
Widespread cortical functional disconnection
in gliomas: an individual network mapping
approach
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Assessment of impaired/preserved cortical regions in brain tumours is typically performed via intraoperative direct brain stimulation
of eloquent areas or task-based functional MRI. One main limitation is that they overlook distal brain regions or networks that could
be functionally impaired by the tumour. This study aims (i) to investigate the impact of brain tumours on the cortical synchronization
of brain networks measured with resting-state functional magnetic resonance imaging (resting-state networks) both near the lesion
and remotely and (ii) to test whether potential changes in resting-state networks correlate with cognitive status. The sample included
24 glioma patients (mean age: 58.1+16.4 years) with different pathological staging. We developed a new method for single subject
localization of resting-state networks abnormalities. First, we derived the spatial pattern of the main resting-state networks by means
of the group-guided independent component analysis. This was informed by a high-resolution resting-state networks template derived
from an independent sample of healthy controls. Second, we developed a spatial similarity index to measure differences in network
topography and strength between healthy controls and individual brain tumour patients. Next, we investigated the spatial relationship
between altered networks and tumour location. Finally, multivariate analyses related cognitive scores across multiple cognitive do-
mains (attention, language, memory, decision making) with patterns of multi-network abnormality. We found that brain gliomas
cause broad alterations of resting-state networks topography that occurred mainly in structurally normal regions outside the tumour
and oedema region. Cortical regions near the tumour often showed normal synchronization. Finally, multi-network abnormalities
predicted attention deficits. Overall, we present a novel method for the functional localization of resting-state networks abnormalities
in individual glioma patients. These abnormalities partially explain cognitive disabilities and shall be carefully navigated during
surgery.
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Abbreviations: AUD= auditory network; CCN= cognitive control network; CON= cingulo-opercular network; CS= cosine
similarity; CV= coefficient of variation; DAN=dorsal attention network; DMN=default mode network; EPI= echo planar
imaging; FA=flip angle; fMRI= functional MRI; FOV=field of view; FPN= fronto-parietal network; FRN= frontal network;
GIFT=Group ICA of fMRI toolbox; HCs=healthy controls; IC= independent component; ICA= independent component
analysis; IPL= inferior parietal lobule; LANG= language network; MBAccFactor=multiband acceleration factor; NPS=
neuropsychological score; rs-fMRI= resting-state functional MRI; RSN= resting-state network; SMN= sensorimotor network;
T1w=T1-weighted image; TE= echo time; TM= tumour mask; TM+O= tumour and oedema area mask; TR= repetition
time; VIS= visual network.

Graphical Abstract

Introduction
Primary glioma tumours in adults represent a heterogeneous
group of expansive lesions of the central nervous system.1

Neurosurgical resection is the first-line therapeutic approach
to the treatment of brain tumours.2 Growing evidence sug-
gests that gross total resection, as compared with subtotal re-
section, leads to an improved patient overall survival and
progression-free survival both in case of high- and low-grade

tumours.3–5 Nevertheless, the benefits of a prolonged survival
must be balanced against the risks of significant decrements of
quality of life of both patient and caregivers due to permanent
neurological dysfunctions following extensive resections. In
this regard, the goal of the surgical planning is to preserve crit-
ical functional regions, or eloquent areas, and structural con-
nections while removing most of the tumour.2

The intraoperative direct brain stimulation during awake
surgery is the gold standard for functionalmapping of eloquent
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areas. However, this method requires specific instrumentation
and increases the risk of epileptic seizures during the surgery.6,7

In addition, functional MRI (fMRI) has proven to be a valid
non-invasive and highly sensitive alternative tool for localizing
distinct eloquent cortical and subcortical areas before surgery
in glioma.7 Task-based fMRI is widely used8 as a pre-surgical
mapping tool2 and potentially could play a role in monitoring
treatment and prognosis.7,9 Unfortunately, task-based fMRI is
demanding for the patient, it is heavily influenced by the pa-
tient’s performance, and it is not easy to implement in a stand-
ard clinical setting.7,8,10

Recent studies11–14 have proposed the use of resting-state
(rs-)fMRI as a reliable technique to overcome these limita-
tions proving its effectiveness in the mapping of eloquent
areas of motor15 and language2,16 functions. Published stud-
ies have restricted the analysis to mapping of eloquent func-
tions in the perilesional area or specific functional networks
such as the default mode network (DMN).13,17,18

Nevertheless, distal regions or networks could be also func-
tionally impacted by brain tumours18,19 through mechan-
isms of structural or functional disconnection. There have
been only a handful of studies addressing this issue.
Nenning et al.20 and Stoecklein et al.21 introduced two dif-
ferent indexes to quantify functional connectivity at the vox-
el level and have reported significant functional changes at a
distance from the tumour, as well as a significant correlation
between functional connection alterations and clinical vari-
ables such as patient’s cognitive status or tumour grade.

In the present study, we investigated the effect of gliomas
on the brain’s main functional networks measured with
rs-fMRI (resting-state networks, RSNs), both near and far
from the lesion. We were interested in examining if function-
al abnormalities involve predominantly the region near the
tumour, the oedema region or structurally normal tissue.
Patients often present to the hospital in the acute phase
with focal neurological deficits that improve with high-dose
steroid therapy. This may indicate a role of the oedema re-
gion in modulating function. In addition, we were interested
in examining if potential RSN abnormalities may be related
to pre-surgery neuropsychological status.

