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Abstract: Efforts to interrupt and eliminate schistosomiasis as a public health problem have increased
in several Southern African countries. A systematic review was carried out on the infection rates
of snails that cause schistosomiasis in humans. The searches were conducted in PubMed, Web of
Science, and Scopus databases, using the PRISMA guidelines from inception to 24 February 2022.
The study quality was assessed by using the Joanna Briggs Institute prevalence critical appraisal
checklist. Pooled infection rates were estimated by using an inverse variance heterogeneity model,
while heterogeneity was determined by using Cochran’s Q test and Higgins i2 statistics. A total of
572 articles were screened, but only 28 studies were eligible for inclusion based on predetermined
criteria. In the selected studies, 82,471 Bulinus spp. and 16,784 Biomphalaria spp. snails were screened
for cercariae. The pooled infectivity of schistosome intermediate host snails, Biomphalaria spp., and
Bulinus spp. were 1%, 2%, and 1%, respectively. Snail infection rates were higher in the 1900s
compared to the 2000s. A Luis Furuya–Kanamori index of 3.16 indicated publication bias, and a high
level of heterogeneity was observed. Although snail infectivity in Southern Africa is relatively low, it
falls within the interval of common snail infection rates, thus indicating the need for suitable snail
control programs that could interrupt transmission and achieve elimination.

Keywords: Bulinus spp.; Biomphalaria spp.; schistosomiasis; intermediate host snails; infection rates

1. Introduction

Schistosomiasis is a neglected tropical disease (NTD) that mainly affects poor and
marginalized communities in sub-Saharan Africa [1,2]. The two major forms of schistosomiasis
affecting humans in sub-Saharan Africa are intestinal and urogenital schistosomiasis. Intestinal
schistosomiasis is caused by blood fluke trematodes Schistosoma mansoni, S. intercalatum, and
S. guineensis, while urogenital schistosomiasis is caused by S. haematobium [3]. The transmis-
sion cycle involves the release of eggs from infected humans into freshwater bodies through
faeces or urine. These eggs hatch and release miracidia which penetrate suitable interme-
diate host snails. S. mansoni penetrates Biomphalaria spp. snails, S. haematobium penetrates
Bulinus spp. snails., and S. mansoni could penetrate Bulinus spp. snails sometimes. Once
miracidia infects the suitable snails, sporocysts develop in the snails, which then release
cercariae into the water after the prepatent period [4]. Snails can shed hundreds of cercariae
daily, ranging around 200 for S. haematobium and 250 to 600 for S. mansoni [5,6].

Substantial progress has been made over the years to prevent and control schistosomi-
asis by implementing large-scale periodic treatment with praziquantel. However, this has
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not completely interrupted schistosomiasis transmission [7]. Suggestions have been made
on the need to adopt integrated control strategies, including preventive chemotherapy with
praziquantel, intermediate host snail management, and improved water and sanitation.
Following the adoption of the WHA70.16 on the Global Vector Control Response [8], there
is a need for updated data on the infectivity of intermediate host snails (IHS) of schisto-
somiasis to justify investment in snail control and develop more effective prevention and
control programs.

Many malacological studies on the infectivity of IHS in countries in Southern Africa
have been conducted yet there has not been any single estimate of the infectivity of IHS for
the entire Southern African countries. Such information would be essential in aiding poli-
cymakers working on the prevention and control of schistosomiasis. Hailegebriel et al. [9]
reported a 6% prevalence of S. mansoni and S. haematobium in snail intermediate hosts
in Africa. The study further suggested an increase in the pooled prevalence of schisto-
some cercaria in recent years among freshwater snails. However, only one study from the
entire Southern Africa region was included, thus, potentially underestimating the poten-
tial risks of infections in this region, which has reported high schistosomiasis infections
and snail abundance in several areas [9]. Hence, this study was designed to conduct a
systematic review and meta-analysis on a micro-geographical scale in Southern African
countries to estimate the infectivity of IHS. A clear understanding of IHS infectivity is piv-
otal for effective planning of targeted disease control and sustainable strategies to interrupt
schistosomiasis transmission.

