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Background: CTG remains the only non-invasive tool available to the maternity team for
continuous monitoring of fetal well-being during labour. Despite widespread use and
investment in staff training, difficulty with CTG interpretation continues to be identified as a
problem in cases of fetal hypoxia, which often results in permanent brain injury. Given the
recent advances in AI, it is hoped that its application to CTG will offer a better, less
subjective and more reliable method of CTG interpretation.

Objectives: This mini-review examines the literature and discusses the impediments to
the success of AI application to CTG thus far. Prior randomised control trials (RCTs) of CTG
decision support systems are reviewed from technical and clinical perspectives. A
selection of novel engineering approaches, not yet validated in RCTs, are also
reviewed. The review presents the key challenges that need to be addressed in order
to develop a robust AI tool to identify fetal distress in a timely manner so that appropriate
intervention can be made.

Results: The decision support systems used in three RCTs were reviewed, summarising
the algorithms, the outcomes of the trials and the limitations. Preliminary work suggests
that the inclusion of clinical data can improve the performance of AI-assisted CTG.
Combined with newer approaches to the classification of traces, this offers promise for
rewarding future development.

Keywords: cardiotocography (CTG), fetal heart rate (FHR), hypoxic ischaemic encephalopathy (HIE), labour,
pregnancy, fetal hypoxia, artificial intelligence, machine learning

1 INTRODUCTION

Ensuring the safe passage of a baby through the birth canal remains a major challenge globally.
Despite improvements in stillbirth and neonatal mortality rates, intrapartum-related hypoxia (“birth
asphyxia”) is estimated to contribute to almost a quarter of the world’s annual 3 million neonatal
deaths and almost a half of the 2.6 million third trimester stillbirths (Lee et al., 2013). The WHO
estimated in 2005 that as many as 1 million survivors of birth asphyxia may develop cerebral palsy,
learning difficulties or other disabilities each year. In England, the 2019/20 annual report of NHS
Resolution (NHSR), the body that oversees clinical negligence claims, stated that £2.3 billion was
spent on clinical negligence payments, of which 50% went on settling obstetric claims (which
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represented just 9% of the total claims made). NHSR estimated
that for every baby born in England £1100 was paid in indemnity
costs (NHS Resolution, 2019).

Currently, the only non-invasive way of assessing the fetus in
labour is by monitoring fetal heartrate. Cardiotocography (CTG)
is a technique that measures changes in fetal heart rate (FHR) and
relates it to uterine contractions (UC) in order to identify babies
who are becoming short of oxygen (hypoxic). CTG monitoring
was introduced in the 1960s despite the absence of RCTs. Since
then, a Cochrane review of 13 trials involving 37,000 women has
shown that continuous CTG monitoring compared to
intermittent auscultation was associated with a 50% reduction
in neonatal seizures (Alfirevic et al., 2017). The review was
dominated by the large Dublin trial which enrolled 12,964
women in 1981–1983 (MacDonald et al., 1985). This trial
showed no difference in neonatal mortality or cerebral palsy
rates. Many guidelines and textbooks on CTG interpretation have
been published over the years, the most recent being the NICE
intrapartum care guideline of 2014, updated in 2017 (National
Institute for Health and Care Excellence (NICE), 2017). CTG
interpretation is heavily dependent on pattern recognition, in
particular the FHR response to UCs. Abnormal patterns, such as
“late” decelerations, can indicate fetal hypoxia, but the CTG is an
overly sensitive test; 60% of babies born after their CTG showed
such changes were not acidotic (Beard and Finnegan, 1974). CTG
interpretation has low inter- and intra-observer agreement rates,
and even experts can differ in their interpretation of the
same CTG.

The potential of CTG monitoring has not been realised in
spite of major efforts aimed at training staff. NHSR has
conducted several reviews (10 years of maternity claims
(NHS Resolution, 2018) and 5 years of cerebral palsy claims
(NHS Resolution, 2017). Errors with the interpretation of FHR
monitoring was the most common theme and were often
related to systemic and human factors. Uninterpretable
CTGs were also common, with a wait and see approach
being taken when there was possible loss of contact. The
Royal College of Obstetricians & Gynaecologists (RCOG)
“Each Baby Counts” report reached the same conclusion
(Royal College of Obstetricians and Gynaecologists, 2020).
The latest NHSR review recommended that CTG
interpretation should not occur in isolation, but as part of a
holistic assessment.

