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Abstract: The cerebellum has long been implicated in the etiopathogenesis of autism spectrum disorder (ASD), and emerging 
evidence suggests a significant contribution by reciprocal neural circuits between the cerebellum and ventral tegmental area (VTA) in 
symptom expression. This review provides a concise overview of morphological and functional alterations in the cerebellum and VTA 
associated with ASD symptoms, primarily focusing on human studies while also integrating mechanistic insights from animal models. 
We propose that cerebello–VTA circuit dysfunctional is a major contributor to ASD symptoms and that these circuits are promising 
targets for drugs and therapeutic brain stimulation methods. 
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Introduction
Autism spectrum disorder (ASD) encompasses a cluster of neurodevelopmental disabilities characterized by 
challenges in social interactions, difficulties in verbal and non-verbal communication, and restricted/stereotyped 
patterns of behavior, activities, and interests. Multiple epidemiological studies have documented a dramatic 
increase in ASD prevalence over the past few decades, and current estimates suggest that ASD afflicts 1–2% 
of children globally.1–3 Regrettably, existing treatments are of limited efficacy for mitigating the core symptoms 
of ASD. For instance, several recent reports suggest that neither pharmacotherapies nor behavioral interventions 
can substantially improve social skills or suppress stereotyped behaviors in most patients with ASD.4,5 

Consequently, a substantial number of ASD patients require extensive lifelong medical and social support, 
imposing considerable stress and financial strain on families and healthcare systems.6–8

The cerebellum has been the focus of ASD research for several decades due to numerous reports of 
morphological and histological abnormalities associated with autistic phenotypes such as communication deficits, 
social dysfunction, and repetitive behaviors.9 Recent studies also suggest that dysfunctional dopaminergic 
signaling from the ventral tegmental area (VTA) may contribute to certain autistic traits.10,11 Despite the strong 
functional connectivity between the cerebellum and VTA, the contributions of cerebello–VTA circuit dysfunction 
to ASD development and symptoms remain largely unexplored. This narrative review seeks to provide a better 
understanding of cerebello–VTA interactions related to ASD, thereby providing support for these circuits as 
novel targets for intervention.
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Cerebellar Alterations in ASD Patients
A myriad of studies using different designs and research methods have reported abnormalities in regional 
cerebellar structure and function associated with autistic traits (Supplementary Table). For instance, children 
with ASD were reported to exhibit significantly diminished structural complexity in the right cerebellar cortex 
marked by flatter and less regular surface protrusions; further, these abnormalities were associated with reduced 
social interactions.12 However, both the causes of these abnormalities in cerebellar development and the impacts 
on specific ASD symptoms remain unknown.

Volumetric Changes
Multiple studies have reported differences in regional cerebellar volumes among patients with ASD compared to 
typically developing (TD) controls. However, reported changes include both decreases (atrophy)13,14 and 
increases,15 while several others have found no significant changes.16–19 One prevailing theory posits that 
early cerebellar development is accelerated in infants with suspected ASD, followed by deceleration in growth 
rate, ultimately resulting in a smaller volume by adulthood.20 Moreover, distinct subregions of the cerebellum 
display varying degrees of volumetric change in ASD patients.21,22 Of particular note, several morphometric 
studies have noted hypoplasia in the Crus I/II strongly associated with the severity of core ASD symptoms such 
as social deficits, communication difficulties, and repetitive behaviors.23–26

Cell Type-Specific Changes in Autistic Cerebellum
The cerebellum contains the largest number of neurons in the central nervous system, and these numbers are frequently 
altered in ASD. Further, multiple cell types may be differentially altered in specific regions, underscoring the complex 
neurobiology of the disorder.