We developed a novel whole-brain approach, based on in-
dependent component analysis (ICA), to robustly detect im-
paired networks at the single-patient level. This approach
does not need a prior identification of specific regions of
interest such as in seed-based functional connectivity19,22

or in recent studies developing disconnections biomarkers
investigating the connectivity between the tumour area
and the rest of the brain.20,21 The approach is data-driven
and exploits the richness of the data by comparing inde-
pendent components (ICs) identified in individual patients
with template components defined in a separate group of
healthy subjects. Single-patient abnormalities in functional
connectivity are determined based on both topology and
strength of correlation as compared with healthy controls
(HCs). Individual maps can be used for neuro-navigation,
and multi-network abnormalities can be related to cognitive
status.

Materials and methods
Study cohort
Pre-surgical data of 24 patients (11 female, mean age 58.1+
16.4 years) with de novo brain tumours were collected at the
University Hospital of Padova. All participants have regular-
ly taken anticonvulsants for control of epilepsy and corticos-
teroids. The protocol had been approved by the local Ethics
Committee of the University Hospital of Padova and carried
out in accordance with the 1964 Helsinki declaration and its
later amendments. Informed consent was obtained from all
participants.

As HCs, we used a subset of the publicly available
MPI-LeipzigMind-Brain-Body data set.23 This data set com-
prises rs-fMRI scans on n= 318 subjects acquired on a 3 T
Siemens Magnetom Verio scanner with a T2*-weighted
gradient-echo echo planar imaging (EPI) sequence [repeti-
tion time (TR)= 1400 ms, echo time (TE)= 39.4 ms, flip an-
gle (FA)= 69°, field of view (FOV)= 202× 202 mm, voxel
size= 2.3 mm× 2.3 mm× 2.3 mm, volumes= 657, multi-
band acceleration factor (MBAccFactor)= 4, iPAT= 0,
phase encoding direction antero-posterior]. Ten HCs were
discarded due to scanner artefacts or data unavailability.
The final HC group consisted of 308 subjects (125 females;
mean age: 36.96+ 18.40 years).

MRI acquisition
Data were acquired on a 3 T Siemens Biograph mMR scan-
ner equipped with a 16-channel head–neck coil.
Anatomical imaging included T1-weighted (T1w) 3D
magnetization-prepared rapid acquisition gradient-echo
(TR= 2400 ms, TE= 3.24 ms, TI= 1000 ms, FA= 8°,
FOV= 256× 256 mm, voxel size= 1 mm× 1 mm× 1 mm)
images acquired both before and after contrast agent injec-
tion, a 3D T2-weighted image (TR= 3200 ms,
TE= 535 ms, FOV= 256× 256 mm, voxel size= 1 mm×
1 mm× 1 mm), a 3D fluid attenuation inversion recovery
(TR= 5000 ms, TE= 284 ms, TI= 1800 ms, FOV= 256×
256 mm, voxel size= 1 mm× 1 mm× 1 mm) image. In add-
ition, functional imaging comprised rs-fMRI EPI scans (TR
= 1260 ms, TE= 30 ms, FA= 68°, FOV= 204× 204 mm,
voxel size= 3 mm× 3 mm× 3 mm, volumes= 750,
MBAccFactor= 2, iPAT= 0, phase encoding direction
antero-posterior) and two spin echo-EPI acquisitions with
reverse phase encoding (TR= 4200 ms, TE= 70 ms,
FOV= 204× 204 mm, voxel size= 3 mm× 3 mm× 3 mm,
MBAccFactor= 1) for EPI distortion correction purposes.

Neuropsychological assessment
A neuropsychological battery was administered covering dif-
ferent cognitive domains. It included the Oxford Cognitive
Screen (OCS24) and the Esame Neuropsicologico Breve 2.25

For each subject, the raw scores were converted to
Z-scores according to standardized normative values.
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Next, the tests were divided into four domains based on the
measured cognitive domain: memory, language, executive
functions and attention (Supplementary Table 3). For each
subject, we obtained a global Z-score for each domain aver-
aging the Z-score of single tests assigned to that domain.
Positive scores indicate good performance.

Two patients failed to complete the entire battery of
neurological tests and thus were disregarded in the analysis
linking behaviour to RSN changes.

Tumour segmentation
The anatomical images of each patient were linearly regis-
tered to the patient naïve T1w image with the Advanced
Normalization Tools (ANTs,26 v. 2.0.1). Using these images,
twomasks were manually delineated through the ITK-SNAP
software (http://www.itksnap.org/) by an expert neurora-
diologist with more than 5 years of experience (M.A.). The
first mask, the tumour mask (TM), included the tumour
core (contrast agent enhancing and non-enhancing regions)
and the necrosis. The second mask, the tumour and oedema
areamask (TM+O), was created by adding the oedema area
to the TM.

MRI pre-processing
Imaging data of both patients and HCs underwent an analo-
gous structural and functional pre-processing. Data were
pre-processed with an in-house pipeline using the following
software: ANTs, Statistical Parametric Mapping 12
(SPM12, v. 7219) and FMRIB’s Software Library (FSL,
www.fmrib.ox.ac.uk/fsl, v. 6.0.3).