2. Materials and Methods
2.1. Search Strategies and Inclusion Criteria

A comprehensive literature search of published articles on the infectivity of intermedi-
ate host snails that transmit the parasite that causes schistosomiasis in humans in Southern
Africa was systematically conducted in PubMed, Web of Science, and Scopus databases
from inception to 24 February 2022. The following search terms were used: “schistosome
intermediate host”, “intermediate host snails”, “snail intermediate host”, “intermediate
host”, “freshwater snails”, “freshwater snail host”, “snail vector”, “malacology survey”,
“Biomphalaria”, “Bulinus”, “Bulinid”, “infection”, “infection rate”, “intensity”, “preva-
lence”, “incidence”, “schistosomiasis”, “bilharzia”, “bilharziasis”, “Schistosoma mansoni”,
“S. haematobium”, “Schistosoma”, “Angola”, “Botswana”, “Lesotho”, “Malawi”, “Mozam-
bique”, “Namibia”, “South Africa”, “Swaziland”, “Eswatini”, “Zambia”, and “Zimbabwe”
(Supplementary Materials File S1). Search terms were combined by using the AND/OR
Boolean operators. Our search was limited to peer-reviewed articles published in the
English language. Relevant articles were also identified from the reference list of already
identified articles. The Preferred Reporting Items for Systematic Reviews and Meta-analyses
(PRISMA) guideline was used for the paper selection process [10].

The inclusion criteria for all articles were as follows: (a) studies reporting data from any
Southern African country, (b) studies reporting data on human schistosomiasis intermediate
host snails (Biomphalaria spp. and Bulinus spp.) to species level, (c) studies reporting
the number of examined and infected snails with human schistosomes, (d) studies that
mentioned the diagnostic used in detecting infected snails, and (e) studies that reported
infection in snails that had been sampled from the field and not laboratory infected snails.
Studies without full texts, review articles, and meta-analysis were excluded.

2.2. Data Extraction and Quality Appraisal

The data extraction format from the reviewed papers included the first author’s name,
year of publication, study country, snail species, number of snails (collected, examined,
and infected), and diagnostics used in detecting schistosome infection. The quality of
all studies included was assessed by using the 10 quality-control items described by the
Joanna Briggs Institute Prevalence Critical Appraisal [11]. A score of 1 was given for
each item fulfilled, while 0 was given for each unfulfilled item. An aggregate of all the
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scores was generated and converted into an index. Based on the quality indices generated,
studies were classified as having low (0.0–0.3), moderate (0.4–0.6), or high (0.7–1.0) quality
(Supplementary Materials File S2).

2.3. Statistical Analysis

An inverse variance heterogeneity (IVhet) model in MetaXL version 5.3 (meta-analysis
add-in tool in Microsoft Excel) was used to obtain the pooled prevalence estimates from
the eligible studies. The IVhet model was used because, irrespective of heterogeneity, the
confidence interval coverage remains close to the nominal level compared to the fixed-effect
and random-effect models, where the confidence interval drops significantly [12–14]. Forest
plots were generated to show the estimated prevalence and their 95% confidence interval.
The level of heterogeneity between studies was measured by using Cochran’s Q statistic,
and Higgin’s inconsistency statistic (i2) was used to estimate the proportion of variability
between studies. Higgins’s i2 can be considered to show strong homogeneity, medium
heterogeneity, and high heterogeneity when it has a value less than 25%, 50%, and 75%,
respectively [15]. Publication bias was assessed by using the Luis Furuya–Kanamori (LFK)
index of the Doi plot. The level of publication bias depended on the magnitude of the
LFK index. An LFK value within the range of ‘±1’ was considered as ‘symmetrical’ and
classified as the absence of publication bias, an LFK value within the range of ‘±2’ was
considered as minor asymmetry with slight publication bias, and an LFK value outside the
range of ‘±2’ was considered as major asymmetry and high publication bias. Furthermore,
subgroup analysis was carried out by stratifying our data by snail species and the countries
where the studies were conducted to potentially explain the observed heterogeneity [16,17].

3. Results
3.1. Search Results

A total of 572 articles were identified, and 50 duplicated articles were removed. The
remaining 522 records were screened by using the titles and abstracts, and 415 were
excluded. One hundred and seven articles were then evaluated according to eligibility
criteria. Seventy-nine articles were also excluded. Finally, 28 articles were included in the
study, as they passed the eligibility criteria and quality assessment (Figure 1). The studies
included in this review ranged from 1954 to 2021.

