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Abstract: The article proposes the application of the acoustic emission method as a technique for
the evaluation of mechanical parameters of cellulose–cement composites. The analysis focused on
frequency values in a time series analysis of elements subject to three-point flexural stress. In the
course of a statistic analysis, it has been demonstrated that a significant reduction of the recorded
frequency values is associated with a considerable reduction in strength. This allowed the authors
to determine the range of frequencies related to the depreciation in the strength of an element. The
tests were carried out on elements cut from a full-size cellulose–cement board. Samples exposed
to potential operational factors (environmental and exceptional) were analysed. It was shown that
the frequencies recorded before reaching the maximum load during bending of samples exposed to
environmental factors (water and low temperature) were significantly different (were much lower)
from the sounds emitted by elements subjected to exceptional factors (fire and high temperature).
Considering the fact that the analysed frequencies of acoustic emission events occur before the
maximum stresses in the material are reached and the elements are destroyed, this provides the basis
for the use of the acoustic emission method to assess the condition of cellulose–cement composites
in terms of lowering mechanical parameters by observing the frequency of events generated by the
material during load action. It was found that generating by material frequencies above 300 kHz
during bending does not result in a significant decrease in mechanical parameters. The emission of
signals with frequencies ranging from 200 to 300 kHz indicate that there was a decline in strength
exceeding 25% but less than 50%. The registration of signals with frequencies below 200 kHz indicates
that the reduction in mechanical parameters was greater than 50%.

Keywords: cement–cellulose composites; ventilated façade; acoustic emission method; frequencies
of acoustic emission signals

1. Introduction

Building materials produced on the basis of cement reinforced with organic fibres have
been used in the building industry for over a century. It is believed that this type of material
was invented by Ludwik Hatschek, a Czech engineer who patented the methodology of
manufacturing panels known as ‘Eternit’. Cement elements with an additive of asbestos
fibres exhibited relatively high strength parameters, while also being non-absorbent and
non-flammable [1–8]. Those very features made Eternit one of the most popular types
of roofing in the 1980s and 1990s. Their popularity decreased when it was revealed that
asbestos fibres have carcinogenic properties. From then on, efforts have been undertaken
to develop a replacement technology. Over the course of the performed research, cement
matrices were strengthened using various types of organic fibres, variable, e.g., by origin
or length [9–12].

One of the most common fibrous cement composite products are panels based on a
cement matrix reinforced with cellulose fibres. These panels, apart from Portland cement
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and organic fibres, can also contain synthetic fibres as well as special additives or ad-
mixtures, which improve their strength and performance parameters [13–17].

Most cellulose–cement panels are designed for internal and external use (e.g., as siding
elements in ventilated facade systems). Due to working conditions present in the case
of their external use, as facade elements, it is necessary to determine the effect of any
potential operating factors on the parameters of the boards. Many literature sources cite
examples that demonstrate the deterioration of aesthetics as well as of the mechanical
parameters of the panels due to the impact of external conditions [18–22]. Due to the fact
that cellulose–cement panels are currently also used in buildings classified as tall buildings
and high-rise buildings, for safety reasons, it is necessary to develop a method which
would facilitate the determination of the actual condition of the panels during their routine
inspections. This would help to eliminate any possibility of façade siding elements falling
down from the building, resulting in personal and material hazards [23–28].

The operating conditions of cellulose–cement panels primarily include the effects of
water and moisture, resulting in the cyclical soaking and drying of the panels, as well as
the regular changes between above-zero and sub-zero temperatures. In addition, when
analysing the service life of the boards, the possible occurrence of exceptional conditions
must be taken into consideration, among which the effects of fire and high temperatures
seem the most destructive [29–34].

Considering that cellulose–cement panels must be inspected at the site of their in-
stallation, it is necessary to develop a non-destructive methodology that would enable
their monitoring, preferably remotely. The acoustic emission method is the one which is
becoming increasingly popular when used to this end, as it allows for the observation of
load-related active destructive processes in materials. Acoustic emission has been success-
fully implemented as a research methodology for the diagnosis of engineering structures
made of concrete and steel. The results of tests performed on cellulose–cement panels have
also been documented in literature. Previous analyses were performed using neural net-
works as well as the acoustic emission method, with the application of the energy-related
and time/frequency-related approach [35–40].

