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Abstract
Na+/H+ exchanger-3 (NHE3) plays an essential role in maintaining sodium and fluid homeo-

stasis in the intestine and kidney epithelium. Thus, NHE3 is highly regulated and its function

depends on binding to multiple regulatory proteins. Ezrin complexed with NHE3 affects its

activity via not well-defined mechanisms. This study investigates mechanisms by which

ezrin regulates NHE3 activity in epithelial Opossum Kidney cells. Ezrin is activated sequen-

tially by phosphatidylinositol-4,5-bisphosphate (PIP2) binding and phosphorylation of threo-

nine 567. Expression of ezrin lacking PIP2 binding sites inhibited NHE3 activity (-40%)

indicating that ezrin binding to PIP2 is required for preserving NHE3 activity. Expression of

a phosphomimetic ezrin mutated at the PIP2 binding region was sufficient not only to re-

verse NHE3 activity to control levels but also to increase its activity (+80%) similar to that of

the expression of ezrin carrying the phosphomimetic mutation alone. Calcineurin Homolo-

gous Protein-1 (CHP1) is part, with ezrin, of the NHE3 regulatory complex. CHP1-mediated

activation of NHE3 activity was blocked by expression of an ezrin variant that could not be

phosphorylated but not by an ezrin variant unable to bind PIP2. Thus, for NHE3 activity

under baseline conditions not only ezrin phosphorylation, but also ezrin spatial-temporal tar-

geting on the plasma membrane via PIP2 binding is required; however, phosphorylation of

ezrin appears to overcome the control of NHE3 transport. CHP1 action on NHE3 activity is

not contingent on ezrin binding to PIP2 but rather on ezrin phosphorylation. These findings

are important in understanding the interrelation and dynamics of a CHP1-ezrin-NHE3

regulatory complex.

Introduction
Ezrin is a member of the highly evolutionarily conserved ERM (Ezrin, Radixin and Moesin)
protein family. It provides a regulated linkage between the plasma membrane and the actin cy-
toskeleton [1, 2]. Ezrin is composed of a globular domain located at its N-terminus followed by
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a predicted α-helical structure and approximately 100 amino acids of the C-terminal domain.
The N-terminus is responsible for membrane targeting [2, 3] via binding to phosphatidylinosi-
tol 4,5-bisphosphate (PIP2), whereas the C-terminus binds actin [4]. Ezrin undergoes an intra-
molecular head-to-tail association in its inactive state and requires a direct interaction with
PIP2 to open the closed conformation and the phosphorylation of threonine 567 (T567) to un-
mask the actin binding site [5]. Interaction with PIP2 occurs before ezrin phosphorylation to
activate ezrin [6] and enhances ezrin binding to both plasma membrane-associated proteins
and actin filaments [3, 7–12].

Upon reaching the plasma membrane, ezrin engages a number of membrane-associated
proteins through its N-terminal domain [13, 14]. One such protein is the Na+/H+ exchanger-3
(NHE3) that is expressed on the brush border membrane of renal and intestinal epithelial cells
[15, 16] and is of major importance in mediating Na+, Cl-, HCO3

- and fluid absorption in these
epithelia [17–19]. NHE3 function requires an intact actin cytoskeleton [20, 21] and ezrin is
proposed as the protein that provides this regulated linkage between NHE3 and the actin cyto-
skeleton. Indeed, NHE3 binds to ezrin both indirectly and directly through the cytoplasmic
domain; indirect binding, via the PDZ-domain-containing protein the Na+/H+-exchanger reg-
ulatory factors (NHERF) 1 and 2 [22], mediates several aspects of NHE3 regulation [22, 23],
while direct binding [24] affects many aspects of basal NHE3 trafficking [24, 25].

The Calcineurin Homologous Protein-1 (CHP1) is a widely expressed and highly conserved
cytosolic Ca2+-binding protein [26]. It belongs to the EF-hand subfamily (calcium-binding mo-
tifs composed of E and F helixes joined by a loop) that is a very versatile class of proteins [27–
29]. CHP1 interacts with several NHE isoforms including NHE3 [30–32] and regulates their
function [26, 30, 31, 33]; in particular, CHP1 is a signal intermediate in the control of NHE3
activity under baseline and stimuli-mediated conditions [32, 34].