Structural pre-processing consisted of bias field correc-
tion (N4BiasFieldCorrection27), skull-stripping (Multi-
Atlas Skull Stripping28), tissue segmentation (into grey
and white matter and cortico-spinal fluid, with the unified
segmentation tool29 of SPM12) and diffeomorphic non-
linear registration (as implemented in ANTs SyN algo-
rithm) to the symmetric MNI 2009c atlas. In the patient
group, the last step was performed excluding the TM+
O30 area.

Functional pre-processing of rs-fMRI data included slice
timing, readout distortion (FSL’s TOPUP31) correction, af-
fine realignment of volumes to the central image of the acqui-
sition (FSL’s mcflirt32), a non-linear mapping to the
symmetric MNI152 atlas exploiting the subject-specific
T1w (via FSL’s boundary based registration33) and high
pass filtering (cut-off frequency: 0.008 Hz). Since the
MBfactor of the EPI acquisition sequence differed between
the patients and HCs data set, spurious variance related to
scanner artefacts was regressed out from the patients’ pre-
processed data using an ICA-based approach.34 Thus, the
ICs related to sequence MBfactor or broad head movement
artefacts were manually identified and regressed out from
the original pre-processed data.

Finally, to quantify the subject-specific head motion dur-
ing the scan, we computed the frame-wise displacement as
defined in Power et al.35 and compared it between the patient
population and controls cohort with theWilcoxon rank-sum
test to ensure that the two groups did not significantly differ
in terms of head motion.

Assessment of RSN alterations
RSNs were identified at the individual level by means of the
ICA and compared in terms of the spatial pattern and mag-
nitude with the control group. The workflow is depicted in
Fig. 1.

Functional pre-processed data were analysed with the
Group ICA of fMRI toolbox (GIFT)36 and custom codes
written in Matlab (MATLAB 2020b, The MathWorks,
Inc., Natick, MA, USA).

Since the ICA approach can pose issues of reproducibility
and correspondence between individual and controls net-
works or single-ICs,37,38 we exploited the group
information-guided ICA (GIG-ICA) back-reconstruction
framework38 as implemented in the GIFT toolbox to accur-
ately retrieve the single-subject (SS) RSNs spatial pattern.39

Recent work38,39 indicates that this approach leads to the
best correspondence of ICs across subjects and higher sensi-
tivity to group differences. In brief, this framework involves
exploiting the group information captured by standard ICA
at the group level as guidance to compute SS ICs using a

Figure 1 Analysis workflow. Pipeline followed to assess patients’ functional alterations.

4 | BRAIN COMMUNICATIONS 2022: Page 4 of 14 E. Silvestri et al.

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac082#supplementary-data
http://www.itksnap.org/
https://www.fmrib.ox.ac.uk/fsl


multi-objective optimization strategy. The analysis works in
two stages: first, group ICs (i.e. the template ICs) are ob-
tained using standard group ICA; second, the template ICs
are used as references (or spatial prior) in a new one-unit
ICA with spatial reference using a multi-objective optimiza-
tion solver (GIG-ICA). The GIG-ICA simultaneously opti-
mizes the independence of each subject-specific IC,
measured by negentropy, as well as the correspondence be-
tween each subject-specific IC and each template IC.40 This
minimization ensures that each IC in a patient or in a HC
is compared with the correct respective template IC (or nor-
mative component).

Accordingly, we first defined the high-resolution template
ICs in a cohort of HCs. According to a study by Du et al.,40

the GIG-ICA approach is not so sensitive to the model order
selection and performs well under the case of poor data qual-
ity (i.e. low signal-to-noise ratio, SNR) and quantity (less
time points); however, the accuracy in detecting the ICs is
positively related to the SNR (i.e. higher the SNR, better
the accuracy). Therefore, to limit the impact of mixing
data sets with different data quality and quantity, we identi-
fied the data set provided by Mendes et al.23,41 as control
data set. It was in fact acquired with similar characteristics
to our glioma data set (i.e. rs-fMRI acquisition sequence
with similar voxel size, TR and duration).

Since movement introduce artefacts that significantly im-
pact the estimation of functional connectivity in terms of
both connectivity matrices42 and ICs,37,43 we applied the
group-level spatial ICA to a subset of HC controls (n=
140) homogeneously selected in the available age ranges
(n= 35, range 20–30 years; n= 27, 30–40 years; n= 8,
40–50 years; n= 7, 50–60 years; n= 41, 60–70 years and
n= 22, 70–80 years) and with an average frame-wise dis-
placement35 (0.14+ 0.05 mm) comparable with that of the
patients (0.16+0.06 mm). The high model order decom-
position44 was performed by using the Infomax algorithm
and setting the number of ICs to 180. To confirm the stability
of the result, the ICA was repeated 10 times within the
ICASSO45 framework and a central solution was selected
using the modes of the component cluster. The goodness of
the final decomposition was evaluated with the cluster stabil-
ity/quality (Iq) index returned from ICASSO and compared
with literature reports.

