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Abstract
Targeting modules or signalings may open a new path to understanding the complex phar-

macological mechanisms of reversing disease processes. However, determining how to

quantify the structural alteration of these signalings or modules in pharmacological net-

works poses a great challenge towards realizing rational drug use in clinical medicine.

Here, we explore a novel approach for dynamic comparative and quantitative analysis of

the topological structural variation of modules in molecular networks, proposing the concept

of allosteric modules (AMs). Based on the ischemic brain of mice, we optimize module distri-

bution in different compound-dependent modular networks by using the minimum entropy

criterion and then calculate the variation in similarity values of AMs under various conditions

using a novel method of SimiNEF. The diverse pharmacological dynamic stereo-scrolls of

AMs with functional gradient alteration, which consist of five types of AMs, may robustly

deconstruct modular networks under the same ischemic conditions. The concept of AMs

can not only integrate the responsive mechanisms of different compounds based on topo-

logical cascading variation but also obtain valuable structural information about disease

and pharmacological networks beyond pathway analysis. We thereby provide a new sys-

temic quantitative strategy for rationally determining pharmacological mechanisms of

altered modular networks based on topological variation.

Introduction
The spatial structure of cell signaling systems [1] represents a promising pathway for develop-
ing a better approach to studying the complexity of diseases and unraveling the mechanisms of
pharmacological networks. Moreover, modularity is ubiquitous in biological networks [2], and
the exploration of modular structure has been proposed as a key factor for understanding the
complexity of biological systems [3] and disease networks [4]. A cascade of network modules is
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used to define cancer progression, and modular structure plays a significant role in aiding the
diagnosis, prevention, and therapeutic treatment of the disease [5]. Because multiple drugs act
within the context of the regulatory networks in which drug targets and disease gene products
function, module-designed studies are becoming increasingly important for revealing the rela-
tionships between drug actions and disease outcomes in network pharmacology [6]. Highly
networked signaling hubs are often associated with disease, for example, the IKK-IkB-NFkB
signaling module functions as a signaling hub for diverse inflammatory, immune, and develop-
mental signals [7]. Modular pharmacology (MP) also suggests that the treatment of complex
diseases requires a modular design to affect multiple targets [8]. To date, many methods or
algorithms have been proposed for module identification [3].

From a network point of view, however, most intra-protein conformational changes may be
dynamically transmitted across protein-protein interactions and signaling networks of the cell
[9]. Allostery exerts conformational control over cellular pathways and networks to determine
cell responses; and if allostery is not at play, neither signal propagation nor pathway switching
will take place [10]. A previous study analyzed several methods for identifying allosteric path-
ways in intra-protein networks, including one method that employed the concept of modules
and considered proteins as sets of modules [9]. Allosteric networks have been characterized
using a community network analysis approach previously applied to investigate allostery in
tRNA-protein complexes [11], protein dynamical network [12] and innovative therapies [13].

Because allosteric conformational change involves the relative movement of both internal
and external modules [14], allosteric communication plays a crucial role in pharmacological
cellular signaling processes. Positive and negative allosteric modulators of the type 5 metabo-
tropic glutamate (mGlu5) receptor both have demonstrable therapeutic potential in neurologi-
cal and psychiatric disorders [15]. Therefore, by fusing the regulatory principles of protein
allostery (a special and limited part in cellular networks) and dynamic network information,
we propose the concept of allosteric modules (AMs) [16]. Generally, the multi-potent func-
tional changes in modular architecture are referred to as AMs. Allostery is an intrinsic property
of many modules that is indispensable for molecular regulatory and feedback mechanisms. An
AMmay change its boundary in structural transformation based on different parametric varia-
tions (such as nodes and edges) [16], which can be used to reflect the dynamics of modular net-
works and quantitatively analyze allosteric variations to reveal detailed allosteric
pharmacological events in cellular networks.

Our previous studies showed that baicalin (BA), cholic acid (CA), and jasminoidin (JA)
could significantly reduce ischemic infarct volume [17,18]. Moreover, analysis of differentially
expressed genes and signaling pathways indicated that the pharmacological mechanisms of
these compounds showed both similarities and variations [17,19]. Based on these findings, we
attempted to quantitatively determine the diversity of AMs in compound-related target net-
works fusing topological variation and functional alteration and to further reveal the compara-
tive pharmacological mechanisms of different compound treatments toward cerebral ischemia
according to the variability of allostery-of-function modules.

Materials and Methods

Animal model, compound treatment, microarray experiments and data
preparation
The animal model, compound treatment, microarray experiment and data preparation method
used in this study have been previously described [18,20]. Animal use protocols were reviewed
and approved by the Ethics Review Committee for Animal Experimentation, China Academy
of Chinese Medical Sciences. All animal experiments were conducted in accordance with the

Pharmacological Dynamic Stereo-Scrolls of Allosteric Modules in Anti-Ischemic Modular Networks

PLOS ONE | DOI:10.1371/journal.pone.0158379 July 6, 2016 2 / 19

no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

Abbreviations: BA, baicalin; CA, cholic acid; JA,
jasminoidin; AMs, allosteric modules; WAM,
watershed allosteric module; CAMs, conserved
allosteric modules; GAMs, generated allosteric
modules; DAMs, disappeared allosteric modules.



Prevention of Cruelty to Animals Act 1986 and the National Institute of Health guidelines on
the care and use of laboratory animals for experimental procedures. All surgery was performed
under anesthesia, and all efforts were made to minimize suffering.