We previously demonstrated that CHP1, ezrin and NHE3 are linked in a regulatory com-
plex [34]. Here, we analyzed which mechanisms of ezrin activation affect NHE3 activity. We
found that ezrin binding to PIP2 and its phosphorylation at threonine 567 are both involved in
controlling NHE3 activity under baseline conditions (Figure A in S1 File). Furthermore, we
shed light on mechanisms of ezrin activation under CHP1 control. In previous studies, we de-
termined that CHP1 expression affects ezrin phosphorylation [34], but changes in ezrin phos-
phorylation might be secondary to changes in ezrin binding to PIP2. A function of CHP1 in
the regulation of ezrin binding to PIP2 is supported by the fact that Ca2+ binding proteins bio-
chemically compete with phosphoinositide for the regulation of transport proteins [35, 36].
However, our observations did not support an action of CHP1 on ezrin by affecting its binding
to PIP2 (Figure B in S1 File, pathway 1). Further studies are necessary to understand how
CHP1 controls ezrin phosphorylation (Figure B in S1 File, pathway 2).

Materials and Methods

Reagents and primary antibodies
All chemicals were obtained from Sigma (St. Louis, MO, USA) except the cell culture reagents
(Dulbecco modified Eagle medium, PBS, FCS, penicillin/streptomycin, and trypsin—EDTA)
and the acetoxymethyl ester of 20,70-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF-AM)
that were obtained from Invitrogen (Carlsbad, CA, USA). The enhanced chemoluminescence
system was from Amersham Biosciences (Piscataway, NJ, USA). The following primary anti-
bodies were used, anti-ezrin rabbit polyclonal antibodies (Abcam, Cambridge, MA, USA) and
β-actin mouse monoclonal antibody (Sigma, St. Louis, MO, USA).
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Cell Culture and Transient Transfection
Opossum Kidney (OK) cells, obtained from the American Type Culture Collection (ATCC,
Manassas, VA, USA), were cultured in a mixture of Dulbecco modified Eagle medium
(DMEM) supplemented with 10% FCS, 2 mM glutamine, 50 IU/ml penicillin and 50 μg/ml
streptomycin. Cells were incubated in a humidified 95% air / 5% CO2 atmosphere at 37°C and
sub-cultured weekly by trypsinization using 0.1% trypsin / 0.5 mM EGTA in PBS [32, 34, 37].
Cells generally reached confluence within 3 to 4 days, and confluent cells were serum-deprived
for 2 days before assay. Studies on OK cells were performed between passages 23 and 57. OK
cells were transiently transfected with plasmids using Lipofectamine 2000 (Invitrogen, Carls-
bad, CA, USA) according to the manufacturer’s instructions. Transfection efficiency was moni-
tored by transfection of the pEGFP-N1 vector (Clontech, Mountain View, CA, USA) and was
approximately 60 to 70%.

Plasmid Constructs
Full-length human ezrin was cloned into mEGFP-N1 (encoding a monomeric version of the
enhanced green fluorescent protein (EGFP) [38]) and mutated at threonine 567 by site-direct-
ed mutagenesis [34]. Mutations in the PIP2 binding region of ezrin [11] were introduced by
substituting four lysines (positions 253, 254, 262 and 263) with four asparagines via site-direct-
ed mutagenesis using the following primers K253N/K254N 5’-CAGGAACATCTCTTTCAAT
GACaataatTTTGTCATTAAACCCATCGACAAG-3’ and K262N/K263N 5’-GTTTGTCAT
TAAACCCATCGACaataatGCACCTGACTTTGTGTTTTATG-3’. Mutations were generated
using the QuikChange II Site-Directed Mutagenesis kit (Agilent Technologies, Santa Clara,
CA, USA) according to the manufacturer’s instructions. To produce the myc-tagged variants
of ezrin and its mutants, the mEGFP-N1 vector (Clontech, Mountain View, CA, USA) was di-
gested with AgeI and BsrGI and re-ligated with myc-containing oligonucleotide adaptor. Ex-
pression of the ezrin constructs did not cause detectable changes in cell shape [34]. His6 tagged
full-length mouse CHP1-encoding cDNA was generated by digestion of CHP1-EGFP [34] with
AgeI/BsrGI restriction enzymes. EGFP cDNA was extracted and substituted in frame with oli-
gonucleotide adaptor corresponding to His6 tag [39]. All constructs were sequence-verified.