Then, following,46 the group ICs were manually labelled
into artefactual (i.e. related to head motion, physiological
noise, MBfactor, and so on) or intrinsic connectivity net-
work, the components, by visually inspecting their spatial
maps and time courses power spectra.

Afterwards, components were grouped into 10 functional
networks (RSNs) according to their spatial pattern: visual
network (VIS), sensorimotor network (SMN), auditory net-
work (AUD), cingulo-opercular network (CON), dorsal at-
tention network (DAN), fronto-parietal network (FPN),
DMN, cognitive control network (CCN), frontal network
(FRN) and language network (LANG). Specifically, we first
binarized each component by applying a threshold to the
Z-score map of Z= 1 and then computed their normalized

spatial overlap with the networks depicted by two functional
atlases: the Yeo Atlas (seven networks),47 and the Gordon
Atlas,48 and assigned the component to the best matching
RSN (i.e., the network with the highest normalized spatial
overlap). In addition, RSN components with poor overlap
with the previous two atlases (normalized spatial overlap
lower than 50%) were localized using the database
NeuroSynth (https://www.neurosynth.org) using the peakac-
tivation position to find the best matching network. Finally,
for the LANG, we have referred to the spatial patterns re-
ported by both task-based49 and resting-state studies.50,51

It is important to highlight that this approach defines a
high number of components that are consistent across sub-
jects and are grouped according to known cortical parcella-
tion schemes. This high dimensionality that isolates several
subcomponents of each RSN allows for a finer match with
individual components in patients that may be abnormal in
terms of strength or topography.

Once defined the high-resolution template ICs, we used
the selected group-level components as spatial constraints
within the GIG-ICA back-reconstruction step to accurately
retrieve their spatial pattern at the individual level in both pa-
tients and all subjects belonging to the control group (n=
308). At the end, for each patient and HC, each back-
reconstructed component consisted of a spatial Z-score
map reflecting the network’s coherent activity across space.

To determine whether a patient’s component was im-
paired, we examined its topography and magnitude as com-
pared with the IC distribution in the HC group.

In theHCs, the spatial variability of the ICswasmeasuredby
quantifying the variability between individual and template
components in each healthy subject. For each component, the
similarity between the template and the SS IC is quantified
with the cosine similarity (CS) measure, computed as

CS(compi) =
Maptemplate(compi) ·MapSS(compi)

||Maptemplate(compi)|| · ||MapSS(compi)||
(1)

where compi is the ithcomponent andMap(RSNi) is the vector-
ization of the component’s spatial map. We choose this index
because it is sensitive to both the spatial pattern and themagni-
tude (i.e. connectivity strength) of the component. For each
component, we derived then the statistical description of the
CS distribution in the HC group (Fig. 1, last panel).

To note that, as we were interested in the peak activation
of each IC, both in controls and patients the CSwas not com-
puted at the whole-brain level but within a representative
mask of the component.

Since we were interested in the peak activation of each IC,
both in controls and patients, the CS was not computed at
the whole-brain level but within a representative mask of
the component. The component mask was obtained by
(i) thresholding the template IC at Z-score= 1, a very toler-
ant threshold that took into consideration possible spatial
shifts in the position of the IC due to distortions caused by
the tumour; (ii) filtering spurious voxels, i.e. only clusters
with at least 200 connected voxels were analysed. We also
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removed cerebellar voxels based on the Neuromorphometrics
Inc. atlas (http://www.neuromorphometrics.com/), as this
structure was not fully covered in all patients. Next, we vector-
ized the component spatial map to examine only voxels that
fell bothwithin the template and individual ICmask. To deter-
mine alterations of specific ICs in single patients, we computed
the CS between the two vectors as in equation (1) and ran a
permutation test to compare for each IC the CS of each patient
against the distribution of CS values in HCs.

ICs marked as abnormal, that is significantly different
from the HC CS distribution, were manually checked to en-
sure that they were not present outside of the mask used to
compute the CS. Given the threshold used, we did not ob-
serve any of 166 abnormal ICs (based on the CS method)
to be shifted by the tumour outside of the mask used for
the CS computation, but the use of this type of mask could
be a limitation in the application of the proposed method if
a manual check is not performed.

It was not possible to include the cerebellum in these ana-
lyses because in most subjects it fell outside the FOV of the rs
acquisition. Even subcortical areas were excluded as for
some patients they showed significant resting-state signal
dropout issues.

Overlap between tumour and altered
RSNs
We examinedwhether the tumour location or the extent of oe-
dema affected the component topography, by computing for
all patients the percentage overlap between the altered compo-
nents and (i) the TM, (ii) the oedema and (iii) the remaining
normal-appearing brain tissues. This computation was per-
formed both considering separately each component and
using a unique mask that included all altered components.

Since for some patients altered components may be partially
or completely missing, the overlap with the tumour was calcu-
lated using the expected map of the component, i.e. that ob-
tained through the group-level ICA. Hence, as shown in
Supplementary Fig. 1, after detecting the impaired compo-
nents, for eachpatientwewentback to the template ICs andex-
tracted for each altered component its expected maps (i.e. the
template component map). Then, we binarized these maps
using the same approach as described above for the component
mask definitions. Finally, we created the ‘expected’ patient-
altered RSNs mask as the union of the obtained binary maps.