With artificial intelligence (AI), we can now take a fresh,
unbiased look at the CTG. Previous attempts at using AI analysis
of CTG have not proved successful. Most aimed to mimic human
methods of analysis (e.g. recognition of FHR baseline, FHR
variability and decelerations). However, modern computer
systems using more advanced machine learning methods can
include wide ranging analysis. AI systems are available 24/7, and
are not affected by human factors such as fatigue, distraction,
bias, poor communication, cognitive overload, or fear of doing
harm. All of these were identified as limiting factors by the RCOG
“Each Baby Counts” reports. Better ways of using and
interpreting the CTG have the potential to reduce death and
disability, and to prevent significant litigation costs.

2 REVIEW OF PRIOR ART IN AI FOR CTG

2.1 Algorithms Used in Randomised Control
Trials
Recent systematic reviews of AI for CTG concluded that prior
studies did not manage to improve rates of neonatal acidosis,
seizures, death, unnecessary interventions or ICU admissions
(Campanile et al., 2018; Balayla and Shrem, 2019; Garcia-
Canadilla et al., 2020). One study found that inter-rater
reliability between humans and AI was moderate but that AI
models that mimic human interpretation is akin to adding a
“second evaluator with similar instructions” (Balayla and Shrem,
2019). This suggests that for decision support to be effective, it
should add value through features that are not obvious to the
human. The three RCTs included in the review paper, which are
the only trials that compare human and AI CTG interpretation,
are revisited below. The three systems used hand-crafted features
that generally aimed to replicate the International Federation of
Gynecology and Obstetrics (FIGO) guidelines (Ayres-de-Campos
et al., 2015).

The INFANT (Intelligent Fetal AssessmeNT) system was
developed over 20 years ago to extract and quantifies the
following FHR features: signal quality, baseline, variability,
accelerations, decelerations and their timing in relation to
contractions. These are the features that are typically
interpreted by the human in current clinical practice. The
INFANT system extracts these features using numerical
algorithms and artificial neural networks (Keith and Greene,
1994). Relevant clinical information, including cervical
dilation, analgesia, fetal blood sampling and risk factors (intra-
uterine growth restriction, placenta abruption and meconium)
are also considered in the AI model. The system uses over 400
rules to interpret the data and provide decision support. It does
not provide any recommendations for actions that should be
taken in response to detected FHR abnormalities (Keith and
Greene, 1994).

A multicentre RCT of this system on 47,000 patients was
completed in 2017, which found that the decision-support
software did not improve clinical outcomes, despite its
effectiveness in correctly detecting FHR abnormalities
(Brocklehurst et al., 2017). The hypotheses that substandard
care was due to failure to identify non-reassuring CTG and
that a decision-support system would reduce unnecessary
interventions were not supported. The study suggests that
substandard care was due to management decisions after
identifying CTG abnormalities. The decision-support system
used in the trial did not include clinical information
pertaining to the labour (i.e. labour duration and progress).
Including this information in the decision support system may
have improved decisions to escalate.

Omniview-SisPorto 3.5 provides alerts based on computer
analysis of CTG. It classifies CTG into four classes (reassuring,
non-reassuring, very non-reassuring and pre-terminal) based on
FIGO guidelines (Ayres-de-Campos et al., 2015), including
definitions of late/prolonged/repetitive decelerations, reduced
variability and baseline variation (Ayres-de-Campos et al.,
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2008). Their preliminary results showed that the agreement
percentage between human and computer classification of
contractions, accelerations and decelerations was 87, 71 and
68%, respectively (Costa et al., 2010). An RCT of the system
on 7,320 patients was recently conducted (Nunes et al., 2017).
The study concluded that while very low rates of acidosis were
observed, the reduction in the rates of acidosis and obstetric
interventions between the two arms of the study were not
statistically significant.

A smaller RCT was conducted on a quantitative
cardiotocography (qCTG) decision-support system, which
enrolled 720 patients (Ignatov and Lutomski, 2016). The
qCTG system computes features based on three domains:
FHR, FHR micro-fluctuations, and decelerations. The features
derived from FHRmicro-fluctuations are the extrema per minute,
the mean beat-to-beat variability per minute, and the oscillation
amplitudes. A score of 0–6 is calculated for each domain and
summed, giving an overall score of 0–18. The primary outcomes
of the trial were hypoxia, acidemia, caesarean section and forceps
extraction. Secondary outcomes were 5-minute Apgar, neonatal
seizures and NICU admission. Reduced risks were observed for
all outcomes in the interventional arm compared to the control
arm. However, due to the small sample size of this study, a larger
RCT is required to validate these findings.