Measurement of Na+/H+ Exchange Activity
NHE3 activity in OK cells was measured fluorometrically using the intracellularly trapped pH-
sensitive dye BCECF-AM as previously described [34, 40]. Briefly, cells grown on glass cover-
slips were loaded with 10 μM BCECF-AM (30 minutes at 37°C) and pHi was estimated from
the ratio of fluorescence in a computer-controlled spectrofluorometer (λexcitation: 500 and 450
nm, λemission: 530 nm). The 500/450 nm fluorescence ratio was calibrated to pHi using K+/
nigericin. Na+/H+ exchange activity was assayed as the initial rate of the Na+-dependent pHi
increase after an acid load using nigericin in the absence of CO2/HCO3

−. Comparisons were al-
ways made between cells of the same passage studied on the same day.

Quantification of Membrane and Cytosol Antigen by Immunoblot
Quiescent confluent OK cells (48 hours in serum-free media) were washed with ice-cold PBS
and gently scraped into membrane buffer (containing in mM: 150 NaCl, 50 Tris-HCl, pH 7.4,
5 EDTA, supplemented with protease inhibitors). Cells in suspension were homogenized by
sonication and centrifuged at 10,000g for 10 minutes. The resultant supernatants were centri-
fuged at 100,000g for 30 minutes, cytosolic and crude membrane fractions were collected. The
protein content of the crude membrane and cytosolic fractions were quantified by the Bradford
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method. An equal amount of proteins (50 μg) from both fractions were subjected to
SDS-PAGE and blotted with either ezrin polyclonal antibodies (Abcam, Cambridge, MA,
USA) or β-actin mouse monoclonal antibody (Sigma, St. Louis, MO, USA). Ezrin antigen sig-
nals were normalized to β-actin.

Confocal Imaging
OK cells, plated on glass coverslips, were fixed (4% paraformaldehyde in PBS for 20 minutes),
permeabilized (0.01% Triton X-100 in PBS for 5 minutes) and blocked in 1% BSA for 1 hour.
Confocal fluorescence images were collected with a Zeiss 510 laser-scanning confocal micro-
scope using a 100×/1.4NA objective lens. Fluorescence of mEGFP was excited by a 488 nm
laser. Emitted light was separated by a beam splitter (TFT 395/495/610) and detected on a pho-
tomultiplier channel via an emission filter (Band Pass 535/30).

Statistical Analysis
Results are represented as mean ± standard error. Quantitative differences between control
and test conditions were assessed statistically by ANOVA. A probability (P)<0.05 was consid-
ered statistically significant. Four independent experiments per condition were analyzed if not
otherwise stated.

Results

Cellular localization and sub-cellular fraction distribution of ezrin and its
variants
Ezrin is activated by binding to PIP2 followed by phosphorylation of threonine 567 [6]. To in-
vestigate the relative contribution of these ezrin activating processes in the control of NHE3 ac-
tivity, the function of six ezrin variants transiently expressed in Opossum Kidney (OK) cells
were analyzed:

• A full length wild-type ezrin (Ezrin-WT, Fig 1A).

• An ezrin in which the binding to PIP2 is abolished by mutation of two double lysines to as-
paragines, K253/254N and K262/263N, (Ezrin-PIP2-, Fig 1B) [6].

• An ezrin with a threonine to aspartic acid point mutation at position 567 (T567D) (phospho-
threonine mimic, constitutive active [41], Ezrin-T/D, Fig 1C).

• An ezrin with T567D mutation in the PIP2- ezrin mutant (Ezrin-PIP2- T/D, Fig 1D) [6].

• An ezrin with a threonine to alanine point mutation at position 567 (T567A) (non phosphor-
ylatable that binds inefficiently to the actin cytoskeleton [41], Ezrin-T/A, Fig 1E).

• An ezrin with T567A mutation in the PIP2- ezrin mutant (Ezrin-PIP2- T/A, Fig 1F) [6].