3.2. Study Characteristics and PPE Analysis

The twenty-eight (28) eligible studies included in the review were conducted in seven
Southern Africa countries; 3.6% (n = 1) [18] were from Angola, 7.1% (n = 2) [19,20] were
from Botswana, 17.9.5% (n = 5) [21–25] were from Malawi, 3.6% (n = 1) [26] were from
Mozambique, 17.9% (n = 5) [27–31] were from South Africa, 3.6% (n = 1) [32] were from
Zambia, and 46.4% [33–45] (n = 13) were from Zimbabwe. Of the 28 studies, 6 studies
reported on the infectivity rate in Bulinus spp., 5 studies reported on Biomphalaria spp.,
and 14 studies reported on both Bulinus spp. and Biomphalaria spp. All the studies used
the cercarial shedding diagnostic to detect schistosome infections in the intermediate host
snails. Furthermore, 10 studies were cross-sectional, and 18 studies were longitudinal
(Table 1). Moreover, more snails were found in studies with a long study duration.

The overall pooled prevalence estimate (PPE) of infectivity was 1% (95% CI: 0.00–0.06),
with a high degree of heterogeneity (i2 = 99%, p < 0.01) (Figure 2). The years of the studies in-
cluded in the review were categorized into two groups, namely; the 1990s and 2000s, to assess
the trends of snail infection rates in intermediate host snails between the periods. The pooled
snail infectivity was 6% (95% CI: 0.01–0.12) in the 1990s and 1% (95% CI: 0.00–0.03) in the
2000s (Figure 2). The highest pooled prevalence of schistosome cercariae was obtained among
freshwater snails from Mozambique (83%; 95% CI, 0.53–1.00), followed by Angola (14%;
95% CI, 0.10–0.20), Zambia (83%; 95% CI; 0.02–0.12), Zimbabwe (83%; 95% CI, 0.02–0.07),
South Africa (83%; 95% CI; 0.00–0.09), Botswana (83%; 95% CI, 0.00–0.02), and Malawi (83%;
95% CI, 0.00–0.01) (Supplementary Figure S1). The subgroup analysis stratified by snail
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species showed that the rate of infectivity in Bulinus spp. was 1% (95% CI: 0.00–0.07), while
in Biomphalaria spp., it was 2% (95% CI: 0.00–0.04) (Supplementary Figure S2). A high level
of heterogeneity was observed (i2 > 90%), and this could not be reduced through subgroup
analysis by intermediate host snail species. This could be due to the differences in the seasons
the data were collected or the study designs [46]. A significant publication bias was observed
both from the funnel and doi plots, as shown by the LFK index of 3.16, which indicates major
asymmetry (Supplementary Figures S3 and S4).
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Table 1. Summary of eligible studies included in the meta-analysis.

Citation Name Study Duration Sample Size Positive Infection
Rate (%) Snail Species Country Method of Diagnosis Sampling Type