2.2 Alternative Approaches
The aforementioned RCTs used computer-based algorithms that
were largely based on features defined by the thresholds for
baseline, variability and decelerations in the FIGO guidelines.
Alternative approaches have been investigated which provide AI-
based CTG interpretation in a manner that applies feature
engineering theory from other domains that may complement
existing human interpretation. While such systems have not yet
been validated in RCTs, preliminary results are promising.

A control theory approach has been proposed to model the
dynamic relationship between FHR and UC as an impulse response
function (IRF) (Warrick et al., 2009). Pairing FHR and UC as an
input-output system is clinically relevant, as decelerations are
classified in response to the contractions. Early decelerations
coincide with contractions, and do not indicate fetal hypoxia or
acidosis. Late decelerations occur more than 20 s after a contraction
and are indicative of hypoxia. Prolonged decelerations spanmultiple
contractions and are indicative of hypoxia (Ayres-de-Campos et al.,
2015). This method showed that IRFs in pathological cases resulted
in longer delays between contractions and corresponding
decelerations. IRF, FHR baseline and FHR variability were used
as input features to a support vector machine (SVM) to classify
normal and pathological CTGs. The training dataset consisted of 189
normal outcome cases and 31 pathological outcome cases. Their
definition of a pathological case was death, or evidence of hypoxic
ischemic encephalopathy (HIE), or a base deficit of more than
12mmol per litre (mmol/L) meaning an acidic pH. The SVM
correctly detected 50% of pathological cases with a false positive
rate of 7.5% (Warrick et al., 2009).

A method using phase-rectified signal averaging to compute
the mean decelerative capacity (DC) of FHR has been proposed
(Georgieva et al., 2014). DC was compared to short-term

variability (STV), which is considered a strong indicator of pH
and has been used in previous studies. The results showed that
DC predicted acidemia with 0.665 Area under the Curve (AUC).
By comparison, STV achieved 0.606 AUC. Correlation between
DC and STV was low, indicating that both may be used in
multivariate analysis for improved prediction.

The FHR frequency content can be segmented in to low-
frequency (0.04–0.15 Hz), mid-frequency (0.15–0.5 Hz) and
high-frequency (0.5–1.0 Hz) bands. These bands correspond to
sympathetic activity, fetal movement, and fetal breathing,
respectively. The spectral densities and ratios between bands
have been previously used to classify normal and pathological
CTGs (Signorini et al., 2003; Spilka et al., 2013; Zhao et al., 2018).
Fractal analysis and the Hurst parameter have been shown to be a
robust alternative to using arbitrarily defined frequency bands,
and predicted fetal acidosis with an AUC of 0.87 (Doret et al.,
2015).

CTG is a very dynamic signal and the evolution of the CTG
toward delivery is significant. An approach described in (Dash
et al., 2014) segments the full CTG record into much shorter
segments, extracts features and thus represents each full CTG
record as a sequence of feature values, which are used as input to a
Bayesian classifier. This method achieved a true negative rate
(TNR) and true positive rate (TPR) of 0.817 and 0.609,
respectively, outperforming SVM models trained on the same
dataset.

The aforementioned methods use traditional machine
learning, which requires a feature extraction and selection
stage before classification. Deep learning is a subset of
machine learning, which uses a layered structure of
calculations known as neural networks on unstructured data,
whereby feature extraction and classification is performed in an
optimised end-to-end routine, as depicted in Figure 1 (Garcia-
Canadilla et al., 2020). While deep learning approaches require a
relatively larger dataset, it offers the ability to learn complex
features from the raw data, which may not be obvious to human
experts. Deep Neural Networks (DNNs) were shown to
outperform conventional machine learning algorithms, such as
SVM and K-Means Clustering, for CTG classification on a
database containing 162 normal cases and 162 abnormal cases
(defined as pH < 7.20 and/or Apgar at 1 min <7) (Ogasawara
et al., 2021). A multi-modal convolutional neural network
(MCNN) architecture trained on over 35,000 patients was
recently published (Petroziello et al., 2019). The MCNN takes
input from the UC, FHR and signal quality measures. Its
performance was assessed by measuring the percentage of
interventions that were false positives and true positives. A
retrospective analysis showed that current clinical practice
resulted in a 15% false positive rate (FPR) and a 31% true
positive rate (TPR), while the MCNN achieved a 14% FPR
and a 50% TPR.