The six ezrin constructs were mEGFP or c-myc tagged and localization of mEGFP tagged
constructs was visualized (Fig 1). Ezrin-WT was localized mainly on the plasma membrane,
while Ezrin-PIP2- seemed uniformly expressed in OK cells (Fig 1A and 1B). Ezrin-T/D had a
pattern of expression similar to Ezrin-WT (Fig 1C). Both constructs were expressed mainly at
the apical membrane of OK cells, though Ezrin-T/D was expressed also at the basolateral mem-
brane as was previously shown [34]. Interestingly, Ezrin-PIP2- cellular localization changed
when the threonine 567 was mutated to aspartic acid, Ezrin-PIP2- T/D (Fig 1D); Ezrin-PIP2-

T/D localization resembled that of Ezrin-T/D indicating that mimicking ezrin phosphorylation
was sufficient to secure a predominant cell surface expression of ezrin. Ezrin-T/A was also
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Fig 1. List of ezrin variants and their localization in OK cells. Six ezrin constructs were used:A. A full length wild-type ezrin (Ezrin-WT); B. An ezrin in
which the binding to PIP2 was abolished by mutation of two double lysines to asparagines, K253/254N and K262/263N, (Ezrin-PIP2- [6]);C. An ezrin with a
threonine to aspartic acid point mutation at position 567 (Ezrin-T/D—phosphothreonine mimic, constitutive active [41]); D. An ezrin with T567Dmutation in
the PIP2- ezrin mutant (Ezrin-PIP2- T/D [6]); E. An ezrin with a threonine to alanine point mutation at position 567 (Ezrin-T/A—non phosphorylable that binds
inefficiently to the actin cytoskeleton [41]); F. An ezrin with T567Amutation in the PIP2- ezrin mutant (Ezrin-PIP2- T/A [6]). The six ezrin constructs were
mEGFP. Localization of ezrin and variants was visualized by indirect immunofluorescence (4 experiments per condition). Highlighted in the figure are XZ
cross-sections (plus zoom) and XY face views. Apical localization is indicated by an arrow. Scale bar 2 μm.

doi:10.1371/journal.pone.0129306.g001
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recruited to the plasma membrane but did not exclusively localize on the cell surface (Fig 1E
and [34]). Mutation of threonine 567 to alanine did not change Ezrin PIP2- cellular localiza-
tion, Ezrin-PIP2- T/A (Fig 1F). Constructs tagged with c-myc had a similar localization to the
mEGFP tagged constructs (not shown). To test further the cellular localization of the ezrin con-
structs a membrane-enriched (P) fraction was separated from a cytosol (S) fraction in OK cells
and equal amounts of proteins from both fractions were probed for total ezrin (Fig 2A and 2B).
This set of experiments revealed that, indeed, the Ezrin-T/D was quantitatively more present in

Fig 2. Distribution of ezrin and its variants in sub-cellular fraction. Cellular fractions were prepared from OK cells and equal amounts of proteins (50 μg/
lane) from a membrane-enriched fraction (P, 100,000 x g pellet) and cytosol (S, 100,000 x g supernatant) were blotted and probed with anti-total ezrin.A:
One of the immunoblots is shown. GFP = transfected mEGFP tagged ezrin (Ezrin-GFP) and Endo = endogenous ezrin.B: Statistical analysis of signal
intensity ratios relative to the immuno-detected band in S and P is reported. The signal of total ezrin in S plus P fractions was defined as equal to 100% for
each condition and results are expressed as percentage of total ezrin in the P vs. S fraction. Antigen signals were normalized to β-actin. Bars and error bars
represent the means ± standard errors (SE), respectively (4 experiments per condition). *P<0.05/** P<0.01 ANOVA, the membrane fraction of tagged ezrin
in the presented groups compared to the membrane fraction of tagged ezrin in cells transfected with Ezrin-WT. &P<0.05 ANOVA, membrane fraction of
endogenous ezrin in the presented groups compared to the membrane fraction of endogenous ezrin in cells transfected with Ezrin-WT. $$P<0.01 ANOVA
membrane fraction of tagged ezrin in Ezrin-PIP2- compared to Ezrin-PIP2- T/D transfected cells.

doi:10.1371/journal.pone.0129306.g002
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the membrane-enriched fraction and Ezrin-PIP2- (similarly to Ezrin-PIP2- T/A) was quantita-
tively less present in the membrane-enriched fraction compared to Ezrin-WT. Furthermore,
the expression level of endogenous ezrin and its sub-cellular distribution were not significantly
affected by expression of the ezrin variants; the exception was the expression of Ezrin-T/D that
induced an increase in endogenous ezrin in the membrane-enriched fraction.