Chimbari et al. (2003) [a] [33] 1 year 120 4 3.33 B. globosus Zimbabwe Cercarial shedding Longitudinal
Chimbari et al. (2003) [33] [b] 1 year 42 2 4.76 B. pfeifferi Zimbabwe Cercarial shedding Longitudinal
Chimbari et al. 2020 [a] [19] 3 years 303 0 0 B. globosus Botswana Cercarial shedding Longitudinal
Chimbari et al. (2020) [b] [19] 3 years 199 0 0 B. pfeifferi Botswana Cercarial shedding Longitudinal
Chandiwana et al. (1988) [1a] [38] 2 years 4237 142 3.35 B. globosus Zimbabwe Cercarial shedding Longitudinal
Chandiwana et al. (1988) [1b] [38] 2 years 1163 9 0.77 B. pfeifferi Zimbabwe Cercarial shedding Longitudinal
Mutsaka-Makuvaza et al. (2020) [43] 1 year 1542 30 1.95 B. globosus Zimbabwe Cercarial shedding Longitudinal
Chirundo et al. (2005) [a] [41] 1 month 34 0 0 B. globosus Zimbabwe Cercarial shedding Cross-sectional
Chirundo et al. (2005) [b] [41] 1 month 86 0 0 B. pfeifferi Zimbabwe Cercarial shedding Cross-sectional
Allan et al. (2017) [18] 2 months 173 25 14.45 B. globosus Angola Cercarial shedding Cross-sectional
Manyangadze et al. (2021) [a] [30] 1 year 861 77 8.94 B. globosus South Africa Cercarial shedding Longitudinal
Manyangadze et al. (2021) [a] [30] 1 year 985 1 0.10 B. pfeifferi South Africa Cercarial shedding Longitudinal
Chandiwana et al. (1986) [34] 2 years 1347 41 3.04 B. pfeifferi Zimbabwe Cercarial shedding Longitudinal
Woolhouse et al. (1989) [45] 2 months 225 28 12.44 B. globosus Zimbabwe Cercarial shedding Longitudinal
Traquinho et al. (1998) [a] [26] 2 months 407 345 84.77 Bulinus spp. Mozambique Cercarial shedding Cross-sectional
Traquinho et al. (1998) [b] [26] 2 months 31 19 61.29 Biomphalaria spp. Mozambique Cercarial shedding Cross-sectional
Bayer et al. (1954) [a] [27] 2 months 482 31 6.43 Bulinus spp. South Africa Cercarial shedding Cross-sectional
Bayer et al. (1954) [b] [27] 2 months 520 53 10.19 Biomphalaria spp. South Africa Cercarial shedding Cross-sectional
Cetron et al. (1996) [21] 2 months 370 1 0.27 Bulinus spp. Malawi Cercarial shedding Cross-sectional
Chingwena et al. (2002) [a] [40] 2 years 2934 73 2.49 Bulinus spp. Zimbabwe Cercarial shedding Longitudinal
Chingwena et al. (2002) [b] [40] 2 years 2535 1 0.04 Biomphalaria spp. Zimbabwe Cercarial shedding Longitudinal
KN de Kock et al. (2004) [29] Not stated 1639 0 0 Biomphalaria spp. South Africa Cercarial shedding Cross-sectional
Donney et al. (1985) [28] 1 year 4 months 3062 62 2.02 Biomphalaria spp. South Africa Cercarial shedding Longitudinal
Van Renburg et al. (2016) [a] [20] 2 months 333 0 0 Bulinus spp. Botswana Cercarial shedding Longitudinal
Van Renburg et al. (2016) [b] [20] 2 months 325 8 2.46 Biomphalaria spp. Botswana Cercarial shedding Longitudinal
Webster et al. (2010) [44] 1 month 1099 42 3.82 Biomphalaria spp. Zimbabwe Cercarial shedding Cross-sectional
Wolmarans et al. (2001) [a] [31] 1 year 767 130 16.95 Bulinus spp. South Africa Cercarial shedding Longitudinal
Wolmarans et al. (2001) [b] [31] 1 year 932 108 11.59 Biomphalaria spp. South Africa Cercarial shedding Longitudinal
Mutsaka-Mukuvaza et al. (2020) [42] 1 year 542 4 0.74 Biomphalaria spp. Zimbabwe Cercarial shedding Longitudinal
Madsen et al. (2011) [23] 3 years 10 months 122 0.25 Bulinus spp. Malawi Cercarial shedding Longitudinal
Madsen et al. (2011) [1a] [22] 4 years 1970 20 1.02 Bulinus spp. Malawi Cercarial shedding Longitudinal
Madsen et al. (2011) [1b] [22] 4 years 6664 22 0.33 Bulinus spp. Malawi Cercarial shedding Longitudinal
Chandiwana et al. (1987) [35] 2 years 4452 164 3.68 Bulinus spp. Zimbabwe Cercarial shedding Longitudinal
Chandiwana et al. (1988) [2a] [36] 2 years 1851 222 11.99 Bulinus spp. Zimbabwe Cercarial shedding Longitudinal
Chandiwana et al. (1988) [2b] [36] 2 years 715 16 2.24 Biomphalaria spp. Zimbabwe Cercarial shedding Longitudinal
Chandiwana et al. (1987) [a] [37] 2 years 4452 617 13.86 Bulinus spp. Zimbabwe Cercarial shedding Longitudinal
Chandiwana et al. (1987) [b] [37] 2 years 1347 41 3.04 Biomphalaria spp. Zimbabwe Cercarial shedding Longitudinal
Chandiwana et al. (1991) [39] 2 months 285 12 4.21 Bulinus spp. Zimbabwe Cercarial shedding Cross-sectional
Mungomba et al. (1995) [a] [32] 1 month 135 4 2.96 Bulinus spp. Zambia Cercarial shedding Cross-sectional
Mungomba et al. (1995) [a] [32] 1 month 215 17 7.91 Biomphalaria spp. Zambia Cercarial shedding Cross-sectional
Madsen et al. (2001) [24] 1 month 992 5 0.50 Bulinus spp. Malawi Cercarial shedding Cross-sectional
Poole et al. (2014) [25] 1 month 250 0 0 Bulinus spp. Malawi Cercarial shedding Cross-sectional

