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This data article focuses on the production of monoclonal anti-
bodies (mAb) and their fragments Fab and F(ab0)2. Here, we pre-
sent the data of an optimization protocol to improve the product
yield of a hybridoma cell process using a Design of Experiment
(DoE) strategy. Furthermore, the data of the evaluated conditions
were used to test feeding strategies in shake flasks. They were
verified in controlled 2 L fed-batch bioreactor processes. Supple-
menting the culture medium with human insulin-like growth
factor-I (IGF-I) and Pluronic F-68, as well as a nutrient rich additive
for fed-batch, resulted in improved cell growth correlating with a
7 day elongated process time and a 4.5 fold higher product titer.
Finally, a rapid Fab generation protocol and the respective data are
presented using different papain digestion and a camelid anti-
kappa light chain VHH affinity ligand.
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Value of the data

� Our data provides a simple and fast optimization approach using Design of Experiment for media
optimization in upstream processing.

� Antibody digestion revealed that parameters need to be adapted to each antibody subtype, which
can result in various fragment yields.

� Our rapid and efficient protocol for Fab/F(ab0)2 generation can serve as a tool for other IgG digests
and subsequent purification steps.
1. Data

The medium composition for a hybridoma cell line was optimized applying a simple Design of
Experiment approach in shaking flasks, which was verified and provided the initial set-up for
upstream processing. Based on the optimized medium, various feeding strategies with and without
Cell BoostTM 6 led to a prolonged process time and a higher mAb yield. For F(ab0)2/Fab generation,
digestion parameters as well as affinity resins in downstream processing were evaluated for increased
fragment yield coupled with SEC-MALS analysis and flow cytometry to confirm product quality and
binding ability.
2. Experimental design, materials and methods

2.1. Hybridoma standard culture conditions

The mouse-mouse hybridoma cell line, producing the IgG2a isotype anti-human insulin receptor
mAb (AIR AB) 83-14, was grown in semi-adherent tissue culture flask with Dulbecco's modified
Eagle's medium (DMEM, Biowest, Nuaillé, France) containing stable glutamine (4 mM) and glucose
(4.5 g/L) supplemented with FBS (10% v/v) at 37 °C in a humidified atmosphere of 5% CO2. Under these
conditions a product titer of 71.3 mg/mL was observed at day 4.

2.2. Media optimization using Design of Experiments

To improve productivity, three supplements – FBS (Sigma Aldrich, München/Germany), LONGsR3

IGF-I (Repligen, Waltham, MA, USA) and Pluronics F-68 (Sigma Aldrich) - were used for optimization
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of the basal DMEM medium. Hence, Design of Experiment (DoE) was only applied for optimization
due to known concentration ranges of IGF-I and Pluronics from literature [3–5], which were used to
reduce the amount of FBS.

The DoE cube shows the design space for the three supplements (Fig. 1) by using the Box Wilson
central composite design (CCD) that includes factors, center points and star points to estimate the
curvature [1]. Three concentration levels for each variable including a maximum (1), a minimum (�1)
Fig. 1. DoE Worksheet: Central composite face-centered design. Cube shows the distribution of the experiments for 3 sup-
plements. The three center points describe the robustness and validity of the model.

Table 1
Data of DoE factors and responses at day 3: The lowest concentration is indicated as �1, the mid concentration as 0 and the
highest with þ1. The values shown in parenthesis are the concentrations. Expt 18–24 are additional controls.

Expt Factor variables Response variables

FBS [%] Pluronics

[g/L]
IGF [mg/L) Viability [%] Viable cell con-

centration [106

cells/mL]

1 �1 (1) �1 (0.2) �1 (10) 75.8 0.74
2 1 (10) �1 (0.2) �1 (10) 79.1 1.47
3 �1 (1) 1 (1) �1 (10) 66.6 0.58
4 1 (10) 1 (1) �1 (10) 82.0 1.40
5 �1 (1) �1 (0.2) 1 (100) 71.6 0.70
6 1 (10) �1 (0.2) 1 (100) 77.9 1.55
7 �1 (1) 1 (1) 1 (100) 59.3 0.55
8 1 (10) 1 (1) 1 (100) 78.7 1.32
9 �1 (1) 0 (0.6) 0 (55) 69.1 0.63