Briefly, one hundred and ten adult male mice (3 months old, 38–48 g, Kunming strain,
China) were purchased from the Experimental Animal Center of Peking University Health Sci-
ence Center, and then randomly divided into five groups based on previous studies: sham,
vehicle, BA, CA and JA, each consisting of 22 subjects. A cerebral ischemia–reperfusion mouse
model was established based on methods described by Hara et al. [21] and Himori et al. [22].
Briefly, after being anesthetized with 2% pentobarbital (4 mg/kg, i.p.), the mice were subjected
to middle cerebral artery occlusion, ligated with an intraluminal filament for 1.5 h and then
reperfused for 24 h. In the sham- operated mice, the external carotid artery was surgically pre-
pared for the insertion of the filament, but the filament was not inserted. Based on the infarc-
tion volume or behaviors of these mice [23], we could determine whether the operations were
successful. Mice in the experimental groups were injected with 2 ml/kg body weight BA (5 mg/
ml), CA (7 mg/ml) and JA (25 mg/ml) via the tail vein 2 h after surgical occlusion. Mice in the
sham-operated and vehicle groups underwent identical procedures, but were injected with
vehicle (2 ml/kg body weight; 0.9% NaCl) rather than experimental compounds. During the
experimental procedure, blood pressure, blood gas, and glucose levels were monitored, rectal
temperature was maintained at 37.0–37.5°C with a heating pad, the body temperature was
maintained at 37°C with a thermostatically controlled infrared lamp, and brain temperature
(monitored with a 29-gauge thermocouple in the right corpus striatum) was maintained at 36–
37°C with a temperature-regulating lamp. Electroencephalogram monitoring was performed to
ensure isoelectricity during ischemia.

After 24 h reperfusion, 13 mice from each group were anesthetized with chloral hydrate
(400 mg/kg) and decapitated rapidly. The cerebrum was removed and cut into five slices. The
slices were transferred to 4% 2, 3, 5-triphenyltetrazolium chloride solution and incubated for
30 min at 37°C in darkness and then transferred into a 10% formalin solution. The area of the
infarct region was calculated using a Pathology Image Analysis System, and the ratio of the
infarct volume to the total slice was also calculated. 9 mice from each group were sacrificed by
rapid decapitation under deep anesthesia with chloral hydrate (400 mg/kg). Hippocampal
RNA from different treatment groups was homogenized in TRIzol Reagent and extracted
according to the single-step method [24]. RNA was further purified to remove genomic DNA
contamination and concentrated using an RNeasy micro kit (Qiagen, Valencia, CA). RNA
quality was assessed by determining the 26S/18S ratio using a Bioanalyzer microchip (Agilent,
Palo Alto, CA). Microarrays were made from a collection of 16,463 mouse oligo chips provided
by the Boao Biotech Company, Beijing.

All experimental data were uploaded to the ArrayTrack system [US Food and Drug Admin-
istration (FDA), USA]. Experimental analysis was based on the Minimum Information About
a Microarray Experiment (MIAME) guidelines and the MicroArray Quality Control (MAQC)
project. The results were submitted to the Array Express database. All microarray data were
normalized by locally weighted linear regression (Lowess) to reduce the experimental variabil-
ity [25] (smoothing factor: 0.2; robustness iterations: 3). A one-way ANOVA model and a sig-
nificance analysis of microarrays (SAM) were used to compare the means of the altered genes
between vehicle and sham, BA and vehicle, CA and vehicle, JA and vehicle groups. Genes with
a P-value< 0.05 and a fold change>1.5 were selected for further analysis. After obtaining the
P-values, Bonferroni correction was performed to select a list of significant genes for further
analysis. In addition, an increase> 1.5-fold or a decrease< 0.5-fold of expression levels indi-
cated up-regulation or down-regulation, respectively.
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Constructing target networks in different groups
We constructed global networks of different groups by integrating gene expression data and
PPI information. A unique global mice gene and protein network was constructed by integrat-
ing protein interactions reported in the BIOGRID [26], INTACT [27], MINT [28], and NIA
Mouse Protein-Protein Interaction Databases [29] and by deleting duplicated data and self-
interactions.

Gene expression data were adapted from our previous study of gene expression profiles of
the hippocampus of ischemic mice treated with baicalin (BA), cholic acid (CA) and jasminoi-
din (JA) [18,20]. Mean-centered normalization of expression data was performed. Genes with
an expression value greater than one were defined to be significantly differentially expressed.
These genes were then mapped to the interaction network, generating target networks for each
group. The topological characteristics of related target networks were analyzed.

Identifying functional modules in different groups
In related target networks of each group, functional modules were identified using Affinity
propagation (AP) [30], the Markov Cluster algorithm (MCL) [31] and Molecular Complex
Detection (MCODE) [32], respectively. For the AP algorithm, we sampled the Preference
parameters from 0.1 to 1.0 in steps of 0.1. For MCL, the range of possible Inflation parameter
values (1.5 to 5.0) was sampled uniformly with a step size of 0.5. For MCODE, we tried all pos-
sible combinations of the following parameters (Include Loops: false; Degree Cutoff: 3; Node
Score Cutoff: 0.2; Haircut: true or false; Fluff: true or false; K-Core: 2; Max. Depth from Seed:
100, 5, 4, 3).