The implementation of the abovementioned models in the context of the acoustic
emission method requires the performance of analyses using specialised software, the so-
called artificial intelligence, to facilitate the learning of neural networks, the classification
of AE signals, as well as the performance of a time and frequency analysis. However, based
on the performed research, the authors have observed that the frequency of events is one of
the most variable parameters of acoustic emission, sensitive to changes in the mechanical
parameters of a material. Therefore, they performed an analysis that allowed them to
determine the significance of these changes and to associate them with a specific degree of
reduction of the strength of cellulose–cement elements [41–43].

Testing the dynamic parameters of composites is an issue widely described in the
literature in relation to composite layered structures [44] and GFRP composites [45]. Due to
the use of modern research techniques and computer methods, it is possible to accurately
assess the influence of geometric parameters of an element on mechanical indicators both
in static and fatigue tests [44,45].

The basic research question posed by the authors concerned checking whether the
frequencies of acoustic emission events are related to the mechanical parameters of com-
posites, and if so, whether the relationship between them is statistically significant. The
next question was to check how the potential operating conditions affect the mechanical
parameters and frequency of acoustic emission events.

The authors decided to observe the frequency of AE events emitted by cellulose-
cement composites because in other publications, this parameter allowed for the tracking
of changes in mechanical parameters in brittle materials [46,47].

The novelty of the research carried out consists in the observation of one selected
energetic parameter of the acoustic emission. In previous publications on cellulose–cement
composites, the use of the AE method was associated with the procedure of teaching
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neural networks or unsupervised signal classification, which requires specialised software
and skills. The AE event frequency analysis can be performed immediately after the
measurement and even during the measurement without the need to transfer data, which
significantly extends the availability of the acoustic emission method as a tool for assessing
changes in mechanical parameters in cellulose–cement composites.

The main benefit of the present research study for researchers and users concerns the
ability to refer, when assessing the mechanical parameters by observing the frequency of
AE events, to the results obtained for samples of cement–cellulose composites exposed
to potential operational factors. The presented results and the criteria proposed in the
conclusion were also confirmed during other analyses, which concerned the classification of
14 parameters of AE events, the observation of time–frequency spectra, and the study of the
microstructure of the material. According to the authors, the proposed research procedure
is the basis for the creation of simplified guidelines enabling the inspection of the condition
of cellulose–cement composites without the need to use specialised analysis software.

2. Materials and Methods

The tests were performed on elements cut out of full-size cellulose–cement panels.
Cuboidal samples of the dimensions of 300 × 50 × 8 m3 were cut out of stock panels of
the dimensions of 1.25 × 3.10 m2, 8 mm in thickness. The samples were cut parallel to the
length of the panels. A 50 mm marginal zone of the panels was omitted during preparatory
work. A view of the test stand is shown in Figure 1.

Following the tests, frequency values in the analysed time series for the tested elements
were monitored. In addition, changes of the loading force F in time were also observed.

On the basis of the completed preliminary tests, it was confirmed that cellulose–cement
panels demonstrated the mechanical parameters declared by the manufacturer. The chemi-
cal formula of the panels and the details of their technological process are patent-protected,
and any information referring to the specific components, their quantities and suppliers,
as well as any production details are very restricted. According to the manufacturer’s
declaration, the tested fibre-cement panels were made using basic components such as:
Portland cement CEM I 42.5N, cellulose fibres, or PVA synthetic fibres. The elements also
contained an additive in the form of lime powder. The manufacturing process of the panels
was based on Hatschek’s process. The scope of application of the panels was declared by
the manufacturer as indoor and outdoor. The average technical parameters declared by the
manufacturer of the panels are included in Table 1.

Table 1. The declared average technical parameters of the boards.

Density Dry state PN-EN 12467 ≥1.58 g/cm3

Flexural Strength Perpendicular PN-EN 12467 25.0 N/mm2

Flexural Strength In parallel PN-EN 12467 18.0 N/mm2

Modulus of Elasticity PN-EN 12467 12,000 N/mm2

Stretching with Humidity 30–95% 1.0 mm/m
Porosity 0–100% <18 %

The tests were performed on cellulose–cement panels operating in conditions of an
environmental and exceptional nature. The following research cases have been identified:

• air-dry condition;
• saturation with water for 1 h;
• saturation with water for 24 h;
• 25 bathing–drying cycles;
• 50 bathing–drying cycles;
• 10 freezing–unfreezing cycles;
• 25 freezing–unfreezing cycles;
• 50 freezing–unfreezing cycles;
• 100 freezing–unfreezing cycles;
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• direct contact with a flame for 2.5 min;
• direct contact with a flame for 5 min;
• direct contact with a flame for 7.5 min;
• direct contact with a flame for 10 min; and
• contact with the temperature of 230 ◦C for 3 h.
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Figure 1. Test stand diagram: (a) a photograph of one of the samples and (b) the load diagram. 
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Figure 1. Test stand diagram: (a) a photograph of one of the samples and (b) the load diagram.