Effect of ezrin activation by binding to PIP2 and phosphorylation of
threonine 567 on NHE3 activity
Expression of Ezrin-WT in OK cells increases NHE3 activity (+70%) (Fig 3A and 3B) as previ-
ously reported [34]. This effect on NHE3 activity was enhanced by expression of the constitu-
tively active phosphothreonine mimic ezrin, Ezrin-T/D, (Fig 3A); whereas the inactive non-
phosphorylatable ezrin mutant, Ezrin-T/A, did not affect NHE3 activity (Fig 3B). The increase
in NHE3 activity induced by Ezrin-T/D was not significantly different from the increase in-
duced by Ezrin-WT expression, possibly because the increase in NHE3 activity induced by ex-
pression of the constructs is close to an ezrin-dependent exchanger maximum activity. These
findings support an earlier study [34]; specifically, NHE3 activity is not affected by ezrin ex-
pression per se [34, 42] but rather by its activated state. Ezrin-T/D is constitutive active, while
Ezrin-WT is activated by phosphorylation. Indeed, Ezrin-WT was recognized by an anti-
phospho-ezrin antibody when expressed in OK cells [34]. Furthermore, Ezrin-T/D has been as-
sociated with the formation of longer and more abundant microvilli [41]; hence, with an in-
crease in cell surface area. Although, we cannot exclude an increase in cell surface area in the

Fig 3. Effect of ezrin variants in PIP2 binding and 567 phosphorylation sites on NHE3 activity. NHE3 activity was measured as the rate of Na+-
dependent intracellular pH recovery. Results are expressed as percentage of change in NHE3 activity. Bars and error bars represent the means and SE,
respectively (4 experiments per condition). **P < 0.01 ANOVA compare to control (empty-vector-transfected cells). NS: Statistically insignificant compare to
control. Effect of expression of A. Ezrin-WT, Ezrin-PIP2-, Ezrin-T/D and Ezrin-PIP2- T/D.B. Ezrin-WT, Ezrin-PIP2-, Ezrin-T/A and Ezrin-PIP2- T/A on
NHE3 activity.

doi:10.1371/journal.pone.0129306.g003
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conditions under study, the fact that both Ezrin-WT and Ezrin-T/D expression activated
NHE3 activity suggests that their effect on NHE3 is not due to a change in cell surface area.

Because ezrin binding to PIP2 is necessary for its subsequent phosphorylation, we deter-
mined next whether expression of ezrin lacking the PIP2 binding site (Ezrin-PIP2-) affected
NHE3 activity. Expression of Ezrin-PIP2- significantly inhibited NHE3 activity (-40%) (Fig
3A) so indicating that the binding of ezrin to PIP2 is important for maintaining NHE3 activity
under baseline conditions. Interestingly, the introduction of the T567D mutation in the Ezrin-
PIP2- mutant (Ezrin-PIP2- T/D) was sufficient not only to reverse NHE3 activity to the control
level, but also to increase it (+80%) (Fig 3A). Whereas Ezrin-PIP2- seems to localize primarily
in the cytoplasm, Ezrin-PIP2- T/D was expressed on the plasma membrane of OK cells similar-
ly to ezrin carrying the threonine 567 to aspartic acid mutation alone (Figs 1B, 1C, 1D and 2B).
It suggested that the T567D mutation, and by implication threonine 567 phosphorylation, re-
stores the capacity of Ezrin-PIP2- to locate mainly on the plasma membrane and activate
NHE3 activity under baseline conditions. Along these lines, the introduction of the T567A mu-
tation in the Ezrin-PIP2- mutant (Ezrin-PIP2- T/A) was sufficient to render insignificant the
effect on NHE3 activity induced by Ezrin-PIP2- expression (Figs 3 and 4).