The RCT of the INFANT system concluded that including
additional clinical information pertaining to labour could
improve outcomes (Brocklehurst et al., 2017). Clinical
information including maternal age, prior obstetric outcomes,
thick meconium and uterine rupture were shown to be
independent risk factors of severe neonatal acidosis
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(Maisonneuve et al., 2011). Similarly, results have shown that
data-driven systems that use clinical risk factors result in
improved classifier performance (Georgieva et al., 2017).

Table 1 summarises the above studies based on method,
inputs, target, dataset size, and findings.

3 CHALLENGES IN AI FOR CTG

3.1 Case Definition and Class Imbalance
CTG provides information on how the fetus is coping during
labour, with the aim of allowing clinicians to detect non-
reassuring fetal status so that adverse outcomes can be avoided
through intervention. However, non-reassuring fetal status can
result in a spectrum of outcomes, from a wholly unaffected fetus
(due to a false positive CTG) to death (Gravett et al., 2016).
Therefore, the question arises as to how a “control” patient versus
a “pathological case” patient should be labelled in a machine
learning architecture.

The incidence rate of HIE is 1-3 per 1,000 in high income
countries (Kurinczuk et al., 2010). HIE is the primary condition
that a CTG classifier should be trying to predict so that clinicians
can intervene and prevent adverse outcome. However, this results
in a significant class imbalance between normal and HIE classes,
which leads to challenges from amachine learning perspective. At
the higher range of 3 per 1,000, it would require over 30,000
deliveries to obtain a database with 100 HIE cases. Minority class
oversampling techniques, such as Synthetic Minority
Oversampling Technique (SMOTE), have been successfully

used in CTG classification studies to introduce synthetic
examples in the feature space (Spilka et al., 2013) (Hoodbhoy
et al., 2019). However, a sufficient number of genuine cases are
still required to use such techniques to synthesize examples.
Similarly, weighted errors for misclassifying an example from
the minority class has been used to rectify the class imbalance
problem (Petroziello et al., 2019).

Due to the difficulty of acquiring a database with
comprehensive NICU records and HIE diagnoses, proxy
metrics are often used to label classes. There are many proxies
for HIE, both objective (pH, base deficit, lactate, and transfer to
NICU) and subjective (Apgar scores), with varying degrees of
correlation to HIE. Metrics such as pH are generally used as
indicators of poor outcome (Malin et al., 2010). However, there is
literature that shows ambiguity in the correlation between pH and
outcome (Yeh et al., 2012). Quite often, only the umbilical venous
pH is measured or recorded, whereas the arterial pH can be
significantly lower than the venous pH in babies exposed to a
period of acute cord compression shortly before delivery
(Westgate et al., 1994). As highlighted in Table 1, there is no
consistency in the prior art as to what outcome, metric or
combination of metrics are used to define a pathological case.
A recent systematic review of intrapartum uterine activity and
neonatal outcomes found that, of the 12 studies that met the
inclusion criteria, 7 used pH as an individual outcome, Apgar
scores and base excess were reported as individual outcomes in 4
studies and only 1 study reported neonatal encephalopathy as an
outcome. No study examined long-term neurodevelopment as an
outcome (Reynolds et al., 2020a). The Apgar score was not

FIGURE 1 | Pipeline of machine learning steps for CTG.
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designed as a measure of birth asphyxia, and a recent cohort study
including 85,076 infants concluded that although there is a close
association between Apgar score and acidosis, Apgar score should
not be used as a measure of birth asphyxia (Cnattingius et al.,
2020).

3.2 Weak Labels Versus Expert Annotated
Labels
As previously discussed, proxy metrics, such as pH, are often used
as individual metrics to distinguish between normal and
pathological outcome. CTU-UHB CTG database is a publicly
available database hosted on Physionet, which is commonly used
for research purposes (cited by over 150 papers) (Chudácek et al.,

2014). The database includes 552 CTG recordings from 9,164
recordings acquired from one hospital over a three-year period.
Of the 552 patients, 44 had a pH value less than 7.05, which is the
threshold commonly used in literature to define pathological
cases (Spilka et al., 2013). Annotation by three experts on the
same database labelled 149 as normal CTG, 115 as pathological
CTG and 275 as suspect CTG. This highlights the disparity
between low pH and abnormal CTG (Spilka et al., 2013).

