic imaging markers of functional connectivity
using Empirical Mode Decomposition.

3. Future directions: The manuscript proposes new
techniques to assess static and dynamic functional
connectivity using Empirical Mode Decomposition
which needs to be further validated in a larger cohort
of PD subjects.
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