10 1 (10) 0 (0.6) 0 (55) 79.8 1.46
11 0 (5.5) �1 (0.2) 0 (55) 82.5 1.46
12 0 (5.5) 1 (1) 0 (55) 78.9 1.44
13 0 (5.5) 0 (0.6) �1 (10) 79.1 1.33
14 0 (5.5) 0 (0.6) 1 (100) 81.6 1.34
15 0 (5.5) 0 (0.6) 0 (55) 81.8 1.27
16 0 (5.5) 0 (0.6) 0 (55) 80.2 1.19
17 0 (5.5) 0 (0.6) 0 (55) 81.3 1.19
18 0 0.6 55 28.5 0.01
19 5.5 0 55 78.4 1.26
20 5.5 0.6 0 81.3 1.27
21 5.5 0.2 100 83.7 1.53
22 10 0 0 83.6 1.28
23 6 0 0 81.9 1.31
24 1 0 0 57.2 0.47



Fig. 2. DoE data of medium optimization with supplements FBS, IGF-I and Pluronics F68 regarding the effect on viability (A–C)
and viable cell concentration (A0–C0). IGF-I and Pluronics F68 were compared at constant FBS¼5.5% (A and A0), IGF-I and FBS
were compared at constant Pluronics¼0.6 g/L (B and B0) and Pluronics and FBS were compared at constant IGF¼55 mg/L (C
and C0). Red color indicates the best and blue the worst conditions.
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Fig. 3. Data of DoE Validation: Viable cell concentration (A) and mAb titer (B) were analyzed in optimized inoculation medium
(DMEM supplemented with 6% FBS, 100 mg/L IGF and 0.2 g/L Pluronics) and controls (DMEM with 1, 6 and 10% FBS) (n¼3,
7SD). At day 3 viable cell concentration and mAb titer were measured with an image-based cell counter (Cedex XS, Roche) and
Protein A HPLC, respectively (*po0.05, **po0.01,***po0.001, ****po0.0001; one-way ANOVA).
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and a center point (0) were used as indicated in Table 1. The values shown in parenthesis are con-
centrations. Cells were seeded at 2�105 cells/mL in 40 mL working volume in 125 mL disposable
polycarbonate Erlenmeyer flasks (Corning, Steuben, NY, USA) in the respective culture medium for
3 days at 80 rpm, 37 °C (see Table 1).

Viability and viable cell concentration at day 3 were determined by trypan blue staining and
quantification with an image-based cell counter (Cedex XS, Roche, Penzberg, Germany) as response
factors and used for fitting and evaluating the model. The results were modeled with a polynomial
equation to determine the effect of each factor and to predict the response of non-sampling points
using a DoE software (Modde, Umetrics, Umea, Sweden) (see Supplementary data).

Response contour blots revealed the predicted optimum, which was validated and compared to
the original medium conditions in biological triplicates (n¼3) and statistically evaluated in a one-way
ANOVA (*po0.05) (see Figs. 2 and 3).

Based on the DoE data, FBS was decreased from 10% to 6% by supplementing the DMEM medium
with 100 mg/L human IGF-I and 0.2 g/L Pluronics F-68. Compared to the original culture conditions,
an improvement in the cell growth rate by 9.7% (doubling time¼24.5 h) was achieved within the
exponential growth phase.

For validation, the optimized medium was compared to the original culture conditions and
reduction of FBS from 10% to 6% and 1% without supplementation resulted in decreased viable cell
concentration (�10% at 6% FBS and �74% at 1% FBS) and lower product titer (�5% at 6% FBS and
�51% at 1% FBS). The optimized medium, compared to 10% FBS supplementation, showed a sig-
nificant impact on viable cell concentration (Fig. 3A) and product titer (Fig. 3B) by 26.1% (78.1%) and
19.7% (74.8%), respectively.