Panels in the first case P1—the reference case—were stored in the conditions of con-
stant temperature and humidity (+23 ◦C, 60% humidity). This case was considered as
a benchmark.

Samples from series P2 ÷ P3 were submerged in water of room temperature (ap-
proximately 23 ◦C) for a period of 1 and 24 h, upon which they were subjected to wet
flexure tests.

Bathing and drying cycles (cases P4 ÷ P5) were performed by alternately submerging
the samples in water of an ambient temperature higher than 5 ◦C (approximately 23 ◦C) for
18 h and drying them in a ventilated drier at a temperature of 60 ◦C (±5 ◦C) and relative
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humidity lower than 20% for 6 h; the number of cycles depended on the research case (P4
—25 cycles; P5—50 cycles).

Cyclical freezing and unfreezing (cases P6 ÷ P9) was performed in a specific air-water
environment via alternate cooling (freezing) in a freezer, in a temperature of −20 ◦C (±2 ◦C)
for 2 h and this temperature was maintained for another hour, followed by subsequent
heating (unfreezing) in a water bath at a temperature of 20 ◦C (±2 ◦C) for two hours and
this temperature was maintained for another hour. During the cooling and heating cycles
(freezing and unfreezing), the samples were positioned in a manner that ensured free
circulation of the conductive medium (air in the freezer or water in the bath).

The baking of the fibre-cement panels took place in a laboratory oven (Kedndrolab,
Warsaw, Poland) at a temperature of 230 ◦C. The duration of the baking was 3 h, which led
to the total destruction of the fibres in the material.

The impact of fire is an exceptional factor that involves exposure to high temperatures
which occur in the case of events such as a building fire. The process of the destruction
of fibre-cement panels involved the direct application of a flame, resulting in the surface
temperature of the panel reaching approximately 400 ◦C for a time of 2.5 to 10 min, recorded
at 2.5-min intervals (cases P10 ÷ P13).

Table 2 presents a list of test cases of cellulose–cement composites with the adopted
sample designation.

Table 2. Table of research cases of cellulose–cement composites with the adopted sample designation.

Case No. Test Case Designation

1. Air-dry condition P1
2. Saturation with water for 1 h P2
3. Saturation with water for 24 h P3
4. 25 bathing–drying cycles P4
5. 50 bathing–drying cycles P5
6. 10 freezing–unfreezing cycles P6
7. 25 freezing–unfreezing cycles P7
8. 50 freezing–unfreezing cycles P8
9. 100 freezing–unfreezing cycles P9

10. Direct contact with a flame for 2.5 min P10
11. Direct contact with a flame for 5 min P11
12. Direct contact with a flame for 7.5 min P12
13. Direct contact with a flame for 10 min P13
14. Contact with the temperature of 230 ◦C for 3 h P14

Each research case included 10 samples. The static scheme and the dimensional
proportions of the samples were adopted in accordance with [48], product specification
and test methods.

Flexural tests of cement-fibre composites were performed using a Zwick Roell strength
testing machine with a loading range of 0 to 10 kN. When testing fibre-cement samples,
a constant increment in the crossbar movement was set at 0.1 mm/min. The spacing of
supports in the machine was 200 mm and the force was applied axially.

The measurements of the acoustic emission used two frequency sensors: VS30-SIC
(Vallen Systeme GmbH, Wolfratshausen, Germany) with flat characteristics in a range of
25–80 kHz, and VS150-RIC (Vallen Systeme GmbH, Wolfratshausen, Germany), with a
measuring range of 100–450 kHz and a peak frequency of 150 kHz, alongside a 28 V AE
signal preamplifier operating in three ranges: 20, 40, and 60 dB. In the preamplifier, the AE
signal from the sensor was amplified and transmitted to an AE processor, where preliminary
filtration was performed in order to eliminate the acoustic background originating from
the surroundings of the monitored element. Subsequently, the signal was transformed
into digital form. Further processing of the digital data was carried out using AE signal
analysing software: Vallen VisualAE and Vallen VisualClass.
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Sensors recording the signals were placed in close proximity to the supports. The
indicated locations of the sensors were selected in view of the relatively small dimensions
of the sample and to ensure repetitiveness of the provided results. In each measurement
case, the surface of the sensors was covered with silicone gel in order to achieve a better
coupling between these elements. Pilot tests confirmed the correctness of the registration
of the signals with the method of installation of the AE sensor as described above. As
a standard benchmark, the Hsu–Nielsen pencil test (fracturing of the lead core of a 2 H
pencil) was used to verify the correct operation of the sensors and the apparatus.