Effect of CHP1 expression on ezrin activation to control NHE3 activity
We have recently shown that CHP1 expression increased NHE3 transport activity (+50%) and
ezrin phosphorylation at threonine 567 without changes in total ezrin whereas CHP1 silencing
decreased NHE3 activity (-50%) and ezrin phosphorylation [34]. Furthermore, CHP1 knock-
down reverses NHE3 activation induced by Ezrin-WT expression but not that induced by Ezrin-
T/D [34]. Because linkage of ezrin to the plasma membrane occurs before its phosphorylation

Fig 4. Effect of CHP1 expression on the ezrin-mediated control of NHE3 activity.NHE3 activity was measured as described in the legend of Fig 3. Bars
and error bars represent the means and SE, respectively (8 experiments per condition). **P < 0.01 ANOVA compare to control (empty-vector-transfected
cells), NS: Statistically insignificant compare to control. $$$P<0.001 ANOVA, CHP1 expression compared to CHP1 and Ezrin-T/A co-expression. Effect of
expression ofA. Ezrin-WT, Ezrin-PIP2-, CHP1, CHP1 + Ezrin-WT or CHP1 + Ezrin-PIP2-. B. Ezrin-T/A, Ezrin-PIP2- T/A, CHP1, CHP1 + Ezrin-T/A or CHP1
+ Ezrin-PIP2- T/A on NHE3 activity.

doi:10.1371/journal.pone.0129306.g004

Ezrin Activation Promotes NHE3 Activity via CHP1

PLOSONE | DOI:10.1371/journal.pone.0129306 June 4, 2015 8 / 15



and actin cytoskeleton interaction [6], the effect of an ezrin construct lacking PIP2 binding on
CHP1-dependent activation of NHE3 activity was determined (Fig 4A and 4B). The increase in
NHE3 transport induced by co-expression of CHP1 and Ezrin-WTwas similar to the one induce
by expression of Ezrin-WT alone (+70%) (Fig 4A), confirming that CHP1 and ezrin stimulated
NHE3 activity via a common signal cascade. However, when CHP1 was co-expressed with
Ezrin-PIP2- (which per se inhibits NHE3 by -40%) NHE3 activity was increased only by +10%
(Fig 4A). It is of note that comparing the percentage of change in NHE3 activity induced by ex-
pression of Ezrin-PIP2- (-40%) with that induced by expression of CHP1 and Ezrin-PIP2-

(+10%) in OK cells demonstrated an overall increase in transport activity of 50%, which is com-
parable to activation of NHE3 by CHP1 alone. This indicates that ezrin binding to PIP2 may not
be central in the CHP1-dependent activation of NHE3. In support of this postulate, co-expres-
sion of CHP1 and Ezrin-T/A reduced NHE3 activity when compared to the expression of CHP1
alone (Fig 4B) whereas, co-expression of CHP1 and Ezrin-PIP2- T/A increased NHE3 activity to
a similar extent as the expression of CHP1 alone (Fig 4B). Ezrin-T/A and Ezrin-PIP2- T/A per se
had no effect on NHE3 activity (Figs 3B and 4B). These results indicate that Ezrin-T/A does
compete with endogenous ezrin to affect the CHP1 induced activation of NHE3 while Ezrin-
PIP2- T/A does not. The cellular fractionation experiments supported these results. Indeed,
CHP1 expression induced an increase in endogenous or exogenous ezrin in the membrane-en-
riched fraction (Fig 5A and 5B). Furthermore, CHP1 expression partially recovers the decrease
in exogenous ezrin amount in the membrane-enriched fraction of OK cells expressing Ezrin-
PIP2- (Fig 5A and 5B).

In summary, CHP1 action to activate ezrin seems to be upstream of (or dependent on) ezrin
phosphorylation and downstream of (or independent from) ezrin binding to PIP2 because
CHP1 expression acts to compensate ezrin lacking binding to PIP2 but not ezrin lacking phos-
phorylation at threonine 567, i.e. the role of CHP1 in the control of NHE3 activity seems con-
nected to anchoring ezrin to actin rather than ezrin to the plasma membrane.

Discussion
Ezrin is a microfilament-membrane linker that provides linkage between the plasma mem-
brane-associated protein, NHE3, and the actin cytoskeleton [1, 14] to regulate several aspects
of NHE3 functions [24, 25, 34, 43, 44]. Specifically, direct binding of ezrin to NHE3 contributes
to NHE3 activity by affecting newly synthesized NHE3 delivery to the plasma membrane and
NHE3 brush border mobility [24].