Purkinje Cells
Purkinje cells (PCs) are the exclusive output neurons of the cerebellar cortex, projecting predominantly to three 
bilateral deep cerebellar nuclei (DCN), the fastigial nuclei (FN), interpositus nuclei (IN, including emboliform 
and globose nuclei), and dentate nuclei (DN). It is widely reported that the number of PCs is reduced in patients 
with ASD.19,27–30 However, some studies have reported no significant reduction in PC density among autistic 
individuals.31,32 These discrepancies may reflect regional heterogeneity, differences among developmental stages, 
and (or) the use of different measurement techniques. For example, no decrease was reported in lobule X, while 
moderate reductions were found in lobules IV–VI, pronounced reductions in the vermis, and greatest reductions 
in Crus I/II.27,32,33 Further, an initial increase was found during the earlier postnatal days followed by a dramatic 
decrease in an ASD mouse model.34 Finally, various histological techniques and quantitative methodologies may 
introduce unique biases contributing to inconsistent outcomes across studies.35,36 Nonetheless, it appears that 
greatest PC loss occurs in Crus I/II among patients with ASD.33 In summary, while there is compelling evidence 
for region-specific PC loss and cortical atrophy within the autistic cerebellum,31,37 it remains uncertain how and 
why such ultrastructural changes manifest as ASD symptoms.

Granule Cells
While one study reported no detectable loss of granule cells among patients with ASD,19 several others have 
found significant reductions in granule cell numbers.27,29,30,35 Moreover, a mouse model carrying a mutation in 
the ASD-linked gene Engrailed2 specifically within granule cells exhibited cerebellar pathology associated with 
multiple ASD-related behaviors.38

Golgi Cells
One study reported heightened immunoreactivity of antibodies targeting a cerebellar-specific protein of approxi-
mately 52 kDa in Golgi cells of the autistic cerebellum compared to the healthy individuals.39
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Basket Cells and Stellate Cells
The outputs of PCs are modulated by GABAergic basket cells and stellate cells within the cerebellar molecular 
layer. According to Whitney et al, the densities of basket and stellate cells per PC did not differ between autistic 
patients and TD controls.40 However, despite no change in total interneuron number, Yip et al reported 
significant upregulation of GAD67 mRNA specifically within basket cells and a slight increase in stellate cells 
among ASD patients,36 suggesting reorganization of GABAergic input to PCs and ensuing alterations in PC 
output patterns.

Glial cells
Greater reactivity of Bergmann glia, microglia, and astrocytes has been reported in the cerebellum of ASD patients,19,30 

suggesting potential influences on synaptic transmission, neuronal metabolism, and the immune milieu. Further, 
investigation of changes in other glial cells, such as oligodendrocytes, are warranted to examine the impacts on 
neurotransmission within cerebellar circuits.

Neurons in Deep Cerebellar Nuclei
Significant neuronal loss has also been observed in the FN and IN but not the DN of ASD patients.29 However, 
dysmorphic DN neurons have been found in ASD patients.29 Yip et al reported a marked decrease in GAD65 mRNA 
expression within GABAergic neurons of the DN among patients with autism, suggesting significant effects on the 
temporal pattern and magnitude of cerebellar outputs.41

Collectively, these structural and functional alterations in cerebellar neurons, particularly of PCs, suggest marked 
changes in cerebellar circuit transmission, integration, plasticity, and output patterns in response to cerebellar inputs. 
Further study is required to describe these changes in input–output functions and associated influences on ASD-relevant 
behaviors.

Changes in Cerebello–VTA Microcircuits
Cerebellar Projections to the VTA
Early studies utilizing classical anterograde and retrograde tracing techniques revealed that all three DCN project 
to the VTA in both humans and animals (Figure 1), although with distinct patterns. According to these studies, 
the largest number of projections originates from the contralateral DN, followed by the IN, while relatively few 

Figure 1 Depiction of cerebellar anatomy and connections with the ventral tegmental area (VTA). (A) Dorsal view of the cerebellum showing the numerically labeled 
lobules within the vermis. Crus I and II are major sites of VTA inputs (highlighted with colored overlays). (B) Anatomical representation of the bidirectional connections 
between the deep cerebellar nuclei (DCN) and the VTA based on brain magnetic resonance imaging. Adapted from Esslinger C, Braun U, Schirmbeck F et al. Activation of 
midbrain and ventral striatal regions implicates salience processing during a modified beads task. PLoS ONE. 2013; 8(3):e58536. Creative Commons.42
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originate from the FN.43 However, others have also identified DCN projections to the ipsilateral VTA.44,45 