The percentage normalizationwas computed using the ab-
normal mask extent as reference, as follows:

Overlap% = alteredRSNmask > tissuemask

alteredRSNmask
(2)

Statistical analysis
Altered RSNs
For each patient, each component that fell within the tem-
plate IC (see previously) was labelled as significantly altered

after a permutation test comparing the patient’s CS with the
HCs’ CS distribution. The number of permutations was 50
000 and the significance level was set to 0.05. As 140 of
the 308 controls were used to build the template ICs and
thus a higher CS with the template was expected for these
subjects, to minimize the impact of this group, in each per-
mutation we compared the CS distribution of 200 out of
308 HCs against the single-patient CS value. We employed
a threshold of three standard deviations as strength of evi-
dence against the null hypothesis that the patient’s CS be-
longed from the HC distribution.

Relationship between RSNs and neuropsychological
score
Finally, a multivariate analysis was conducted to test whether
a statistically significant relationship existed between compo-
nents changes and patients’ cognitive performance. With a
multiple linear regression analysis, we separately predicted
the aggregate score of each neuropsychological score (NPS)
domain from the components’ delta CS (ΔCSσ), which quan-
tified the distance of each patient’s single component from
the control group topography as follows:

DCSs(RSNi) = CSSS,RSNi − m(CSgroup,RSNi )
s(CSgroup,RSNi )

(3)

where μ and σwere, respectively, the sample mean and stand-
arddeviationof theCSof theHCgroup.Thefinal linearmodel
took as dependent variable the single NPS aggregate score and
as independent variables the ΔCSσ of each component. The
model fit was performed using the linear least square with
negative constraints estimator. The non-negativity constraint
was imposed for two reasons: the first is that we hypothesized
that the distance from the group topography of a component
should contribute positively to explain NPS impairment. The
second is that this approach intrinsically implements a feature
selection and thus avoids model overfitting ensuring that only
actually informativevariableswere included in thefinalmodel.

The goodness of model fit and estimates were assessed by
means, respectively, of the squared Pearson’s correlation
(R2) between the model prediction and the dependent vari-
able, the evaluation of the precision of the estimates as coeffi-
cient of variation (CV). Then, we considered only those
models that achieved an R2 of 0.5 and CVs of the estimates
lower than 200% as representative of significant relationship.

Data availability
The data that support the findings of this study are available
from the corresponding author, upon reasonable request.

Results
Study cohort
Patients main demographical and clinical information are
summarized in Table 1. A detailed description of the single-
patient characteristics is provided in Supplementary Table 1.

6 | BRAIN COMMUNICATIONS 2022: Page 6 of 14 E. Silvestri et al.

http://www.neuromorphometrics.com/
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac082#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac082#supplementary-data


Figure 2 shows the frequencymaps of the lesions in the pa-
tient population. The two reported maps refer to the TM
(Fig. 2A) and to the TM+O masks (Fig. 2B). The distribu-
tion is sparse with tumours involving predominantly the
right frontal and left temporal lobes, with a low spatial over-
lap (maximum value 20.8% of patients for the TM and
33.3% of patients for the TM+O).

No statistically significant differences were found between
the patients’ and HCs’ group in head motion during rs-fMRI
acquisition: the median frame-wise displacement was, re-
spectively, of 0.15+0.04 and 0.14+ 0.04; the rank-sum
test P= 0.16.

Neuropsychological assessment
The individual score tests were aggregated in four major cog-
nitive domains: language, attention, memory and executive
functions. Supplementary Table 3 reports normalized in
Z-scores and the aggregate score for each domain, whereas
Supplementary Fig. 4 shows the frequency distribution
across patients of the aggregate scores. Memory was the
most frequently impaired (9/22 patients with scores below
normal), followed by executive function deficits (8/22), lan-
guage (8/22) and attention (4/22).

Assessment of RSN alterations
Overall, 45 different ICs were identified. The obtained de-
composition was highly reliable and reproducible with a
cluster Iq of the selected components that ranged between
0.736 and 0.996 (in line with findings in a study by Saha
et al.52).

Each component was assigned to a specific RSN based on
the overlap with the Yeo Atlas (seven networks)47 and the
Gordon Atlas48 (VIS, SMN, AUD, CON, DAN, FPN and
DMN) or by mean of metanalyses provided by the
NeuroSynth database (CCN, FRN, LANG). Eventually, we
obtained 11 components in the VIS, four in the SMN, one
in the AUD, three in the CON, three in the DAN, four in
the FPN, six in the DMN, nine in the CCN, three in the
FRN and one in the LANG RSNs. The spatial pattern of the
different components is depicted in Supplementary Fig. 2.

In our patient cohort, several components revealed signifi-
cantly different topography to that observed in the HCs.
Figure 3 shows examples of how the tumour affects the
RSN spatial distribution in two patients suffering from
IDH1 mutated high-grade glioblastoma of the left hemi-
sphere. The first patient (#07) has a lesion in the white matter
of the left inferior parietal lobule (IPL). The DMN (117)
component is strongly altered with a ΔCSσ=−6.18. A rela-
tively normal left IPL cortical component overlying the le-
sion contrasts with the loss of the praecuneus, contralateral

Table 1 Patients’ demographics and clinical data

Age 58.1+ 16.4 years
Gender
Female 11
Male 13

Tumour histology
Astrocytoma 1
Diffuse astrocytoma 1
Glioblastoma 15
Gliosarcoma 1
Glioneuronal neoplasm 2
Oligodendroglioma 1
Other 3

Tumour grade
I 1
II 3
III 2
IV 17
n.a. 1

IDH1 mutation status
Wild-type 14
Mutated 6
n.a. 4

Tumour site
Left 14
Right 6
Bilateral 4

IDH, isocitrate dehydrogenase gene; n.a., not available.