Calculating minimal network entropy
After identifying functional modules by three different methods, the next task was to determine
the relative optimal module identification results. In this study, we attempted to assess the
module identification results by incorporating the notion of entropy. The entropy of a random
variable quantifies the uncertainty or randomness of that variable [33]. Some researchers have
provided definitions of the network structure entropy, which is based on node degree and indi-
cates the homogeneity of node degree [34,35]. The importance of nodes is defined as follows:

Ii ¼ ki

�XN
i¼1

ki ð1Þ

where I i is the importance of node i, N is the number of nodes in the network, and k i is the
degree of node i. The network structure entropy is defined as follows:

E ¼ �
XN
i¼1

Iiln Ii ð2Þ

In scale-free networks, a large number of low-degree peripheral nodes are linked to a few
high-degree hubs; these networks are considered to be “ordered” [34,35]. The minimum
entropy value is Emin,

Emin ¼ � 1

2
ln
1

2
�
XN
i¼2

1

2ðN � 1Þln
1

2ðN � 1Þ ¼
ln4ðN � 1Þ

2
ð3Þ

It is believed that the ultimate aim of module identification is to find a stable modular state,
which should have minimum uncertainty. Because the number of modules in a given network
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is uncertain in advance, the only task that can be completed is to minimize the uncertainty.
Because minimum entropy indicates minimum uncertainty, we proposed to evaluate the
results of module identification based on the minimum entropy criterion. To assess the statisti-
cal significance of the minimum network entropy of each network, an ensemble of randomized
networks was constructed by randomly reshuffling all the edges of the original network
[36,37]. With this type of randomization, each node preserved the same number of links as in
the original network.

Enrichment analysis of gene ontology (GO) categories and KEGG
pathways
Significantly over-represented GO biological processes (BP) in modules were detected by the
DAVID 6.7 functional annotation tool (http://david.abcc.ncifcrf.gov/) [38] (GOTERM_B-
P_ALL). The analysis was conducted using a modified Fisher's exact test, and we selected all
GO terms that were significant with a P-value<0.05 after correcting for multiple-term testing
by Benjamini. Enrichment analysis of KEGG pathways in modules was performed using a
hypergeometric test, as implemented on the KOBAS 2.0 web server (http://kobas.cbi.pku.edu.
cn/) [39].

Use of SimiNEF to calculate similarities of AMs
Amethod that integrated the similarities of nodes, edges and GO functions of modules (Simi-
NEF) was proposed and applied to compare the degree of overlap between AMs, focusing par-
ticularly on node allosteric modules (NAMs) and edge allosteric modules (EAMs) in any two
groups. In SimiNEF, we used similarity Snef to quantify the relative overlap between AMsmi

andmj, including the similarities of nodes (Sn), edges (Se) and GO functions (Sf) altogether.
SimiNEF was based on Jaccard’s coefficient of similarity, which ranges from 0% (states have no
nodes/edges/ GO functions in common) to 100% (states have identical nodes/edges/GO func-
tions). The Sn (mi,mj), Se (mi,mj) and Sf (mi,mj) are defined by Eqs 4, 5 and 6, respectively.

Sn ðmi;mjÞ ¼
jNðmiÞ \ NðmjÞj
jNðmiÞ [ NðmjÞj

ð4Þ

Se ðmi;mjÞ ¼
jEðmiÞ \ EðmjÞj
jEðmiÞ [ EðmjÞj

ð5Þ

Sf ðmi;mjÞ ¼
jFðmiÞ \ FðmjÞj
jFðmiÞ [ FðmjÞj

ð6Þ

where |N(mi) \ N(mj)|, |E(mi) \ E(mj)|, and |F(mi) \ F(mj)| are the numbers of overlapping
nodes, edges, and GO functions inmi andmj, and |N(mi) [ N(mj)|, |E(mi) [ E(mj)|, and
|F(mi) [ F(mj)| are the numbers of nodes, edges, and GO functions in the union ofmi andmj

(Note: Here, GO functions refer to the GO biological processes mentioned above). If Sn, Se, and Sf
are all greater than a certain value k simultaneously, then we establish that Snef is greater than k.

Biological validation for AMs
Two AMs Mrm1-Guk1-Hrsp12 and Fos-Cebpg-Atf2 were selected to validate the relationship
between their mRNA or protein expressions and cerebral ischemia, as well as the effects of dif-
ferent compound interventions on the expression of genes or proteins using RT-PCR and
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western blotting, respectively. The experiment, including animal model and compound treat-
ment, was performed as described previously (see section 1 in Materials and Methods).

Real-time reverse transcription-polymerase chain reaction (RT-PCR). Eight animals
from each group were anesthetized with chloral hydrate (400 mg/kg). Euthanasia was per-
formed by rapid decapitation under deep anesthesia. Total RNA was extracted using TRIzol
Reagent (Invitrogen, Carlsbad, CA). cDNA was synthesized using a First Strand cDNA Synthe-
sis Kit (Fermentas MBI) according to the manufacturer's instructions. Expressions of Guk1,
Hrsp12 andMrm1 were determined by real-time PCR, and the following primer sequences
were used: Guk1, 5’-TATGGGACAAGCAAGGAAGC-3’ (forward) and 5’-GGCTTCATCCA
GGTTGTCAT-3’ (reverse); Hrsp12, 5’-CCAAGCTGTGCTAGTGGACA-3’ (forward) and
5’-GCAGCCTTCAGAATCTCACC-3’ (reverse);Mrm1, 5’-CAATCTTGGGGCTGTGATG-3’
(forward) and 5’-TGGCCTTGCTGACTACTGG-3’ (reverse); GAPDH, 5’-CAAAGTTGTCA
TGGATGACC-3’ (forward) and 5’-CCATGGAGAAGGCTGGG-3’ (reverse). Real-time PCR
was performed in a 7900HT Fast Real-Time PCR System (Applied Biosystems) using 2× SYBR
Green PCRMaster Mix (Applied Biosystems). The data were quantified using the standard
curve method after normalizing with GAPDH gene expression.