A major challenge with developing machine learning
architectures based on proxies and neonatal outcomes is the
fact that these labels are “weak.” The raw CTG in these cases are
not labelled by event or by epoch. Instead, there is one overall
label for the patient based on clinical metrics (i.e. pH < 7.05),
regardless of the duration of the CTG abnormality, or the type of

TABLE 1 | Prior art comparison.

Author, year ML methods Input features Target/labels No. of
patients

Type of
study

Key finding

Brocklehurst
et al. (2017)

Numerical
algorithms and
artificial neural
network

Signal quality, baseline,
variability, accels, decels and
clinical data (dilation, analgesia,
fetal blood sampling, growth
restriction, placenta abruption
and meconium)

Manually labelled CTG 47,000 RCT Effective in identifying abnormal
CTG, however clinical
outcomes not improved

Nunes et al.
(2017)

Contractions, accels, decels Manually labelled CTG 7,320 RCT Low rates of acidosis observed,
however reduction in acidosis
between the control arm and
the interventional arm were not
statistically significant

Ignatov and
Lutomski (2016)

FHR, decels, FHR micro-
fluctuations (extrema per minute,
mean beat-to-beat variability,
oscillation amplitudes)

Hypoxia (cord-artery blood ph <
7.20), acidemia (umbilical-artery
blood pH < 7.05), intervention
(caesarean or forceps)

720 RCT Reduced risks observed for all
targets in interventional arm

Warrick et al.
(2009)

Support vector
machine

Baseline, variability, impulse
response function for decels and
contractions

Base deficit (>12 mmol/L), death
or HIE

213 Rtrspec.
study

50% of pathological cases
correctly detected with a false
positive rate of 7.5%

Georgieva et al.
(2014)

Decelerative capacity Acidemia (pH < 7.05) 7,568 Rtrspec.
study

AUC of 0.665 as a single feature
in predicting acidemia

Doret et al.
(2015)

Hurst parameter Acidemia (pH < 7.05) 45 Case
control
study

AUC of 0.87 in predicting
acidosis

Dash et al.
(2014)

Generative
models and
Bayesian theory

FHR baseline, variability,
accelerations, decelerations,
FHR response to contractions in
4.5–30 mHz, variability in
30–1000 mHz band

Acidemia (ph < 7.15) 83 Rtrspec.
study

0.817 TNR and 0.609 TPR

Ogasawara
et al. (2021)

CNN FHR Acidemia (umbilical artery pH <
7.20) or Apgar at 1 min <7

324 Rtrspec.
study

AUC of 0.73 with CNN, which
was higher than traditional ML

Petroziello et al.
(2019)

Multi-modal CNN Signal quality, FHR, UC Acidemia (pH < 7.05) and severe
compromise (stillbirth, neonatal
death, neonatal encephalopathy,
NICU admission)

35,429 Rtrspec.
study

Improved prediction of
acidemia/compromise
compared with clinical practice
(14% FPR & 50% TPR versus
15% FPR & 31% TPR)

Georgieva et al.
(2017)

Decelerative capacity and clinical
data (presence of thick
meconium or preeclampsia)

Acidemia (pH < 7.05) and severe
compromise (stillbirth, neonatal
death, neonatal encephalopathy,
NICU admission)

22,790 Cohort
study

Improved sensitivity and false-
positive rate in detecting
acidemia/compromise
compared to clinical practice

Hoodbhoy et al.
(2019)

XGBoost 21 features including basic
quantitative values (max, min,
median), STV, and number of
fetal movements, decelerations
and contractions

Manually labelled CTG 2,126 Rtrspec.
study

Overall accuracy of 93%
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hypoxia. Different types of fetal hypoxia (acute, subacute,
evolving, chronic) generally manifest in different forms in the
CTG, and are associated with widely differing clinical events
(Yatham et al., 2020). This introduces problems, as in an acute
event (such as cord prolapse, uterine rupture, or acute cord
compression) the CTG may only change during the event.
Therefore, labelling an entire CTG record as fetal hypoxia may
introduce noisy labels and misclassifications. This is particularly
problematic if weak labels are being applied to short epochs (i.e.
overlapping windows of 15–30 min segments), as there is a
significant risk of introducing predominantly noisy labels,
unless the fetal hypoxia is chronic and prevalent throughout
the duration of the recording. Furthermore, studies have shown
that not all infants diagnosed postnatally with HIE have evidence
of intrapartum hypoxia in the CTG (using current human
interpretation) (Yatham et al., 2020).