Figure 2 Lesion frequency map across patients. (A) Frequency map of tumour core, (B) map of tumour lesions including oedema area.
Maps are over imposed to the MNI atlas (grey scale). Radiological convention.
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right IPL and ipsilateral left lateral and mesial frontal
components. This pattern is consistent with the discon-
nection of white matter pathways connecting the left
IPL with the other nodes of the DMN. The second patient
(#17) has a large lesion involving occipital, parietal and
temporal white matter with a cortical involvement. The
VIS(153) component in HCs is bilateral in the occipital
cortex and extends dorsally along the intraparietal sul-
cus. In the patient, we observe some preservation of the
ipsilateral occipital component but a loss of contralateral
occipital and bilateral parietal components (which leads
to a ΔCSσ of −5.55), again consistently with white matter
disconnection. The same patient also shows a significant
alteration of the LANG network (ΔCSσ= 4.09) with a
weakened superior temporal and frontal components of
the network.

These three examples highlight the effect of gliomas on the
correlated activity of cortical regions that are distant from
the site of the tumour but are functionally connected through
altered white matter pathways.

For each patient, we quantified the significant changes in
the network topography (Fig. 4). Overall, we detected in
each patient a relatively high number of altered compo-
nents ranging from 0 to 23 (mean value 6.9+ 5.2).
Aggregating these findings by RSNs and ranking them by
% of patients with at least one component affected, we
found that 70.8% of the patients had alterations in the
FPN, 70.8% in CCN, 62.5% in VIS, 41.7% in DMN,
41.6% in FRN, 29.2% in CON, 25% in DAN and 8.3%
in LANG network.

When averaging across patients, tumours caused alterations
in35.9%ofFPNcomponents, 21.7%ofFRN,17.4%ofCON,
17.4% of CCN, 15.4% of VIS, 11.6% of DAN, 10.1% of
DMN and 8.7% of LANG network. Interestingly, no altered
components occurred in the SMN and AUD network.

Although the relatively higher frequency of tumours in the
frontal lobe explains the abnormalities of RSN components
in FPN, CCN, CON, networks with a strong prefrontal re-
presentation, more surprising is the high frequency of abnor-
mal VIS component, given their location in the occipital lobe,
the least frequently involved structurally and farthest away
from the most common frontal and temporal locations.

It is also notable that in this group of glioma patients, en-
rolled for a neurosurgery, no functional abnormalities were
detected in the SMN and very few in the LANG network.
This might reflect a selection bias towards lesions that are
‘safer’ to operate when they do not cause motor or language
impairments after surgery.

Overlap between tumour and altered
RSNs
The single component percentage overlap is shown in
Supplementary Fig. 3. Overall, we found an overlap with
the TM mask ranging between 0 and 22.1%, oedema be-
tween 0 and 11.0% and with normal tissue between 74.1
and 100%. Overall, the VIS, DAN and LANG network
show the least overlapwith the TMwith amaximum overlap
of 6.3, 2.4 and 4.3%, respectively.

To quantify the impact of tumour at the level of individ-
ual subject, Supplementary Table 2 reports the results of
the overlap with tumour tissue (TM, oedema, normal tis-
sue) patient by patient. The mean percentage overlap was
quite small with both TM (2.6%+ 2.3%) and oedema
(1.0%+ 1.5%). The range of overlap was also quite small:
TM (0–8.2%) and oedema (0–4.9%). Most of the network
alterations involved normally appearing tissue with a
mean overlap of 96.3% (+2.7%) and in the range of
91–100%.

Figure 3 Example of altered RSNs in two representative patients. The patients were affected by IDH1mutated high-grade glioblastomas
in the left hemisphere. Structural image: fluid attenuation inversion recovery image with superimposed the segmentation of the tumour and
oedema (light blue). Group RSN: T1w MNI atlas with RSN HCs group average component (red-yellow scale). Patient RSN: patient individual
altered component. Left panel: DMN component [DMN(117)] in Patient #07. Right panel: VIS(153) and LANG(122) component in Patient #17.
ΔCSσ= delta CS, i.e. distance from the group average. Radiological convention.
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These findings suggest that network alterations involve re-
gions near the tumour or within the oedema in a limited way
but more robustly distant functionally connected regions.

To examine this issue, we measured spatial pattern alter-
ation of each component (quantified by the ΔCSσ) and the
overlap between these components and TM. There was a
weak negative statistically significant Spearman correlation
between altered components ΔCSσ and the overlap with the
TM mask (ρ=−0.18, P= 0.04) and no statistically signifi-
cant correlation with the overlap with the oedema area
(ρ=−0.04, P. 0.05). These findings indicate that RSN
components were not altered in relation to the proximity
with the tumour or overlap with the oedema.