Western blotting. Three animals were sacrificed 24 h after ischemia by rapid decapitation
under deep anesthesia. Brain tissues were prepared for western blotting. Protein concentration
was determined by the Bradford assay (Tiangen Biotech Co., Ltd., Beijing, China). Protein sam-
ples (50 μg per lane) were electrophoresed in 10% SDS-polyacrylamide gels and transferred to
polyvinylidene fluoride (PVDF) membranes (Millipore, Billerica, MA, USA) at 60 V for 2
hours at 4°C in a transfer buffer containing 48 mmol L-1 Tris-base, 39 mmol L-1 glycine, and
20% methanol. The blots were blocked in fresh blocking buffer (Tris-buffered saline with
0.05% Tween 20 [TBS-T] plus 5% non-fat dry milk) for 1 h at room temperature. The blots
were then incubated at 4°C overnight with anti-Atf2 antibody (sc-164978), anti-c-Fos antibody
(sc-52), or anti-C/EBPγ antibody (sc-25769) (all at 1:1000 dilution; Santa Cruz Biotechnology,
Inc., Santa Cruz, CA, USA) and anti-β-actin antibody (1: 10000, Santa Cruz Biotechnology). A
secondary antibody conjugated with horseradish peroxidase (HRP, 1:5000, Bio-Rad) was used.
Immunoblots were visualized on X-ray film by a chemiluminescence reaction (Pierce, Rock-
ford, IL). Image analysis of the blots was performed on optical density-calibrated images using
AlphaEase Stand Alone software (Alpha Innotech Corp., San Leandro, CA).

Results
The protocols followed in conducting the experiment and data analysis are shown in Fig 1. In
previous studies, we demonstrated that BA, JA and CA all exerted a significant pharmacologi-
cal effect in reducing infarction volume and neurological scores [17,18,20].

Comparing topological attributes of compound-dependent ischemic
networks
We constructed a mice protein interaction network containing 65,850 edges by integrating
multiple protein interaction databases. After the preprocessing of gene expression data, differ-
ent microarray experimental data from ischemic mice were mapped to this network, and differ-
ential target networks of vehicle (vehicle vs. sham), BA (BA vs. vehicle), CA (CA vs. vehicle),
and JA (JA vs. vehicle) groups were constructed (Fig 2). The topological attributes of these four
networks were similar to each other, although there was a small difference in network size (S1
Table). Therefore, analysis of the entire networks might still not be sufficient to uncover the
diverse pharmacological protective mechanisms among these compounds.
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Identifying functional modules from the entire ischemic networks
The results identified by AP, MCL, and MCODE are shown in S2–S4 Tables. Considering the
effect of different parameters on the clustering results, we tested multiple parameter settings
for each method. The results indicated that there were large differences in the number of mod-
ules, size, modularity and entropy among modules obtained from the three methods in each
group (S2–S4 Tables, Fig 3A).

Optimizing functional modules using MCODE approach
According to the minimum entropy criterion, results identified byMCODE, which had minimal
network entropy, were selected for further analysis (Fig 3A). To evaluate the statistical significance
of the minimum network entropy of each target network, we constructed an ensemble of 50

Fig 1. Flow diagram.Drug-target networks were constructed by integrating gene expression data and
protein interaction data, and then functional modules were identified using the AP, MCL and MCODE
algorithms, respectively. The results of module identification were then optimized based on the minimum
entropy criterion. Enrichment analysis of GO biological processes and KEGG pathways was performed with
the DAVID 6.7 software program. The similarity or overlap between modules was calculated using SimiNEF.
Then, five different types of modular allostery were identified. We defined the five types of AMs as follows. (1)
AMs. Most modules showed partial overlap (0<Snef <100%) between vehicle-treated and compound-treated
groups, as well as between various compound-treated groups, and thus they were referred to as AMs. (2)
Conserved allosteric modules (CAMs, AMC). If the similarity between vehicle-treated group and a compound-
treated group reached 100% (Snef = 100%), these modules were referred to as CAMs. (3) Generated
allosteric modules (GAMs, AMG). If a module was not found in the vehicle-treated group but could be
identified in compound-treated groups, we defined it as aGAM. (4) Disappeared allosteric modules (DAMs,
AMD). If a module was found in the vehicle-treated group but could not be identified in compound-treated
groups, we defined it as a DAM. (5) Watershed allosteric module (WAM, AMW). 0<Snef <100%, the first
overlapped module between vehicle-treated and compound-treated groups, as well as between various
compound-treated groups, was referred to as theWAM. V = Vehicle, C = Compound. ‘

p
’ or ‘×’ represents its

appearance ‘yes’ or ‘no’ in the group, respectively. Finally, two modules could be validated using RT-PCR
andWestern blotting, respectively.

doi:10.1371/journal.pone.0158379.g001
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randomized networks with the same degree as the original networks in each group, and the same
method was used to identify modules in randomized networks. The entropy of randomized net-
works was then calculated. The means of the minimum entropy in randomized networks corre-
sponding to the vehicle, BA, CA, and JA groups were 5.60826, 5.51223, 5.52381, 5.50189,
respectively (Fig 3A). The values of the minimum network entropy in the original networks were
significantly lower than those in the randomized networks (P<0.05). After the optimization of the
minimum entropy, 50, 49, 41, and 42 modules (nodes�3) were identified from relevant target net-
works usingMCODE (S5 Table). The average sizes of those modules ranged from 5.327 to 6.171,
and the entropy values of the four networks were similar after module optimization (S5 Table).

