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The ability to accelerate the accumulation of favorable combinations of mutations renders recombination a potent
force underlying the emergence of forms of HIV that escape multi-drug therapy and specific host immune responses.
We present a mathematical model that describes the dynamics of the emergence of recombinant forms of HIV
following infection with diverse viral genomes. Mimicking recent in vitro experiments, we consider target cells
simultaneously exposed to two distinct, homozygous viral populations and construct dynamical equations that predict
the time evolution of populations of uninfected, singly infected, and doubly infected cells, and homozygous,
heterozygous, and recombinant viruses. Model predictions capture several recent experimental observations
quantitatively and provide insights into the role of recombination in HIV dynamics. From analyses of data from
single-round infection experiments with our description of the probability with which recombination accumulates
distinct mutations present on the two genomic strands in a virion, we estimate that ;8 recombinational strand transfer
events occur on average (95% confidence interval: 6–10) during reverse transcription of HIV in T cells. Model
predictions of virus and cell dynamics describe the time evolution and the relative prevalence of various infected cell
subpopulations following the onset of infection observed experimentally. Remarkably, model predictions are in
quantitative agreement with the experimental scaling relationship that the percentage of cells infected with
recombinant genomes is proportional to the percentage of cells coinfected with the two genomes employed at the
onset of infection. Our model thus presents an accurate description of the influence of recombination on HIV dynamics
in vitro. When distinctions between different viral genomes are ignored, our model reduces to the standard model of
viral dynamics, which successfully predicts viral load changes in HIV patients undergoing therapy. Our model may thus
serve as a useful framework to predict the emergence of multi-drug-resistant forms of HIV in infected individuals.
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Introduction

During the reverse transcription of HIV in an infected cell,
the viral enzyme reverse transcriptase switches templates
frequently from one genomic RNA strand of a virion to the
other, yielding a recombinant proviral DNA that is a mosaic
of the two parent genomes. If one strand contains a mutation
that confers upon HIV resistance to one administered drug
and the other strand resistance to another drug, recombina-
tion may bring the two mutations together and give rise to
progeny genomes resistant to both those drugs [1,2].
Recombination may thus accelerate the emergence of multi-
drug resistance in infected individuals. A prerequisite for
recombination to induce genomic diversification is the
presence of heterozygous virions [3], which contain non-
identical genomic RNA strands and are formed when
individual cells are infected by multiple virions. Recent
experiments present evidence of the predominance of
multiple infections of cells both in vitro and in vivo [4–7]:
infected splenocytes from two HIV patients, for instance,
were found to harbor up to eight proviruses, with three to
four proviruses per cell on average [6]. The high incidence of
multiple infections of cells coupled with the high recombi-
nation rate of HIV, estimated to be several times greater than
the HIV point mutation rate [7–10], sets the stage for
recombination to act as a powerful agent driving the
emergence of multi-drug-resistant forms of HIV in patients
undergoing therapy. In addition, recombination may serve to
preserve diversity in genomic regions not affected by bottle-
necks introduced by drug therapy or host immune responses,

and improve the adaptability of HIV to new environments
[11]. Indeed, in addition to several circulating recombinant
forms of HIV, a large number of recombinant forms unique
to individuals have been identified [12]. It is of great
importance, therefore, to understand how recombinant
forms of HIV arise in infected individuals.
Remarkable insights into HIV recombination emerge from

recent in vitro experiments, in which target cells were
simultaneously exposed to two kinds of reporter viruses,
and cells infected with recombinant proviruses detected [3–
5,7,13,14]. Rhodes et al. determined using single-round
infection assays that the likelihood of the accumulation by
recombination of distinct mutations present on the two viral
genomes in a virion increases with the separation between
the mutations and reaches an asymptotic maximum at a
separation of ;1,500 base pairs [14]. Further, Rhodes et al.
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found that the cell type employed for infection—CD4þT cells
or macrophages, for instance—does not influence the
recombination rate. In contrast, Levy et al. argue that subtle
virus–cell interactions cause recombination to occur at
different rates in different types of cells [7]. Further, using
replication-competent reporter viruses, Levy et al. inves-
tigated the dynamics of the emergence of recombinant
genomes in vitro and in SCID-hu mice [7]. Interestingly,
Levy et al. observed two scaling patterns. First, the percentage
of cells coinfected with both the reporter genomes employed
for infection was proportional to the total percentage of
infected cells. Second, the percentage of cells infected with
recombinant proviruses was linearly proportional to the
percentage of coninfected cells and, correspondingly, pro-
portional to the square of the total percentage of infected
cells. Further, Levy et al. found that the scaling patterns were
independent of the initial viral load, the time following the
onset of infection, and whether the experiments were
conducted in vitro or in SCID-hu mice.