The application of the acoustic emission method during the three-point flexural test of
fibre-cement panels facilitated the evaluation of changes in the mechanical parameters of
these composites by associating the frequency of AE signals with the destructive processes
taking place in the material, which gradually proceeded during bending.

3. Results

During the three-point bending tests, various mechanisms of sample destruction were
observed. Elements in the air-dry state, soaked in water, subjected to cyclic bath-drying,
and cyclically frozen–thawed (research cases P1–P9) due to the presence of reinforcing
fibres deteriorated due to exceeding tensile stresses (damage was associated with a decrease
in loads without breaking the sample). In the case of samples set on fire and fired in the
furnace (cases P10–P14), a brittle mechanism of destruction was observed, specifically high
energy, sudden fracture, and breakage of the samples into two parts.

Following the completion of the tests, the frequency values of AE signals in the
analysed time series were monitored for the tested elements. In addition, the maximum
values of loading force F were analysed for each sample.

With regard to samples from research cases P1–P9 (Figures 2–10), the occurrence of
the highest frequencies with values up to 5 × 104–10 × 104 kHz was recorded at the time
of the sample-breaking. Before reaching the maximum stress, the frequencies in the range
of 10–870 kHz were recorded.

Figure 2. Graph of frequency distribution during the test for a representative sample from series P1:
(a) considering the entire occurring frequency range and (b) with details about the frequency range
before the moment of breakage.
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Figure 3. Graph of frequency distribution during the test for a representative sample from series P2:
(a) considering the entire occurring frequency range and (b) with details about the frequency range
before the moment of breakage.

Figure 4. Graph of frequency distribution during the test for a representative sample from series P3:
(a) considering the entire occurring frequency range and (b) with details about the frequency range
before the moment of breakage.
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Figure 6. Graph of frequency distribution during the test for a representative sample from series P5:
(a) considering the entire occurring frequency range and (b) with details about the frequency range
before the moment of breakage.

Figure 7. Graph of frequency distribution during the test for a representative sample from series P6:
(a) considering the entire occurring frequency range and (b) with details about the frequency range
before the moment of breakage.
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Figure 9. Graph of frequency distribution during the test for a representative sample from series P8:
(a) considering the entire occurring frequency range and (b) with details about the frequency range
before the moment of breakage.

Figure 10. Graph of frequency distribution during the test for a representative sample from series P9:
(a) considering the entire occurring frequency range and (b) with details about the frequency range
before the moment of breakage.

With regard to the exemplary sample from the research case P10 (Figure 11), the
occurrence of the highest frequencies with values up to 3 × 104 kHz was recorded at the
moment of the sample-breaking. Prior to reaching the maximum stress, frequencies mainly
in the 5–400 kHz range were recorded.
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With regard to the samples from test cases A11–P14 (Figures 12–15), the frequencies
did not exceed the value of 1 × 104 kHz in the entire analysed waveform. Prior to reaching
the maximum stresses, the frequencies mainly in the 5–190 kHz range were recorded.
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Figure 12. Graph of frequency distribution during the test for a representative sample from series
P11: (a) considering the entire occurring frequency range and (b) with details about the frequency
range before the moment of breakage.

Figure 13. Graph of frequency distribution during the test for a representative sample from series
P12: (a) considering the entire occurring frequency range and (b) with details about the frequency
range before the moment of breakage.
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Figure 15. Graph of frequency distribution during the test for a representative sample from series
P14: (a) considering the entire occurring frequency range and (b) with details about the frequency
range before the moment of breakage.

3.1. Frequencies Analysis Results
3.2. Statistical Analysis of the Obtained Results

A statistical analysis of the obtained test results was performed in order to verify the
usefulness of the analysis of the frequency of acoustic emission events for the purposes
of the assessment of the deterioration of the mechanical parameters of cellulose–cement
composites. During its first stage, this analysis involved a comparison of the results
obtained for samples from the individual test cases with respect to specific quantitative
variables. In the next step, the relationships between the indicated changes were examined
(the significance of correlations was checked), followed by the use of classification trees
utilising the CHAID algorithm to divide the results obtained for an analysed parameter
within a given group and to determine any significant changes of these parameters. In
order to confirm the possibility of using the frequencies accompanying changes in the
mechanical parameters of cellulose–cement composites in the analysis, group-classifying
data was used, with a subsequent performance of a test which compared the frequency
distribution in the resulting groups in relation to the mechanical parameters of the samples.