Machine learning architectures that use hand-labelled CTG
at an event/epoch level by an expert annotator would result in
stronger labels and, in theory, achieve improved performance.
In light of this, an expert obstetrician has manually labelled the
aforementioned CTB-UHB database, which has also been
made publicly available to supplement the original database
(Romagnoli et al., 2020). Several studies have obtained
significantly high percentage agreements between algorithm
and human labels (Reynolds et al., 2020b). However,
introducing human labels may result in similar clinical
outcomes to those observed in the prior RCTs, whereby
high algorithm-human agreement is achieved but it is akin
to adding a second evaluator with similar instructions.
Similarly, multiple studies have shown inter-observer
agreement for human CTG interpretation in the range of
30–50% (Yatham et al., 2020) (Hruban et al., 2015) (Rhöse
et al., 2014). Therefore, there is a risk that human annotations
may introduce human bias into the classification, given that
expert use of CTG in general is still widely debated (Garcia-
Canadilla et al., 2020).

Classification of CTG at an event level alone, without context
of the labour progress and duration is not ideal, as features and
patterns that may be considered non-reassuring in 1st stage of
labour can be considered normal during the active 2nd stage of
labour where contractions become more intense. As the end of
the CTG often coincides with the time of birth, it is likely that
relevant data pertaining to outcome would be most evident in the
later stages of CTG. However, there is considerably more noise
and motion artifacts in the later stage. Therefore, classifier
performance can vary depending on the stage of labour.
Studies have shown that the performance of features for
classification of fetal compromise vary significantly as labour
progresses (Spilka et al., 2014). As such, many studies in the
literature omit 2nd stage data, which may reduce the clinical
usefulness of a decision support tool in practice (Spilka et al.,
2016).

Having access to large databases, capable of training a deep
learning model may help resolve this issue, as the feature
extraction and classification process could be completed in an
optimized routine. The variation in model performance based
on the stage of labour was demonstrated in (Petroziello et al.,

2019) using a MCNN trained on 35,000 CTGs. The
performance of the MCNN trained on the last 60 min of
1st stage was 0.65 AUC, while the same MCNN model
trained on the last 30 min of 2nd stage was 0.71 AUC. The
best performance of 0.77 AUC was achieved by training on the
last 60 min of CTG, regardless of stage (Petroziello et al.,
2019).

4 DISCUSSION

Previous feature-based approaches to automated CTG
interpretation that closely follow established CTG clinical
guidelines achieve high inter-observer agreement with human
interpretation. However, they do not result in improvements in
clinical outcomes. The findings of these studies suggest that
developing systems to mimic existing guidelines and human
interpretation will not improve outcomes. More recent
methods, facilitated by more computing power, comprehensive
electronic health records, and access to larger datasets have
resulted in promising developments. However, these
approaches are yet to be validated in a RCT.

The major challenges identified in developing robust AI
for CTG interpretation are centred around case definition,
labelling and class imbalance, which are inherently linked.
The table demonstrates the variability in case definition
across the prior art, with many using proxy metrics, such
as pH, to label cases as healthy versus HIE. At an incidence
rate of 1-3 per 1,000 births, class imbalance is a major
concern, and perhaps an anomaly detection approach may
be best suited.

While accurately detecting non-reassuring CTG patterns is
important, it is not the primary challenge. The primary
challenge is determining whether non-reassuring CTG
patterns require intervention or not based on the
progression of labour and on the risk profile of the mother.
Our previous work has demonstrated that improvements in
classification performance are achievable by adding both
clinical variables (such as gestation, parity and
hypertension), as well as duration of labour stages
(O’Sullivan et al., 2021). The importance of accurate
medical records is critical to the clinical decision-making
process. Pre-existing maternal medical conditions such as
chronic hypertension, and underlying conditions such as
intrauterine growth restriction, can render the utero-
placental system more vulnerable to hypoxia during labour
(Scheidegger et al., 2019). The clinical team need to consider
the risk profile of a pregnancy to aid their assessment of a fetus’
tolerance to labour and need to be vigilant for any non-
reassuring patterns in high-risk pregnancies. Providing a
decision support tool that is developed without
consideration of these personalised risk factors and their
relationship to neonatal outcomes may result in an increase
in unnecessary C-sections and operative delivery rates.

To conclude, there is significant scope and promise for
decision support tools in the area of CTG, as demonstrated by
prior art. We believe that accurate case definition and
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segmentation of the data, combined with the inclusion of pre-
existing clinical variables and labour progression data will
facilitate the development of an explainable artificial
intelligence decision support tool.
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