Distribution of GO biological processes and KEGG pathways
GO functional enrichment analysis revealed 218 significantly enriched biological processes (S6
Table), which could be largely divided into 14 categories, including immune response and
inflammatory response (Fig 3C). A total of 185, 153, 147, and 192 GO biological processes
were enriched in the vehicle, BA, CA and JA groups, respectively (Fig 3B, S7 Table). Pathway
analysis revealed 74, 65, 62, and 68 significantly enriched KEGG pathways in modules from the
vehicle, BA, CA, and JA groups, respectively (Fig 3D, S8 Table). Based on modular analysis, we
unexpectedly expanded traditional pathway analysis not only by discovering many unknown
pathways in different groups but also by developing an enrichment strategy based on the varia-
tion of modular dynamics beyond known pathways.

Associations between GO functions and topological structures of AMs
Within the same group, there were no significant linear correlations between the changes in
the number of GO biological processes and nodes or edges in modules. We calculated the

Fig 2. Global networks of vehicle, BA, CA, and JA groups. The degree distribution of the four networks can be approximated by a power law
distribution, which appears as a straight line on a logarithmic plot.

doi:10.1371/journal.pone.0158379.g002
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connecting percentage of each node (i.e., the degree of each node/the total degree of the module
it belongs to) to indicate the importance of each node in the module. A significant linear corre-
lation was observed between the connecting percentage of each node and the changes in the
number of GO biological processes in the same module, and the correlation coefficient value
was only 0.18. These results suggested that local topological variations, such as changes in
nodes or edges, might not lead to sufficient functional alteration of the network.

Similarity gradient among AMs using SimiNEF in different groups
By calculating the similarities between modules using SimiNEF, we found that there were different
degrees of overlap between AMs of these groups (Fig 3E–3G, S1 Fig). We used similarity Snef>1%,
>25%,>50%,>70%,>75%, and = 100% to define the different degrees of overlap between two
AMs (Fig 4A–4F). Results showed that, from Snef>1% to Snef = 100%, the numbers of overlapping
modules among the vehicle, BA, CA and JA groups were 8, 5, 3, 1, 0, and 0, respectively, showing
a gradually decreasing trend (Fig 4G), and the numbers of overlapping GO functions among the
four groups were 192, 123, 83, 37, 0, and 0, respectively, also showing a decreasing trend. When
Snef>75% and Snef = 100%, there were no overlapping modules among the four groups (Fig 4E
and 4F). With changes in similarity, the changing trends of the number of overlapping and non-
overlapping modules between groups were as shown in Fig 4G–4I. Clearly, the number of non-

Fig 3. Changes in network structure entropy in different treatment groups. (A) The changes in network
structure entropy under different parameter settings in MCODE, AP, and MCL. The red, green, blue, and
violet lines denote the entropies in the BA, JA, CA and vehicle groups, respectively. EVeh (violet dotted line),
ECA (blue short dashed line), EBA (red long dashed line) and EJA (green solid line) denote the meanminimal
entropy in randomized networks corresponding to the vehicle, CA, BA and JA groups. (B andD) Distributions
of overlapping and non-overlapping GO biological processes and KEGG pathways among groups. Only
significant functions or pathways are shown in this figure based on a corrected P-value <0.05. (C) The 14
categories of 218 significantly enriched GO biological processes. (E-G) Examples of modular overlaps
between BA and CA, BA and JA, CA and JA groups, respectively. Each column of numbers indicates the
number of each module in each group. For example, if the overlap of nodes, edges or GO functions (any one
of them) between two modules is greater than 1%, 50% or 75%, these two modules are connected (See also
S1 Fig).

doi:10.1371/journal.pone.0158379.g003
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overlapping AMs (special modules in each group, which we defined as new allosteric modules)
gradually increased with an increase in similarity (from 1% to 100%) in all four groups (Fig 4I).
Linear regression analysis showed significant associations between the number of non-overlap-
ping AMs and the similarities of the vehicle (regression coefficient, 0.063; SE, 0.011; P = 0.005),
BA (regression coefficient, 0.092; SE, 0.017; P = 0.006), CA (regression coefficient, 0.092; SE,
0.025; P = 0.02) and JA groups (regression coefficient, 0.081; SE, 0.005; P<0.001).

Distribution of AMs, CAMs,GAMs, and DAMs
Compound interventions had different effects on modules in the modular networks based on
ischemic mice, which resulted in topological variations or changes of compound-associated
modules under different conditions. By calculating the relative overlap (i.e. similarity) between

Fig 4. Different degrees of overlaps betweenmodules of different treatment groups. (A-F) Six levels of
similarity reflect the degree of overlaps between modules of different treatment groups, including Snef >1%,
>25%, >50%, >70%, >75%, and = 100%. (D) TheWAM identified among the four groups. When Snef>70%,
AMW

BCJV was first identified among the four groups. The green dashed area indicates the AM 10 in the BA
group (AMBA10). The areas within the blue, orange and red squares represent AM 6 in the CA group (AMCA6),
AM 6 in the JA group (AMJA6) and AM 7 in the vehicle group (AMV7), respectively. (F) Five CAMswere
identified, namely AMC