Findings on the reciprocal connections between the cerebellum and VTA are summarized in Table 1.
Recently, synaptic anterograde/retrograde viral tracing in transgenic mouse lines has provided precise insights into 

these mutual connections. However, there is still disagreement among studies regarding the origins of DCN projections 
and the cell types involved. For instance, Baek et al reported abundant projections from the DN, fewer from the IN, and 
none from the FN to the VTA, whereas another study identified direct projections from the FN to the VTA using trans- 
synaptic anterograde tracing in mice.60 A recent human study further reported that all DCN project to the VTA, with the 
IN contributing the largest number.47 Moreover, multiple animal studies have found that cerebellar outputs from the three 
DCN target both dopaminergic neurons and non-dopaminergic neurons in the VTA.11,55,59,61

Table 1 Summary of Studies Investigating Reciprocal Connectivity Between the VTA and Cerebellum

Connection Species Methodology Principal Results References

CC → VTA Rats and 
cats

HRP retrograde tracing Vermis → ipsilateral VTA? Snider, 197646

Humans DWI and probabilistic tractography Paravermis → mostly ipsilateral VTA  
(with predominance from the right hemisphere)

Hoffman, 202447

Mice AAV anterograde tracing, AAV-retro and Fast Blue retrograde 
tracing

Vermian lobule IX → ipsilateral VTA Hashimoto, 201848

VTA → CC Rats Fluoro-Gold retrograde tracing and Cholera toxin anterograde 
tracing

VTA → bilateral CC (with contralateral 
predominance)

Ikai, 199245

Rats Fast Blue retrograde tracing VTA → bilateral CC  
(Crus I, with contralateral predominance)

Ikai, 199449

Mice AAV retrograde tracing No VTA → CC Wagner, 201750

Mice AAV/Dextran anterograde tracing, and Retrobead retrograde 
tracing

No VTA → CC Li, 202351

DN → VTA Rats and 
cats

HRP retrograde tracing DN → primarily contralateral VTA Snider, 197646

Rats HRP retrograde tracing DN → contralateral VTA Phillipson, 197952

Rats HRP retrograde tracing, WGA-HRP anterograde/retrograde 
tracing

DN → contralateral VTA Perciavalle, 198943

Rats Cholera toxin retrograde tracing DN → bilateral VTAs  
(with contralateral predominance)

Ikai, 199245

Rats PHA-L anterograde tracing DN → contralateral VTA Parker, 201453

Mice AAV anterograde/retrograde tracing DN → contralateral VTA Baek, 202254

Humans DWI and probabilistic tractography DN → mostly ipsilateral VTA  
(with predominance from the right hemisphere)

Hoffman, 202447

Mice Rabies virus retrograde tracing DN → VTA Watabe-Uchida, 201255

Mice Herpes virus anterograde tracing DN → VTA Carta, 201911

Rats Dextranamine anterograde tracing, Fluoro-Gold retrograde 
tracing

DN → contralateral VTA Gil-Miravet, 201956

VTA → DN Rats Fluoro-Gold retrograde tracing and Cholera toxin anterograde 
tracing

VTA → bilateral DNs (with contralateral 
predominance)

Ikai, 199245

Rats Fast Blue retrograde tracing VTA → bilateral DNs  
(with contralateral predominance)

Ikai, 199449

(Continued)
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VTA Projections to Cerebellum
Several studies have documented direct dopaminergic projections from the VTA to the cerebellum (as shown in 
Figure 1), with a particularly large projection terminating in bilateral Crus I with contralateral predominance in 
rats.45,49 Alternatively, a combined anterograde and retrograde tracing study by Li et al challenged this notion, suggesting 
instead that in mice, dopaminergic afferents to the cerebellum may originate from PCs in the cerebellar cortex 
constituting an intrinsic dopaminergic system.51 However, numerous subsequent studies have confirmed reciprocal 
cerebellar connections with the VTA, particularly in the Crus I/II region (Table 1), and further reported associations 
with ASD pathogenesis.62

VTA Alterations in ASD
The VTA consists primarily of dopaminergic neurons interspersed with smaller numbers of GABAergic and glutama-
tergic neurons.63,64 These dopaminergic projection neurons are crucial for the reward-dependent reinforcement of 

Table 1 (Continued). 