Relationship between RSNs andNPSs
Results of multiple regression analyses run on the neuro-
psychological pre-surgery scores are shown in Figs 5 and 6.
The non-negative least square model fitting approach leaded
to a considerable model sparsification: in fact, only 7 of 45
RSN components were selected to separately predict
LANG, attention and memory aggregate scores and 9 of
45 RSN components for the executive functions aggregate
score. Figure 5 shows the relationship between the patient’s
ΔCSσ of the selected RSNs and the NPS aggregate score. In
general, the correlation was weak with a significant
Pearson’s correlation coefficient (P, 0.05, uncorrected)

Figure 4 Altered RSNs.On the left, the matrix reports significant alterations, marked as black squares. Rows represent specific independent
components (Comps) organized by networks they belong to and columns represent single patients. On the right, for each component, the bar plot
shows the percentage of patients with that component damaged. VIS, visual network; SMN, sensorimotor network; AUD, auditory network;
CON, cingulo-opercular network; DAN, dorsal attention network; FPN, fronto-parietal network; DMN, default mode network; CCN, cognitive
control network; FRN, frontal network; LANG, language network.
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only between the attention aggregate score and the ΔCSσ of
VIS(153) (R= 0.60, P= 0.003), of DAN(77) (R= 0.43,
P= 0.04) and of DMN(33) (R= 0.47, P= 0.03).

The multiple regression analysis (Fig. 6) also yielded poor
description of the dependent variable. For all NPS domains,
the relation between prediction and dependent variable was
low with R2, 0.25 except for the attention aggregate score
for which the R2 was 0.64 (P, 10−11). A similar result
was reached for the precision of the estimates: the obtained
CVs were, on average, equal to 237.8% (range: 55.3–
774.7%) for language prediction model, 69.2% (range:
21.7–192.1) for the attention model, 239.8% (range: 33.3–
578.6%) for the memory model and 441.6% (range:
104.2–1499.5%) for the executive model. According to

these findings, the only reliable model for NPS aggregate
score prediction was the one developed for predicting the at-
tention performances.

Thus, a statistically significant relationship between the
changes in networks topography and NPS performances is
supported only for the attention domain. Interestingly, the
components whose alterations contribute to this model be-
longing to networks such as VIS, DAN and DMN that are
strongly associated with attention functions.53

Demographical variable such as age and education can in-
fluence the NPS aggregate score and potentially affect the re-
lationship with RSN alterations. Hence, we performed a
multivariate analysis with non-negative sparsity constraints
that also included age and education as possible predictors

Figure 5 Relationship between changes in component’s spatial pattern and neuropsychological aggregate scores. The matrix
reports the correlation between component’s delta CS −ΔCSσ (on the rows, with group spatial pattern of the component on the left) and NPS
aggregate scores (on the columns) for the components selected with the multivariate analysis for at least one functional domain. In grey scale, only
the correlation values obtained for predictors included in the linear model are reported (Lang, language; Att, attention; Mem, memory; ExFunc,
executive function).
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(independent variables). Supplementary Fig. 5 confirms that
the attention domain remains the only explained by RSN
changes and that age and education do not play a significant
role.

Discussion
The pre-surgical acquisition of task and rs-fMRI is a viable
and informative tool to support surgical planning and inves-
tigate the effects of brain tumour on human brain. Most
studies to-date have focused on the functional mapping of
eloquent areas such as sensory-motor areas14,15 and LANG
network areas16,54 or limited the investigation to the perile-
sional region.2,7 Nevertheless, preliminary findings sug-
gested that brain tumour affect broader systems such as
brain networks9,18 and proposed the lesion-network55,56

symptom mapping as an approach to get relevant insight
on the impact of these expansive lesions.

Here, we propose a novel method to quantify changes in
topography and strength of the RSNs across the whole brain
after a high-resolution spatial decomposition based on a HC
template. A whole-brain approach of rs-fMRI data allows us
to better exploit the richness of the data and yields a detailed
description of functional network alterations at the level of
individual patients both in the perilesional and in distal

regions. This is highly valuable for clinical evaluation. The
method was applied to a cohort of tumour patients with het-
erogeneous tumour location and histopathology.

The most important result is the discovery that a large
fraction of the functional connections of the brain are altered
in brain tumours. No matter how we aggregate the results,
the effect is important. Out of 45 RSN components identified
in HCs a mean of 7+ 5 components were altered. When we
aggregate by percentage of patients with affected RSNs, the
range across RSNs varies with 71% of the patients showing
alteration of the FPN to 8% with alterations of the LANG
network. When we average across patients and look at %
of altered components in each RSN the range varies from
36% of the components in the FPN to 9% in the LANG
network.

Notably, we see no alterations in the SMN and AUD net-
work and very infrequent alterations in the LANG network.
The relative predominance of networks with a frontal com-
ponent (FPN, CON, CCN) is explained by the higher fre-
quency of frontal tumours. The paucity of altered
networks in eloquent regions (SMN, AUD, LANG) is due
to a sample bias. All our patients underwent surgery and
were selected not to suffer postoperative neurological deficits
of these functions. In fact, Fig. 2 shows no tumour with a lo-
calization in the motor cortex and very few with a localiza-
tion near Broca area.