[a] and [b] represents Bulinus spp. and Biomphalaria spp. respectively when both species are of interest to the author(s). [1a] and [1b] represents Bulinus spp. and Biomphalaria spp.
respectively when both species are of interest to the author(s) and is the first of two articles published in the same year by the same authors. [2a] and [2b] represents Bulinus spp. and
Biomphalaria spp. respectively when both species are of interest to the author(s) and is the second article published in the same year by the same authors.
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Table 1 presents information extracted from the 28 eligible articles that included
citation name, study duration, sample size, positive, infection rate, snail species, country,
method of diagnosis and sampling type.
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authors. [2a] and [2b] represents Bulinus spp. and Biomphalaria spp. respectively when both species
are of interest to the author(s) and is the second article published in the same year.

4. Discussion

In sub-Saharan Africa, schistosomiasis is one of the leading infectious diseases of
public health importance coming after malaria [47–49]. In this meta-analysis, we analyzed
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studies on the infectivity of schistosome IHS in Southern Africa. Our findings show that the
overall pooled prevalence of schistosome IHS in Southern Africa is low. This corroborates
with previous studies which concluded that IHS infectivity can be as low as 1 to 2%,
even in areas with a high prevalence of humans infected with schistosomiasis [50–53].
In Kisumu city, Western Kenya, the proportion of snails shedding schistosome cercariae
was 1.8% despite the prevalence of schistosomiasis among school children being 21%
and 3.6% for S. mansoni and S. haematobium, respectively [54,55]. Furthermore, a study
performed in Msambweni, along the Kenyan coast, reported a snail infectivity rate of
1.2% [56], while the prevalence of S. haematobium among residents was 32.4% [57]. In
the Lake Victoria basin in Western Kenya, snail infectivity was reported as 1.04% [58],
whereas a high prevalence of S. mansoni of 60.5% was recorded among schoolchildren [59].
In Senegal, Catalano et al. [60] reported that 12.8% of school-aged children had S. mansoni
infections, while the recorded snail infectivity was 2.2%. The prevalence of S. mansoni and S.
haematobium in Toho-Todougha, Benin, was 74.3% and 57.1%, respectively, but the infection
rate of B. pfeifferi was 0.56%, and the infectivity of B. forskalii and B. globosus were both
0% [61]. In Unguja Island, Tanzania, S. haematobium prevalence in school-aged children was
16.8% and 2.3% snail infectivity [62]. Several factors may be responsible for the discrepancy
between snail infectivity and schistosomiasis prevalence. They include the method used in
detecting schistosome infection, the ability of a few snails to release thousands of cercariae
in a day, with the peak time for shedding cercariae from 9:00 to 11:00 a.m., followed by a
decline at 5:00–7:00 p.m. [31,63]. This diurnal pattern of snail shedding coincides with the
time people have intense water contact.

In contrast to the above, there are studies with high schistosomiasis prevalence and
high snail infectivity. In our review, Cabo Delgabo province in Northern Mozambique, one
of the least developed areas in the country, had the highest snail infectivity, at 83% [26].
This could be attributed to the high endemicity of schistosomiasis in the country, where
they recorded a schistosomiasis prevalence of 84.4% [26]. The Schistosomiasis Consor-
tium for Operational Research and Evaluation (SCORE) in 2011 coordinated a five-year
study that was implemented in various African countries [64]. The goal of the SCORE
project was to research integrated strategies that might stop transmission and achieve
elimination. Preventive chemotherapy by using praziquantel treatment in Cabe Delgabo,
Mozambique, resulted in a significant reduction in the prevalence of S. haematobium infec-
tion from Year 1 to Year 5, where the average prevalence reduced from 60.5% to 38.8% [64].
Despite this achievement, data on snail infectivity were not updated, thus suggesting the
need for more malacology surveys in Mozambique. SCORE also undertook both mala-
cology and parasitology surveys over 4 years to determine Biomphalaria snail abundance
in Mwanza, Tanzania. A decrease in shedding Biomphalaria abundance in Year 4 was
observed, and this was attributed to the schistosomiasis treatment that was ongoing in the
human populations [65].