Connection Species Methodology Principal Results References

IN → VTA Rats and 
cats

HRP retrograde tracing IN → primarily contralateral VTA Snider, 197646

Rats Cholera toxin retrograde tracing IN → bilateral VTAs  
(with contralateral predominance)

Ikai, 199245

Mice AAV anterograde tracing IN → contralateral VTA Judd, 202157

Rats Fluoro-Gold retrograde tracing IN → contralateral VTA Gil-Miravet, 201956

Humans DWI and probabilistic tractography IN → mostly ipsilateral VTA  
(with predominance from the right hemisphere)

Hoffman, 202447

Rats HRP retrograde tracing, WGA-HRP anterograde/retrograde 
tracing

IN → contralateral VTA Perciavalle, 198943

Mice Herpes virus anterograde tracing IN → VTA Carta, 201911

Mice AAV anterograde/retrograde tracing IN → contralateral VTA Baek, 202254

VTA → IN Rats Fluoro-Gold retrograde tracing and Cholera toxin anterograde 
tracing

VTA → bilateral INs  
(with contralateral predominance)

Ikai, 199245

FN → VTA Rats and 
cats

HRP retrograde tracing FN → primarily ipsilateral VTA Snider, 197646

Mice AAV anterograde tracing FN → contralateral VTA Chao, 202358

Rats HRP retrograde tracing, WGA-HRP anterograde/retrograde 
tracing

None FN → VTA Perciavalle, 198943

Rats Cholera toxin retrograde tracing None FN → VTA Ikai, 199245

Mice AAV anterograde/retrograde tracing None FN → VTA Baek, 202254

Rats Fluoro-Gold retrograde tracing None FN → VTA Gil-Miravet, 201956

Rats PHA-L anterograde tracing FN → contralateral VTA Parker, 201453

Humans DWI and probabilistic tractography FN → mostly ipsilateral VTA  
(with predominance from the right hemisphere)

Hoffman, 202447

Mice Herpes virus anterograde tracing FN → VTA Carta, 201911

VTA → FN Rats Fluoro-Gold retrograde tracing and Cholera toxin anterograde 
tracing

None VTA → FN Ikai, 199245

Notes: The table lists only those studies that specified the individual cerebellar nuclei [eg, fastigial nucleus (FN), interposed nucleus (IN), and dentate nucleus (DN)]. Studies 
not distinguishing individual cerebellar nuclei, such as one employing rabies virus retrograde tracing to map projections to the VTA,59 have been omitted.
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behaviors, including social activities.65 Notably, intranasal administration of oxytocin, a neurotransmitter strongly 
implicated in social bonding, improved social communication in patients with ASD,66 possibly through actions within 
the VTA.67

Alterations in the VTA dopaminergic system have been observed in various animal models of ASD, including 
a reduction in dopaminergic output.68 These alterations likely contribute to ASD-relevant social deficits in animals as 
they can be mitigated by specific activation of VTA dopaminergic neurons.10,68–70 The neural mechanisms underlying 
these alterations warrant further investigation.

Cerebello–VTA Circuit Dysfunction and Autistic Traits
The cerebellum and VTA are crucially involved in reinforcement, social actions, and motor behaviors. However, the 
influence of cerebello–VTA circuit activities on autistic behaviors remains largely unexplored. Nonetheless, there is 
emerging evidence to suggest that modulating this circuit can influence autistic phenotypes. For instance, chemogenetic 
inhibition of PC activity in the right Crus I of wild-type mice induced ASD-like social deficits as well as repetitive and 
restricted behaviors, whereas activation of these cells mitigated social impairments in ASD model mice.71

Stereotyped Behavior
The cerebellum serves as a crucial neural substrate for predictive processing by encoding adaptive internal models that 
facilitate automatic, rapid, and finely-tuned behaviors.72 Mice with diminished numbers of cerebellar PCs displayed more 
frequent repetitive behaviors73 and these behaviors were negatively correlated with PC numbers.73,74

Circuits reciprocally connecting the cerebellum and VTA likely transmit limbic signals to cortico-ponto-cerebellar 
loops essential for the execution and coordination of voluntary movements.45 Consequently, the cerebellar abnormalities 
and reorganization of VTA pathways detected in ASD patients (Supplementary Table) may lead to diminished dopami-
nergic modulation of motor outputs and ensuing behavioral stereotypy.75 Additionally, stronger connectivity between the 
VTA and bilateral thalamus has been reported in ASD patients, and was associated with repetitive and restrictive 
behaviors.76 Thus, VTA outputs triggered by cerebellar projections may also activate thalamo-basal ganglia-cortical 
circuits, resulting in stereotyped behaviors.