In this study, to better understand the cellular mechanisms by which ezrin influences NHE3
function, both the PIP2 binding to and phosphorylation of ezrin and their possible synergism
in the maintenance of NHE3 activity under baseline conditions were analyzed. Ezrin binding
to PIP2 and its phosphorylation at threonine 567 rather than ezrin expression level per se [34,
42] were both involved in the control of NHE3 activity (Figure A in S1 File). CHP1 is together
with ezrin part of the NHE3 regulatory complex [34]. Interestingly, the CHP1 role in control-
ling NHE3 basal activity [34, 39] appears to be dependent upon ezrin phosphorylation rather
than on ezrin binding to PIP2 (Figure B in S1 File). This conjecture is based on the following
findings.

Firstly, lack of ezrin binding to PIP2 inhibited NHE3 activity, suggesting that the ezrin mu-
tant lacking PIP2 binding competes with endogenous ezrin molecules to maintain NHE3 basal
activity. PIP2 is particularly located in subcellular structures on the apical membrane of epithe-
lial cells such as the microvilli [45]; ezrin binding to PIP2 may serve for spatial-temporal
targeting of the assembly and disassembly of protein complexes (e.g., kinases and co-factors)
required for optimal NHE3 basal activity. Indeed, interaction of ezrin with PIP2 is believed to
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enhance ezrin binding to both plasma membrane-associated proteins and actin filaments [3,
7–12]. Of note, transport protein regulation by phosphoinositide is not surprising; NHE activi-
ty requires phosphoinositide association. Two functionally distinct phosphoinositide binding
regions were identified on the exchanger C-terminus and their mutation led to the inhibition
of the basal activity of both NHE1 and NHE3 [46, 47]. An inhibition of NHE3 transport capa-
bility induced by the expression of ezrin lacking the PIP2 binding domain might be an unrec-
ognized phosphoinositide-dependent mechanism that requires ezrin as an intermediate.

Fig 5. Effect of CHP1 expression on Ezrin-WT or Ezrin-PIP2-distribution in sub-cellular fraction. Cellular fractions were prepared as described in the
legend of Fig 2. A:One of the immunoblots is shown. GFP = transfected mEGFP tagged ezrin (Ezrin-GFP) and Endo = endogenous ezrin.B: Statistical
analysis of signal intensity ratios relative to the immuno-detected band in S and P is reported. The signal of total ezrin in S plus P fractions was defined as
equal to 100% for each condition and results are expressed as percentage of total ezrin in the P vs. S fraction. Antigen signals were normalized to β-actin.
Bars and error bars represent the means ± SE, respectively (4 experiments per condition). *P<0.05/**P < 0.01 ANOVA, membrane fraction of tagged ezrin
in the presented groups compared to the membrane fraction of tagged ezrin in cells transfected with Ezrin-WT. &P<0.05 ANOVA, membrane fraction of
endogenous ezrin in the presented groups compared to the membrane fraction of endogenous ezrin in cells transfected with Ezrin-WT. $P<0.05 ANOVA,
membrane fraction of tagged ezrin in Ezrin-PIP2- compared to Ezrin-PIP2- + CHP1 transfected cells.

doi:10.1371/journal.pone.0129306.g005
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Secondly, the T567D mutation not only activated NHE3 activity per se, but also restored the
membrane cytoskeleton linker capacity of the ezrin mutated at PIP2 binding site to activate
NHE3 activity. Indeed, while the Ezrin-PIP2- mutant was found to be restricted to the cyto-
plasm (Fig 1B), the Ezrin-PIP2- T/D mutant was recruited to the plasma membrane, similarly
to ezrin carrying the T567D mutation alone (Fig 1C and 1D). These observations indicate that
the phosphomimetic mutant is capable of controlling NHE3 basal activity counteracting the
lack of ezrin binding to PIP2, which is in line with previous findings [6].