The pooled prevalence of intermediate host snails decreased over time, from 6% in the
1900s to 1% in the 2000s. This might be attributed to the increased health education in raising
awareness on how schistosomiasis is contracted, and it has led to new lifestyles, improved
water and sanitation, ongoing snail control programs, and the effects of climate change.

Biomphalaria snails serve as intermediate hosts for S. mansoni, while Bulinus snails act
as intermediate hosts for S. haematobium and S. mattheei in Southern Africa [66]. This review
showed that Bulinus snails were more abundant (n = 82,471) compared to Biomphalaria snails
(n = 16,784). This could be because Bulinus snails are better equipped to withstand extreme
temperatures, swift currents, and prolonged droughts better than Biomphalaria snails [67,68].
This finding is in contrast with the results obtained by Kinanpara et al. [69] and Hailegebriel,
Nibret, and Munshea [9], where Biomphalaria snails had a higher abundance. Biomphalaria
snails, on the other hand, had higher infectivity (2%) compared to Bulinus snails (1%) in
Southern Africa.

In all the studies reviewed, the cercarial shedding technique was used to detect schisto-
some infections. This is a common diagnostic method used in detecting infections because
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it is relatively affordable and easy to carry out [55]. However, the cercarial shedding
technique is known to underestimate the true prevalence of infection in the intermediate
host snail, due to its inability to detect prepatent infections, the aborted development of
sporocysts, and the death of the snail after collection and before light exposure, as well as
being time-consuming and labor-intensive [2,70]. In addition, further laboratory analysis is
needed to identify the specific type of cercariae. Hence, the method of infection detection
may be partly responsible for the low pooled prevalence in this meta-analysis. To overcome
these limitations, different types of molecular diagnostics which detect Schistosoma DNA
in intermediate host snails have been developed and can identify patent and prepatent
infections [70–74]. Studies have shown a significant difference in the prevalence of IHS
schistosome infection between cercariae shedding and molecular diagnostics. Infection
rates of 0%, 3%, 1.56%, and 0% [52,71,75,76] were reported when the cercarial shedding
technique was used. However, when nested polymerase chain reaction (PCR) was used,
the reported infection rates were 2%, 3%, 39.6%, and 9.76% [52,71,75,76]. Furthermore,
Sengupta et al. [77] reported that eDNA xenomonitoring detected schistosome presence
at sites where cercarial shedding failed. However, due to the cost of the molecular di-
agnostic and the requirement of trained personnel to carry out molecular analysis, this
approach is not commonly used. There is a need for the development of simple and field-
friendly methods for the detection of Schistosoma in snails. This would provide a better
picture of schistosomiasis in various countries in order to guide policymaking, prevention,
and control [2].

A key limitation of our study and recommendation for additional work is the effect of
seasonality on Schistosoma spp. infections in IHS. Of the 28 studies included in this review,
only four studies [30,34,35,43] reported the effect of seasonality on Schistosoma infections.
The studies showed an increased infection rate in the dry season compared to rainy seasons.
However, only one out of the four studies reported the total number of snails collected in
each season; hence, we could not ascertain the pooled prevalence per season. The seasonal
pattern observed in the infection of Biomphalaria spp. and Bulinus spp. with mammalian
schistosome cercariae where the prevalence of infection of snails with larval trematodes
increased during the dry season and decreased during the rainy season is consistent with
that observed in References [78,79].

5. Conclusions

The results from the review showed that 1% of Bulinus spp. and Biomphalaria spp.
freshwater snails were infected. Although this overall pooled prevalence is low, the
presence of an infected snail in a waterbody is evidence of schistosomiasis transmission and
is of public health concern, as direct contact with the waterbody will lead to schistosomiasis
infection. Furthermore, the cercarial shedding method used in detecting infection may
have played a role in the low prevalence observed. Our results highlight the need for
more malacology surveys using improved infectivity diagnostic methods in the Southern
African region to enhance the detection of infection and integrated snail control strategies
to interrupt schistosomiasis transmission.
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