BA8-V11, AM
C
JA36-V36, AM

C
JA39-V45, AM

C
CA6-JA6-V7, and AMC

CA36-JA37-V38. (G andH)
The changing trends of the number of overlapping modules between groups. (I) The changing trends of the
number of non-overlapping modules between groups.

doi:10.1371/journal.pone.0158379.g004

Pharmacological Dynamic Stereo-Scrolls of Allosteric Modules in Anti-Ischemic Modular Networks

PLOS ONE | DOI:10.1371/journal.pone.0158379 July 6, 2016 10 / 19



different states of the same module, we could quantitatively analyze topological structural vari-
ations of modules (based on the changes in nodes and edges primarily) in different states and
explore the dynamics of allosteric modular networks. Therefore, by calculating the variation in
similarity values of AMs under various conditions, five types of modular allostery (AMs,
CAMs, GAMs, DAMs andWAMs) were identified in ischemic modular networks before and
after compound intervention. We illustrated and defined AMs, CAMs, GAMs, DAMs and
WAMs in Fig 1 in advance. As shown in Fig 5, we presented in detail several examples. (1)
AMs. Most modules showed partial overlap (0<Snef <100%) between various groups. In anti-
ischemic modular networks, a given compound only attacked part of the disease-associated
modules, namely, only parts of nodes in the disease-associated modules were affected by the
compound. For example, BA acted on three nodes in AMV21 (Prkcd, Ppp2ca and Ppp2r5c), JA
affected only one node (Raf1), and all four nodes were affected by CA (Fig 5A), indicating that
the intervention of CA on AMV21 might be greater than that of BA or JA. (2) CAMs. Five
CAMs were identified between vehicle vs. different treatment groups, e.g., AMC

CA6 -JA6-V7

(Fig 4F), and AMC
CA36-JA37-V38 (Fig 5B). In anti-ischemic modular networks, compounds

affected the overall ischemia-associated modules, i.e., all nodes in the ischemia-associated
module were affected by the compound. For instance, both CA and JA affected all nodes in
AMC

V38 (Fig 5B). CAMs were not significantly altered after compound intervention; therefore,
these modules might not be particularly useful from a therapeutic standpoint. (3) GAMs.
A GAM indicated that the module appeared after compound intervention (birth). When Snef =
100%, a total of 115 GAMs were identified (Fig 4F). For example, AMG

BA48 and AM
G
CA40

(Mrm1-Guk1-Hrsp12) were not found in the vehicle group but appeared in the BA and CA
groups (Fig 5C); therefore, we assumed they were excitatory modules. (4) DAMs. A DAM indi-
cated that the module in the vehicle group disappeared after compound intervention (death).
When Snef = 100%, 45 DAMs were found (Fig 4F). For example, AMD

V33 (Fos-Cebpg-Atf2)
was included in the vehicle group but disappeared in the BA, CA, or JA groups (Fig 5D); there-
fore, we assumed it was an inhibitory module.

Fig 5. Examples of AMs,CAMs,GAMs, andDAMs. (A) AM BA33- CA16- JA34. The pink dashed area, green
dotted area, area in the yellow solid line indicate AMBA33, AMCA16, AMJA34, respectively. Blue nodes and dark
gray edges represent AMV21. (B) AM

C
CA36-JA37-V37. AMCA36 and AMJA37 (represented by green and yellow

circles) were completely overlapped with AMV38. (C) AM
G
BA48-CA40. Green nodes and dark gray edges

denote AMBA48 or AMCA40, and the blue dashed square indicates that the module did not appear in the
vehicle group. (D) AMD

V33. Blue nodes and dark gray edges denote AMV33, and the purple dashed square
indicates that the AM did not appear in the BA, CA or JA group.

doi:10.1371/journal.pone.0158379.g005
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Distribution ofWAMs and enriched KEGG pathways
When Snef>70%, the first overlapping module AMW

BCJV (including AMBA10, AMCA6, AMJA6

and AMV7) was identified among the vehicle, BA, CA and JA groups (Fig 4D).
According to the results of KEGG pathway enrichment analysis, three significantly enriched

pathways (nucleotide excision repair, basal transcription factors, and viral carcinogenesis) were
identified in AMW

V7 (Table 1). The three pathways have been reported to be associated with
BA in the literature, but the possible relationships between CA and nucleotide excision repair,
JA and nucleotide excision repair, JA and basal transcription factors have not been reported
(S9 Table). Additionally, AMW

BC (Snef>1%), AMW
CJ (Snef>1%), and AMW

BJ (Snef>25%) were

Table 1. Distribution of the watershed allosteric modules and significantly enriched pathways.

Watershed allosteric
modules

Snef Enriched terms Sample Background P-Value Corrected Genes IDs (Entrez Gene

AM IDs KEGG Pathways number number P-Value ID)

AMW
BCJV (BA vs. CA
vs. JA vs. V)