2.3. Fed-batch feeding strategy

Optimized growth medium as basal medium was used to establish a fed-batch bioprocess. Seeding
was done in 35 mL optimized medium (DMEM, 4.5 g/L glucose, 2 mM stable glutamine, 6% FBS, 100 μg/L
IGF-I and 0.2 g/L Pluronics F-68) using 3�105 cells/mL in shake flasks (125 mL). For fed-batch feeding
Cell BoostTM 6 (CB6, HycloneTM, GE Healthcare, Birmingham, UK), an alternative to a serum-free con-
ventional glucose feed, was used that contains glucose, vitamins, trace elements, amino acids, growth
factors, lipids and cholesterol. Glutamine and glucose were kept constant at 2 g/L and 1 mM, respectively.
The first triplicate served as batch control and was cultivated without feeding. The next triplicate received
20 mM glutamine and 20 g/L glucose. Instead of usual glucose feed in the medium the third triplicate was
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fed with 14 g/L glucose in CB6. All substrates and metabolites were determined with a KonelabTM Arena
20XT (Thermo Scientific, Rockford, IL, USA), the cell concentration was analyzed by an image-based cell
counter (Cedex XS, Roche, Penzberg, Germany) and the mAb concentration (product titer) was evaluated
with a Protein A HPLC (Agilent).

The data obtained revealed that CB6 improved cell growth, cell viability (Fig. 4A) and product
(mAb) titer (Fig. 4B). The use of CB6 (Feed 1) increased the viable cell concentration at day 4 by 18.4%
compared to conventional feed (Feed 2). As the viable cell concentration correlates with the product
titer, the mAb concentration peaked at 199.7743.5 mg/L using Feed 1 compared to Feed 2
(127.372.1 mg/L), an increase of over 36%.

Both feeding strategies with and without CB6 were evaluated in a 2 L fed-batch bioprocess. Under
controlled conditions the CB6 feed revealed a strong benefit allowing a prolongation of the process
Fig. 4. Data of double bolus feed: Feed 1 contained Cell BoostTM 6 (CB6) (3.5% w/v) supplemented with glucose and Feed 2 w/o
CB6 contained glucose in optimized medium. (B) mAb titers are depicted from the last day of culture (*po0.05,***po0.001;
one-way ANOVA).

Fig. 5. Data of Fed-batch 2 L process with double feed – glutamine in medium and glucose (Feed 1: with CB6; Feed 2: w/o CB6).
Fed-batch was started with optimized medium (DMEM supplemented with 6 % FBS, 100 mg/L IGF and 0.2 g/L Pluronics).
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time from 4 to 11 days (Fig. 5A) and a 4.5-fold higher product titer of 458 mg/L compared to 102 mg/L
(Fig. 5B).

2.4. Capturing of full size antibody and generation of Fab and F(ab0)2

Subsequent to cell culture, the supernatant was microfiltered, AIR AB 83-14 IgG was captured by
Protein A affinity chromatography (MabSelects SuRe resin, Äkta Purifier, GE Healthcare) and eluted at
50 mM sodium acetate (pH 3.5). Papain (Sigma Aldrich) was pre-activated with cysteine in activation
buffer (0.02 M cysteine, 0.02 M EDTA in PBS) and dialyzed against digestion buffer (1 mM EDTA in
50 mM sodium phosphate pH 6.3) in order to remove cysteine. Different papain concentrations (see
Fig. 6) and incubation periods were used, with and without the presence of cysteine for Fab frag-
mentation. The mAb (2 mg/mL) was diluted in papain digestion buffer 1:1, incubated at 37 °C at
200 rpm agitation and reaction was terminated by a final iodoacetamide concentration (0.03 M)
(Sigma Aldrich). Incubation over 24 h of the full IgG in the presence of 0.1 mg/mL papain resulted in
the largest amount of Fab (Fig. 6).

Subsequently, the influence of cysteine needed to pre-activate papain at the lowest destabilizing
effect on the IgG domains was determined by semi-quantitative SDS-PAGE where equal amounts
were loaded. Therefore, papain was activated with cysteine (20 mM) in activation buffer and dialyzed
against digestion buffer to remove cysteine. The mAb digestion without cysteine showed less
undesirable product related fragments between 20 and 25 kDa and increased Fab yield (Fig. 6).
Furthermore, this digestion protocol resulted in the production of F(ab0)2 fragments (Fig. 7).