The analysis utilised the IBM SPSS Statistics 26 software. The value of 0.05 was
adopted as the significance level. The Shapiro–Wilk test was chosen for the analysis of
the normality of distributions, while Levene’s test was used to examine the homogeneity
of variances. Due to the absence of normal distribution for certain data and considering
the lack of homogeneity of variances in most cases, a group of non-parametric tests for
independent variables was used to mutually compare the average distributions, particularly
the Kruskal–Wallis test for multiple groups.

At first, appropriate tests were performed for all data in order to select suitable groups
of tests for the analysis of the data. The analysed groups were approximately equinumerous.
Therefore, normal distributions of data in the individual groups were analysed using the
Shapiro–Wilk test. In the case of most data, no reasons were found to reject the hypothesis
of the normal distribution; however, there were cases in which the data did not have a
normal distribution.

The absence of homogeneous variances was observed in most of the groups. Therefore,
in order to analyse the distributions, a decision was made to use the non-parametric
Kruskal–Wallis test for independent variables.

3.2.1. Kruskal–Wallis Test Results for Independent Samples: Average Frequency of AE
Events before Reaching Fmax

When analysing the graphic presentation of the Kruskal–Wallis test results for inde-
pendent samples, expressed by the average frequency of AE events before reaching Fmax
(Figure 16), we could observe that the maximum average frequency of signals was recorded
for elements of research case P1 (samples in an air-dry condition). Additionally, this case
had the widest dispersion of results. Research cases P11 (samples ignited for 5 min) and P13
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(samples ignited for 10 min) contained singular data which can be considered as statistical
outliers. The lowest values of the average frequency of AE events before reaching Fmax
were recorded for case P14 (the baked samples).

Figure 16. Graphic presentation of the Kruskal–Wallis test results for independent samples: average
frequency of AE events before reaching Fmax.

3.2.2. Kruskal–Wallis Test Results for Independent Samples of the Breaking Force Fmax

When analysing the graphic presentation of the Kruskal–Wallis test results for the
independent testing of the breaking force Fmax (Figure 17), we could observe that the maxi-
mum breaking force was recorded for elements from research case P5 (samples subjected
to bathing and drying in 50 cycles). Additionally, this case had the widest dispersion of
results. Research cases P11 (samples ignited for 5 min) and P12 (samples ignited for 7.5 min)
contained singular data which can be considered as statistical outliers. The lowest values
of breaking force Fmax were recorded for case P13 (samples ignited for 10 min).

Figure 17. Graphic presentation of the Kruskal–Wallis test results for independent samples of the
breaking force Fmax.

3.2.3. Classification Trees

Classification trees utilising the CHAID algorithm were used in order to check the
significance of the changes occurring in the parameters (frequency and breaking force).

1. Average frequency of AE events before reaching Fmax:
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Five groups were identified (Figure 18). With each consecutive group, there was a
significant reduction of the average frequency of AE events:

• Group 1, 2, 3, and 4;
• Group 5 and 6;
• Group 7, 8, and 9;
• Group 10 and 11; and
• Group 12, 13, and 14.
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2. Breaking force Fmax:
Five groups were identified (Figure 19). With each consecutive group, there was a

significant reduction of the Fmax breaking force:

• Group 1, 2, and 3;
• Group 4 and 6;
• Group 5, 7, 8, and 9;
• Group 10 and 11; and
• Group 12, 13, and 14.
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3.2.4. Kruskal–Wallis Test for Independent Samples: Average Frequency of AE Events
before Reaching Fmax and the Breaking Force Fmax

Data used for the formation of groups in terms of changes in mechanical parameters
obtained by means of classification trees was used to check the correlation of frequency
changes with changes in mechanical parameters. An appropriate test that compared fre-
quency distributions in these groups was selected: on each occasion, due to the absence of
a normal distribution of frequencies in the individual groups, the non-parametric Kruskal–
Wallis test was chosen. Mean values for each group were compared and, subsequently,
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confidence intervals were also assessed for the mean values (whether they overlapped each
other). The Bonferroni test was used as a post-hoc test.