>70% AMBA10 Nucleotide excision repair 5 44 1.94E-
11

4.10E-11 66467|209357|13872|
17420|12572

Basal transcription factors 5 47 2.74E-
11

4.10E-11 66467|209357|13872|
17420|12572

AMCA6 Nucleotide excision repair 6 44 1.41E-
13

3.22E-13 12572|13872|14884|
209357|66467|17420

Basal transcription factors 6 47 2.15E-
13

3.22E-13 12572|13872|14884|
209357|66467|17420

AMJA6 Nucleotide excision repair 6 44 1.41E-
13

3.22E-13 12572|13872|14884|
209357|66467|17420

Basal transcription factors 6 47 2.15E-
13

3.22E-13 12572|13872|14884|
209357|66467|17420

AMV7 Nucleotide excision repair 6 45 4.15E-
13

9.37E-13 12572|13872|14884|
66467|209357|17420

Basal transcription factors 6 46 4.68E-
13

9.37E-13 12572|13872|14884|
66467|209357|17420

Viral carcinogenesis 2 236 0.01011 0.01348 209357|14884

AMW
BC (BA vs. CA) >1% AMBA23,

AMCA18

Oxidative phosphorylation 3 142 0.00013 0.0003882 225887|226646|75406

Parkinson's disease 3 143 0.00013 0.0003882 225887|226646|75406

Alzheimer's disease 3 183 0.00026 0.0004351 225887|226646|75406

Huntington's disease 3 189 0.00029 0.0004351 225887|226646|75406

Sulfur relay system 1 10 0.00757 0.009089 69372

AMW
CJ (CA vs. JA) >1% AMCA28 — — — — — —

AMJA35 — — — — — —

AMW
BJ (BA vs. JA) >25% AMBA49 RNA transport 4 172 1.11E-

07
2.22E-07 54364|74097|117109|

67676

Ribosome biogenesis in
eukaryotes

3 88 2.03E-
06

2.03E-06 54364|74097|117109

AMJA42 Ribosome biogenesis in
eukaryotes

4 88 1.61E-
08

3.23E-08 54364|74097|117109|
66161

RNA transport 4 172 2.21E-
07

2.21E-07 54364|74097|117109|
66161

Notes: AMW
BCJV denotes the watershed allosteric module identified among the BA, CA, JA and vehicle groups. AMW

BC denotes the watershed allosteric

module identified between the BA and CA groups. AMW
CJ denotes the watershed allosteric module identified between the CA and JA groups. AMW

BJ

denotes the watershed allosteric module identified between the BA and JA groups. The fourth column “Sample number” lists the number of input genes

mapped to the particular pathway. The fifth column “Background number” lists the number of background genes mapped to the particular pathway.

“—” indicates that no KEGG pathway was enriched from the AM.

doi:10.1371/journal.pone.0158379.t001
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identified between the BA and CA, CA and JA, BA and JA groups, respectively (Table 1). The
AMs between the BA and JA groups held a higher similarity than those between the BA and
CA or the JA and CA groups. AllWAMs enriched two or three KEGG pathways, except
AMW

CJ. TheWAMs might provide another approach to revealing complex pharmacological
networks beyond pathways analysis.

Five types of AMs make up dynamic stereo-scroll
To systemically reveal the complex interaction of AMs in modular networks, we must define,
in detail, the contributions of diverse AMs under different treatments or at different time
points. AMC represents the baseline of AMs under different treatments or at different time
points, whereas AMW splits the different conditions into an allostery-of-function gradient.
These two types of AMs provide evidence of the stability of pharmacological systems, which
may be used to bridge different compounds in clinical medicine. Based on biological and phar-
macological disturbances in inter-and intra-AMs, the numbers of AMG and AMD may respond
to reach a dynamic balance from the pool of AMs. To summarize the relationships among
these AMs, we proposed a scheme of AM dynamic stereo-scroll to integrate all AMs (Fig 6A).

Validating functional alteration of AMG
BA48 and AMD

V33

We selected a GAM and a DAM from two ends of AMs to validate that topological variations
were associated with ischemia and compound treatment. Although the mRNA levels of Guk1
andHrsp12 were not significantly different among groups (P>0.05), the mRNA level ofMrm1
in AMG

BA48 was indeed significantly different among these treatment groups (Fig 6B–6E).
Compared with the vehicle group,Mrm1mRNA was significantly up-regulated by BA and
down-regulated by CA (P<0.01), while the associations betweenMrm1 and cerebral ischemia
have not been previously reported.

Compared with the sham group, the protein expression levels of Atf2, Fos, and Cebpg were
significantly up-regulated in the vehicle group (P<0.01) (Fig 6F–6I), which was also consistent
with our previous findings [40,41]. Fos and Cebpg protein expression levels in AMD

V33 were
both significantly down-regulated by JA, BA and CA relative to the levels observed for the vehi-
cle group (P<0.05).

Discussion
We performed a comparative modular analysis of ischemic targeted networks based on differ-
ent identification methods of AMs. After developing a novel similarity approach for analyzing
allostery-of-function, we defined five types of AMs and established a dynamic stereo-scroll of
different allosteric variations. This exploration offers a powerful strategy for reflecting the char-
acteristic precision and robustness of allostery-mediated modular pattern transformation.

SimiNEF is a novel tool for modular functional analysis
Modularity has become a fundamental concept for building disease network and drug-target
networks [6]. Different modules may contribute different functions to outcome variations.
Therefore, an important step of network-based approaches to disease is to identify the disease
module for the pathophenotype of interest, which in turn can guide further experimental work
and influence drug development [1]. Moreover, understanding AMs that contribute to phar-
maceutics might provide novel signatures that can be used as endpoints to define disease pro-
cesses or the effects of drugs under healthy or diseased conditions [6]. Although traditional
pathways have served as conceptual frameworks in biological research [42], at the module
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Fig 6. Schematic representation of AM dynamic stereo-scroll and biological verification for AMGBA48 of Mrm1-Guk1-Hrsp12 and AMDV33 of
Fos-Cebpg-Atf2. (A) Five types of AMs can structure a multiple-dimensional map in diverse dynamic directions. (B-D) The mRNA levels ofGuk1,
Hrsp12 andMrm1 among different treatment groups. #P<0.05, ##P<0.01, compared with the sham group; *P<0.05, **P<0.01, compared with the vehicle
group. (E) Representative RT-PCR bands ofGuk1, Hrsp12,Mrm1 and GAPDH. (F) Representative immunoblots of Atf2, Fos, Cebpg and β-actin. (G-I)
The protein expression levels of Atf2, Fos, and Cebpg among different treatment groups. #P<0.05, ##P<0.01, compared with the sham group; *P<0.05,
**P<0.01, compared with the vehicle group.