The solution was dialyzed against PBS for further purification. Two anti-kappa light chain resins –
the Protein L based CaptoL (GE Healthcare) and the VHH resin CaptureSelectTM LC-kappa (mur) (Life
Technologies, Carlsbad, CA, USA) – were evaluated with the same equilibration and elution buffer
(PBS pH 7 and 20 mM sodium acetate pH 3.5). VHH chromatography resulted in a highly specific Fab
binding and less by-products were found in the elution fraction compared to the Protein L resin
(Fig. 7A). Due to the high specificity of the camelid VHH resin, the second Protein A step was dis-
pensable. F(ab0)2 and Fab were successfully separated by a subsequent size exclusion chromatography
(SEC; HiLoad 16/60 Superdex 75, GE Healthcare) as shown in SDS-PAGE analysis (Fig. 7B). Based on
the bioreactor supernatant as 100% full IgG, the yield calculation resulted in approximately �38% Fab
at the end of the purification process.
Fig. 6. Data of different papain concentrations and incubation period. The effect with and without cysteine (þ , �) on mAb
fragmentation was analyzed with constant papain and mAb concentration at different incubation times. Results were analyzed
by 12.5% SDS-PAGE under non-reducing conditions and stained with Coomassie brilliant blue. Box: upper¼undigested mAb;
middle¼Fab fragment; lower¼Fc fragment, degraded mAb.
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2.5. Product identity and bioactivity as quality control

The state of aggregation and purity of resulting Fab, F(ab0)2 and full IgG were analyzed after
Protein A, VHH chromatography and SEC purification step via SEC-Multi-angle light scattering
(MALS). Purified products were dissolved in PBS (pH 7.2 (Sigma Aldrich)) and loaded on a SEC column
(Yarra SEC-3000 and SEC-2000, Phenomenex, Aschaffenburg, Germany) for molecular separation of
all components using a flow of 0.5 mL/min.

Peaks were detected by UV (280 nm), refractive index and MALS detector (Wyatt, Santa Barbara,
USA) for determination of molecular weight and aggregation. The full IgG had a molecular weight of
143.971.9 kDa. Subsequent to VHH column elution, two signals were detected – one with
91.572.2 kDa and one with 44.7370.5 kDa correlating to the predicted size of the corresponding F
(ab0)2 and the Fab fragment. Finally, Fab was successfully separated from F(ab0)2 by size exclusion
chromatography as confirmed by SDS-PAGE analysis (Fig. 7) and by SEC-MALS with a molecular
weight of 45.370.5 kDa and 90.671.0 kDa, respectively (Fig. 8).
Fig. 8. SEC-MALS data of purified full IgG (Protein A), F(ab0)2 /Fab (VHH) and F(ab0)2 and Fab (both SEC). Dynamic Light
Scattering (LS) signals are shown as peaks in gray shades and the molecular weight as horizontal lines. The MW of purified F
(ab0)2 and Fab is indicated as green and blue colored line.

Fig. 7. Data of purification using two affinity anti-kappa light chain resins, CaptoL and CaptureSelect, for Fab polishing (A) and
the complete Fab purification process (B). In B, the second Protein A step was replaced by CaptureSelect after papain digestion.
Results were analyzed by 12.5 % SDS-PAGE under non-reducing conditions and gels were stained with Coomassie brilliant blue.
Blue box¼Fab fragment, F¼Flow through and E¼Elution.



Fig. 9. Data of antigen-binding: Biding of labeled products to antigen-expressing A14-NIH3T3 cells were analyzed by flow
cytometry. Non-expressing parental NIH3T3 cells and unstained A14 were used as negative control. Only viable cells
were gated.
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To analyze the antigen binding of the products Fab, F(ab0)2 and full IgG were directly labeled with
equal amounts of the fluorophore CFTM 647 (Mix-n-Stain, Sigma Aldrich) according to the manu-
facturer's instruction. The labeled products were used for extracellular staining of mouse fibroblast
NIH3T3-A14 cells expressing the antigen, human insulin receptor [2]. For flow cytometry analysis,
cells were stained with fluorophore labeled mAb or fragments (2 mg/mL) for 30 min at room tem-
perature in the dark prior to data acquisition using a MACSQuant flow cytometer (Miltenyi Biotec
GmbH, Bergisch Gladbach, Germany). The parental cell line NIH3T3 was chosen as negative control
and compared to the antigen expressing A14 cells. All labeled proteins resulted in a shift of the
fluorescence detection channel according to their theoretical number of coupled fluorophores that is
correlated to their molecular mass (Fig. 9). The binding ability of the mAb and its fragments to their
antigen was preserved during downstream processing and papain digest.
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