Five groups were identified (Figure 20). With each consecutive group, there was a
significant reduction of the Fmax breaking force:

• Group 1: 1, 2, and 3;
• Group 2: 4 and 6;
• Group 3: 5, 7, 8, and 9;
• Group 4: 10 and 11; and
• Group 5: 12, 13, and 14.

Figure 20. Graphic presentation of the Kruskal–Wallis test for independent samples: average fre-
quency of AE events before reaching Fmax and the breaking force Fmax.

The absence of a normal distribution was observed for the data. Therefore, the non-
parametric Kruskal–Wallis test was chosen. At first, descriptive statistics were found
for the groups. The Kruskal–Wallis test statistics T = 327.370, p = 0.000, and thus the
frequencies in groups differed from each other in a statistically significant manner. The
post-hoc Bonferroni test was performed in the second phase. In each case, between any
two groups, the results differed from each other in a statistically significant manner. In
each subsequent group, the frequencies were significantly lower (Figure 20). Moreover, we
could observe that, although the frequency intervals overlappws each other (min/max),
confidence intervals for the mean value did not overlap each other.

4. Discussion

When analysing the graphs shown in Figures 2–15, we can observe that subjecting the
tested elements to two groups of operating conditions (environmental and exceptional) re-
sulted in significant differences in the emitted frequency ranges. Changes in the mechanical
parameters of samples operating in an air-dry condition, saturated with water, subjected
to cyclical baths and drying, as well as cyclically frozen and unfrozen during external
loading are associated with the emission of low-frequency signals of up to 200 kHz and
high-frequency signals of even up to 800 kHz. Most of the recorded frequencies exceeded
the 200 kHz threshold and certain events generated sounds at a level of 500–800 kHz. An
opposite situation occurred in the case of samples ignited for a time longer than 2.5 min or
baked. The flexure of elements subjected to the impact of temperature caused events with
considerably lower frequencies, only some of which exceeded a value of 100 kHz.

Based on the completed statistical analysis, it was demonstrated that some of the
operating conditions, namely cyclical freezing–unfreezing, igniting with a flame, and
baking at a temperature of 230 ◦C, which were applied to the cellulose–cement elements,
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have a significant effect on the change of the mechanical parameters. Conversely, the
reduction in the strength of the panels was strictly related to a change in the acoustic
characteristics registered during bending, in this case, identified with the average frequency
of events before reaching Fmax. The performed statistical analysis allowed the authors to
confirm the usefulness of the acoustic emission method in the assessment of changes in
mechanical parameters of fibre-cement composites.

5. Conclusions

Considering the results of the tests and the performed statistical analysis, as well as
the resultant preliminary conclusions indicating the usefulness of the acoustic emission
method for the assessment of changes in the mechanical parameters of cellulose–cement
composites, it was concluded that:

• an analysis of the frequency of AE events can be the basis for assessing the condition
of cement–cellulose boards;

• an analysis of the obtained measurement results using the acoustic emission method
enables the determination and assessment of the degree of changes in the mechanical
parameters under the influence of the operational factors of the tested cement–cellulose
boards;

• the intensity of changes taking place in the material and their impact on the strength
parameters can be illustrated by using three terms referring to the condition of
cement–cellulose elements, namely insignificant change, significant change, and
critical change;

• a non-significant change in the mechanical parameters is associated with the emis-
sion of events before reaching the maximum load, with an average frequency above
300 kHz, while a significant change in mechanical parameters is identified with the
average frequency of AE signals in the range of 200–300 kHz, and critical change in
mechanical parameters has an average AE signal frequency of less than 200 kHz; and

• insignificant change in mechanical parameters is associated with a reduction of the
bending strength by no more than 25% in relation to the reference panels, while a
significant change is a reduction in strength by more than 25% but less than 50%, and
the deterioration of strength properties by more than 50% is classified as a critical
change in mechanical parameters.

The limits of the proposed method relate primarily to the limitations of the acoustic
emission method itself. The main limitation is the ability to register only active processes
in the material that lead to the release of elastic energy. Another disadvantage is the
fact that the measurement enabling the frequency analysis to assess the condition of the
cellulose–cement composite is longer compared to other diagnostic methods, e.g., the
ultrasound method.

Further research, according to the authors, should concern the analysis of the frequency
of events emitted by cellulose–cement composites with different fibre contents, as well as
of the impact of UV radiation and an aggressive environment (related to the phenomenon
of acid rain) on the mechanical parameters and sounds generated by the material.
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