doi:10.1371/journal.pone.0158379.g006
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layer, the synthetic biologist uses a diverse library of biological devices to assemble complex
pathways that function like integrated circuits. However, the exact definition of a functional
module still varies [6,43,44], and modular analysis is becoming a powerful approach for decon-
strusting complex biological networks.

AMs display different degrees of flexibility [16]. Recently, several approaches to parameteri-
zations and generative rules of different parameters such as path length, node, size, and modu-
larity similarity as well as pertinent models have been developed according to a modules-
within-modules perspective [45,46]. However, more fundamental tools are required to antici-
pate phenomena by quantitatively decomposing, reconstituting and optimizing modular struc-
ture from a topological perspective [47]. In this case, by fusing topological variation and
functional alteration, SimiNEF is a powerful approach for modular functional analysis, which
may help explore, in detail, the effect of modular network on the quality and stability of
dynamic communities when different compounds are administered. In addition, we may also
use known pathways to improve and predict unknown functions of modules [48].

A panoramagram of AMs sufficiently reveals complex disease networks
The allosteric theory of signal transduction has been applied to signaling molecules as diverse
as regulatory enzymes, nuclear receptors, and various classes of membrane receptors [49]. The
concept of allosteric modulation in drug targeting has attracted considerable interest in recent
years and may become a promising therapeutic principle [50]. Allostery appears to play a key
unifying role by specifying the conformational barcode. Dysfunctional conformational bar-
codes in disease states can be (partially) restored to their “healthy” barcode ensemble states by
allosteric drugs [2,51]. In this study, three different effective compounds acted on the same
ischemic AM network. Modular overlaps might reveal the simultaneous involvement of nodes
in multiple modules, which were determined by assigning proteins to multiple modules [52].
Not merely addressing topological overlaps (e.g., overlaps of nodes or edges), SimiNEF took
into account the similarities of nodes, edges and GO functions of AMs altogether to reveal the
fusing alteration of topological and functional similarities between AMs. Different effective
compounds attacked diverse nodes in the same ischemic AMs network, and five types of modu-
lar allostery (AMs, CAMs, GAMs, and DAMs andWAMs) were identified, which reflected the
structural and functional diversity of AMs before and after compound intervention. Because
allosteric propagation can occur via large cellular assemblies over large distances [51] or within
the protein matrix to eventually reach the substrate site [53], in our study most AMs were par-
tially overlapped (0< Snef <100%) and more GAMs were observed than DAMs, whereas only
five CAMs were identified in the vehicle group. Thus, allostery could help explain how different
compounds perturbed the ischemic modular network. For example, as shown in Fig 5A,
AMBA33, AMCA16, and AMJA34 all affected AMV21, which was enriched for the function “phos-
phate metabolic process”; then, BA, CA, and JA all intervened in the function, which reflected
the similarity of their pharmacological mechanisms. Specifically, however, BA, CA, and JA
affected different genes or proteins in AMV21, e.g., the number of genes affected by CA was the
sum of that of BA and JA, which reflected the diversity of their pharmacological mechanisms.
Moreover, based on different levels of similarity,WAMs were identified among the vehicle,
BA, CA and JA groups, as well as between any two of the compound-treated groups. Such a
WAM contributed to reveal the demarcation point of common and diverse pharmacological
mechanisms between different effective compounds.

Indirectly using specific inter-protein network pathways can affect the pharmacological tar-
get protein [9,51]. Thus, drugs do not target the actual disease-associated proteins but bind to
their 3rd or 4th neighbors. The distance between drug targets and disease-associated proteins
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is regarded as a sign of palliative drug action [4,9]. In this study, we suppose that BA, CA or JA
might indirectly and specifically affect pharmacological targets or key proteins by targeting
“by-stander” proteins (e.g., Cebpg,Mrm1). Our findings indicate that Cebpg protein expres-
sion was down-regulated by JA, BA and CA. Although the association between Cebpg and CA
has not been previously reported, it was demonstrated that chenodeoxycholic acid (CDCA),
one of the primary bile acids, induced antioxidant and xenobiotic-metabolizing enzymes by
activating C/EBPβthrough phosphorylation [54]. With the assurance of different allosteric
modulators of diverse functions and dynamics [55,56], an allosteric modulated approach may
be achieved from disease molecular insights into therapeutic perspectives [50]. Although this is
the first time AMs have been analyzed, the allostery of targeted systems is anticipated to pro-
vide effective solutions to challenges that include variations in nodes (NAM), edges (EAM) and
related functions. Our ability to reveal, in detail, the transformational information from disease
network systems and to process information inside AMs is critical to advancing the topological
alteration and functional complexity with which we can engineer, predict, and probe pharma-
cological systems. Thus, we developed a novel paradigm of assembling AMs that allows for the
quantitative analysis of gradient mechanisms of targeted network variations.
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