Thirdly, the T567A mutation, either alone or in combination with the mutation of the ezrin
PIP2 binding site, did not affect NHE3 activity so confirming that the expression of ezrin per se
is not sufficient to control NHE3 activity [34, 42]. Furthermore, contrary to Ezrin-PIP2- ex-
pression, Ezrin-PIP2- T/A did not inhibit NHE3. These findings support the postulate that al-
though ezrin targeting to the plasma membrane by PIP2 binding is necessary for NHE3 basal
activity, ezrin phosphorylation at threonine 567 is able to offset the effect of the lack of ezrin
PIP2-binding in the control of NHE3 transport.

Fourthly, CHP1 plays a role in the ezrin-mediated control of NHE3 activity because CHP1
expression stimulates localization of endogenous and exogenous ezrin in a membrane-enriched
fraction where most of the Ezrin-T/D was found and CHP1-dependent activation of the NHE3
activity was significantly reduced by the ezrin T567A mutation. These data are in agreement
with our previous observations of CHP1 signaling upstream to ezrin phosphorylation in the
modulation of NHE3 function [34]. CHP1 is probably an example of Ca2+-modulated regula-
tory proteins that intervenes in the fine-tuning of a relative large number of specific intracellu-
lar activities with functional protein interactions being the determinants for the activities of
this class of regulatory proteins [26, 48]. Members of the EF hand Ca2+ binding protein family
have been identified as ezrin ligands that specifically interact with the N-terminal domain of in-
active ezrin to unmask the actin binding site [49, 50]. Although this study has not specifically
addressed the interaction of CHP1 to ezrin as the mechanism by which CHP1 affects ezrin
activation, our findings match those showing functional targeting of ezrin by Ca2+-modulated
regulatory proteins. Furthermore, CHP1 is known to modulate either protein kinase or phos-
phatase activity [26, 51, 52] while several kinases and phosphatases are found to regulate ERM
protein phosphorylation [53–59]. Concerning a possible role of CHP1 in the control of ezrin
association with PIP2, EF hands Ca2+ binding proteins have been found to biochemically com-
pete with phosphoinositide for the regulation of transport proteins [35, 36]. Our findings do
not support this pathway (Figure B is S1 File, pathway 1). CHP1-mediated activation of NHE3
activity was not affected by mutation of ezrin at the PIP2 binding site. CHP1 expression in-
duced a significant increase in Ezrin-PIP2- localization in a membrane-enriched fraction,
comparable to that induced in cells expressing Ezrin-WT, so confirming a CHP1 action inde-
pendent of ezrin binding to PIP2. However, our results do not exclude an action of CHP1 on
the regulation of the NHE3 transport by the direct association of phosphoinositide.

In summary, expression of ezrin per se is not sufficient to control NHE3 activity. However, a
conformational change (activation) of ezrin in response to PIP2 binding and phosphorylation
of threonine 567 is necessary to affect NHE3 basal activity. CHP1 is a signal intermediate pro-
posed to act as a regulatory partner of ezrin possibly to support the creation of a microfilament
environment for NHE3 function. Further studies are necessary to determine how CHP1 con-
trols ezrin phosphorylation and ezrin binding to actin (Figure B in S1 File, pathway 2) and
whether CHP1 and ezrin coordinate function targets specifically NHE3 or also other NHE iso-
forms. Indeed, members of the CHP protein family affect NHE1 activity and trafficking [26]
and ezrin binding to NHE1 promotes remodeling of the actin cytoskeleton [60, 61] suggesting
that a coordinate CHP1 and ezrin action to facilitate localized signal relay [62] might not be re-
stricted to NHE3.
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Supporting Information
S1 File. Proposed model of coordinate CHP1 and ezrin regulatory action on NHE3 activity.
Two pathways of ezrin activation were tested (pathway 1 = binding of PIP2 to ezrin and path-
way 2 = phosphorylation of ezrin; pathway 1 helps allow pathway 2) by expression of ezrin var-
iants: Ezrin binding to PIP2 and its phosphorylation are both important to control NHE3
activity under baseline conditions (Figure A). CHP1 controls NHE3 activity via ezrin activation
(Figure B). Our findings seem to exclude the possibility that CHP1 acts on ezrin activation via
pathway 1, while possible mechanisms of CHP1 action on pathway 2 remain to be defined.
Further studies are necessary to determine the role of CHP1 on pathway 2.
(TIF)
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