Figure 6Neuropsychological aggregate scoresmodel predictions. The four boxes show themeasured aggregate scores (black dots) and
the linear prediction of the four tested neuropsychological functional domains.

Cortical functional disconnection in gliomas BRAIN COMMUNICATIONS 2022: Page 11 of 14 | 11

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac082#supplementary-data


However, it is important to highlight, this is the second re-
sult, that functional network abnormalities did not fall only
in the region of structural damage or even within the much
larger oedema region. This can be appreciated in Fig. 3where
individual RSN components near the lesion are partially pre-
served, whereas those at a distance are affected. It is also evi-
dent in Supplementary Table 2 with a mean overlap between
RSN alterations and tumour core/necrosis of 2.6+ 2.3%
(range: 0–8.2%) and with oedema of 1.0+ 1.5% (range:
0–4.9%). About 96.3% of RSN alterations fall within nor-
mally appearing structural tissue.

This finding has two very important clinical implications.
First, the consistent sparing of RSN component in the cortex
overlying the tumour has implications for the surgical ap-
proach. Although a straight perpendicular approach may
be the shortest path to the subcortical white matter lesion,
this approach will hit functional synchronized cortex.
More, parallel navigation to subcortical lesions has been
proposed using tractography (e.g. by Essayed et al.57), but
our SS fMRI mapping provides a relatively easier way that
uses a less operator dependent method.

Second, patients with brain tumours most often present to
the clinician because of new onset neurological deficits. A
scan typically shows the primary lesion and perilesional
white matter oedema. Steroid therapy is started to decrease
the extracellular oedema caused by the tumour and patients’
symptoms typically improve. In addition, anticonvulsants
for control of epilepsy are also administered. Neurological
symptoms are thought to improve due to the local resolution
of the oedema. However, our results clearly show that an-
other explanation for the neurological symptoms is the re-
mote dysfunction of functional brain networks in
structurally normal areas. Our patients at the time of scan
had received already several days of high-dose steroid ther-
apy, and we can only speculate if the effects on the RSN
and relative overlap with oedema were enhanced or mini-
mized by the therapy. The likely mechanism of remote func-
tional dysfunction is the disconnection, either structural or
functional, caused by the lesion on white matter pathways
connecting different nodes of a network. This is evident in
Fig. 3, where the affected DMN shows a normal component
in the IPL cortex overlying the lesion but no synchronization
was observed in anatomically connected regions of the prae-
cuneus, contralateral IPL and frontal cortex. Since gliomas
invade along preferential routes, such as those along white
matter tracts and in the perineuronal and perivascular
spaces,58 we can speculate that the lack of distant synchron-
ization reflects a combination of structural and functional ef-
fects on white matter pathways. For example, it is now
increasingly recognized that neuronal activity robustly regu-
lates central nervous system glial precursor proliferation as
part of a process known as myelin plasticity and that gliomas
interact with neurons potentially altering neuronal activ-
ity.59 Our results are in line with previous studies on the
long-distance effect of brain tumours on functional connect-
ivity. De Baene et al.60 using graph theory highlighted that
the functional connectivity of the contralesional hemisphere

is affected by tumours and that these changes are related to
performance of attention and cognitive flexibility tasks.
Nenning et al.20 have reported that unilateral glioblastomas
alter inter-hemispherical functional connectivity and that
these alterations relate to the proximity of the RSN to the tu-
mour, not strictly its anatomical distance. More recently,
Stoecklein et al.21 developed a global functional index based
on voxel-wise functional connectivity to quantify altered
connectivity locally at the individual level. They showed ab-
normalities in structurally normal tissue both in the lesioned
and normal hemisphere, especially in high-grade tumours.

We found that RSN alterations showed some relationship
with neuropsychological deficits, especially visuospatial at-
tention in line with Nenning et al.20 and that DMN altera-
tions were strongly linked to cognitive dysfunction, as
previously reported by Kocher et al.61 and Stoecklein
et al.21 We think that the low prediction power in this study
for other functional domains can be imputed to the low num-
ber of subjects. Previous studies in patients with brain tu-
mour have reported functional network characteristics
associated with cognitive functioning (see the studies by
Ghinda et al.,2 Fox et al.9 and Hacker et al.18 for a review),
but the analyses were restricted to specific RSNs or overall
network graph properties17,20,60 making the statistics
simpler.

Despite promising results, this study has some limitations.
The relatively small number of subjects prevents sensitive be-
havioural correlations. The genetic profile of the tumours
that certainly have an impact on prognosis and likely brain
organization was not considered given the small sample
size. The heterogeneity of the topography of the lesions
that could not be quantitatively compared with the RSN al-
tered topography. The uncomplete full coverage of the
resting-state acquisition prevented us to study also these con-
nections that have been mainly related in recent studies to
language dysfunctions in glioma patients.54,62,63

In summary, in this study, we developed a novel method to
investigate the changes in RSNs in glioma patients. We
showed that functional alterations in network topography
and strength are widespread and occur far from the lesion
or the oedema, with cortical regions near the glioma that
are potentially preserved. Our individualized approach
could identify cortical regions to be carefully navigated dur-
ing surgery, and widespread alterations of functional net-
works are away from the tumour that contribute to
cognitive disability.
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