Social Interaction
Supekar et al proposed that deficits in mesolimbic reward pathways contribute to impaired social skills among children 
with autism,65 and that the cerebello–VTA pathway may contribute to socio-affective disorders by disrupting normal 
reward-seeking behavior, resulting in reduced social motivation. In accord with this notion, optogenetic modulation of 
the cerebellum–VTA pathway was reported to bidirectionally influence social behavior and reward in ASD model 
animals.62 Moreover, the integrity of the DN–VTA pathway in mice was found to be necessary for normal social 
preference behaviors.11

Reinforcement
The cerebello–VTA pathway also appears to strongly influence reinforcement. Carta et al reported that transient 
optogenetic silencing of the DN–VTA in mice reduced the influence of rewarding stimuli on behavior.11 Similarly, the 
modulation of the DCN–VTA pathway in mice altered food intake irrespective of baseline satiety levels.77 These findings 
suggest that specific regions of the cerebellum regulate reward signals (a core feature of VTA dopaminergic functions), 
thereby either promoting or inhibiting reinforced (reward-dependent) behaviors. Moreover, individuals with ASD were 
reported to exhibit abnormal structural and functional connections between the VTA and the nucleus accumbens, the 
primary integration site for reward-related signals and motor commands, potentially leading to reduced motivation for 
social interaction.65,78,79

Hyphedonia
Lesioning of the rat DN resulted in decreased hedonic motivation, a hallmark of emotional disorders.80 A recent study 
also reported that PCs in Crus I influenced VTA activity in mice through connections with the DN.54 Additionally, the 
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deactivation of DN neurons projecting to the VTA attenuated depressive symptoms in animals,54 while conversely, 
dysfunction of the cerebello–VTA circuit was associated with hyphedonia-like symptoms.

Conclusions
Developmental abnormalities in the cerebellum and VTA may contribute to ASD pathogenesis and autistic phenotypes. 
Indeed, the cerebellum and VTA are strongly and reciprocally connected, and this review summarizes emerging evidence 
that cerebello–VTA circuit dysfunction is an important contributor to ASD pathology. However, several outstanding 
issues warrant further exploration.

(1) Elucidating the precise neural pathways between the cerebellum and VTA: Precise mapping of VTA projections to 
cerebellar cortex and deep nuclei and of feedback fibers from the cerebellum to the VTA is critical for delineating the 
contributions of regional cerebello–VTA circuit abnormalities to ASD pathogenesis and symptoms.

(2) Exploring the potential of cerebello-VTA circuit modulation in clinical ASD research: Findings of cerebello-VTA 
circuit abnormalities in ASD present new research opportunities, although clinical applications remain highly speculative 
at this stage. While bilateral cerebellar repetitive transcranial magnetic stimulation has shown benefits for Parkinson’s 
disease patients,81 its efficacy for ASD requires much additional investigation. Future research could employ non- 
invasive neuroimaging to better characterize cerebello-VTA connectivity in the different stages of ASD and among 
patients with variations in symptom profile. Moreover, integrating knowledge of cerebello-VTA circuits into existing 
behavioral therapies may facilitate more targeted interventions.

(3) Understanding the pathophysiological mechanisms linking cerebello–VTA circuit abnormalities to ASD: 
Preclinical and clinical studies are crucial for a deeper understanding of how cerebello–VTA circuit activity changes 
during development and how these changes relate to the emergence of autistic symptoms. Animal models of ASD and 
genetic tools offer promising avenues for elucidating the contributions of these circuits to ASD pathogenesis.

In conclusion, this review suggests that impaired cerebello–VTA circuitry may contribute to autistic symptoms and 
further suggests that cerebello–VTA circuits are promising targets for the clinical treatment of ASD. Future systematic 
reviews are warranted to offer a more structured analysis of this important field.
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