Standard models of viral dynamics, which successfully
describe short-term (a few weeks) viral load changes in
patients undergoing therapy, are predicated on the infection
of individual cells by single virions and ignore recombination
[15–17]. Recent modeling advances and simulations incorpo-
rate descriptions of multiple infections of cells and recombi-
nation, and present insights into the subtle interplay between
mutation, recombination, fitness selection, and random
genetic drift that underlies the genomic diversification of
HIV in vivo [18–23]. Bretscher et al. developed a model of
HIV dynamics that includes mutation, double infections of
cells, and recombination and found that for infinitely large
cell populations, the influence of recombination on the
development of drug resistance depends sensitively on
epistasis, i.e., on the nature of fitness interactions between
mutations [20]. Bretscher et al. argue that phenotypic
mixing—the assortment of viral proteins arising from differ-
ent proviral genomes within a multiply infected cell during

the assembly of progeny virions—compromises the selective
advantage of the fittest strains and enhances the relative
abundance of less fit strains: less fit strains piggyback on fitter
strains. At the same time, in a two-locus/two-allele model,
recombination, which breaks nonrandom associations of
mutations and hence lowers linkage disequilibrium, enhances
the relative abundance of single mutant strains compared to
wild-type and of double mutant strains when fitness
interactions result in positive epistasis, i.e., when mutations
interact antagonistically in lowering viral fitness. Bretscher et
al. predict, contrary to the prevalent paradigm, that
phenotypic mixing and positive epistasis together result in
a deceleration of the growth of drug-resistant viruses upon
increasing the recombination rate [20]. Recent experimental
evidence points to a mean positive epistasis underlying fitness
interactions in HIV-1, which, following the predictions of
Bretscher et al. [20], raises questions about the benefits of
recombination to HIV-1 and, more generally, of the evolu-
tionary origins of recombination and sexual reproduction
[24].
Fraser presents a detailed model of HIV dynamics

considering up to three infections of cells, mutation,
recombination, fitness selection, and different dependencies
of the frequency of multiple infections of cells on the viral
load [22]. In agreement with Bretscher et al. [20], Fraser found
that recombination inhibits the development of drug
resistance during antiretroviral therapy and, further, that
this effect is modulated not only by epistasis but also by the
dependence of the frequency of multiple infections on viral
load [22].
In a more recent study, Althaus and Bonhoeffer extend the

description of Bretscher et al. [20] to finite population sizes,
where the relative abundance of different mutant strains may
be determined stochastically rather than deterministically
[18]. Interestingly, Althaus and Bonhoeffer found that even
when positive epistasis governs fitness interactions between
resistance mutations, recombination may significantly accel-
erate the development of drug resistance when the effective
population size is ;104–105 [18]. Using bit-string simulations,
Bocharov et al. found that multiple infections of cells and
recombination act in synergy to enhance viral genomic
diversity [19], which in turn may increase the likelihood of the
emergence of drug resistance. Bocharov et al. note, however,
that the time for the selection of fitter genomes that contain
multiple mutations may be highly variable, indicative of the
stochastic nature of viral evolution in vivo [19]. Rouzine and
Coffin developed a description of viral evolution with fitness
selection, recombination between multiple loci, and random
genetic drift, and predict that below a critical population size,
the viral population within an individual may converge to a
clone in the absence of mutation, leaving little scope for
recombination to introduce genomic diversification [23].
Rouzine and Coffin suggest therefore that a reduction of
the viral population in an infected individual by combination
antiretroviral therapy may decelerate significantly the emer-
gence of drug resistance [23]. The effective population size in
vivo remains to be established [25].
Currently available models thus make valuable predictions

of the influence of recombination on HIV dynamics and the
emergence of drug resistance in infected individuals under-
going therapy. The predictions, however, are diverse and have
not been compared with available experimental data [3–
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Author Summary

Retroviral recombination, a process akin to sexual reproduction in
higher organisms, may accelerate the accumulation of mutations
and the development of multi-drug resistance in HIV patients.
Recombination occurs when the enzyme reverse transcriptase
switches between the two RNA strands of a virion, yielding a
provirus that is a mosaic of the two strands. The latter strands are
often distinct, thereby allowing recombinational diversification,
when multiple viruses infect individual cells. The enormous HIV
recombination rate and recent evidence of frequent multiple
infections of cells render recombination a powerful force underlying
the development of multi-drug resistance in vivo. The dynamics of
the emergence of recombinant genomes, however, remains poorly
understood. Recent experiments allow a closer look at HIV
recombination: cells are exposed to two kinds of reporter viruses
and the frequency of recombinant proviruses is detected, which
enables direct quantification of the extent of recombination. The
observations, however, are not described by available models,
leaving a gap in our understanding of HIV recombination. We
present a model that describes HIV dynamics with multiple
infections of cells and recombination, captures several recent
experimental observations quantitatively, provides insights into
HIV recombination, and presents a framework for describing the
development of multi-drug resistance in HIV patients.
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5,7,13,14]. An important gap thus exists in our understanding
of HIV recombination. Consequently, for instance, the
origins of the experimental scaling and dynamical patterns
associated with HIV recombination [7] remain poorly under-
stood. Similarly, the recombination rate, or the frequency of
template switching events during reverse transcription,
remains to be established [7,14].

One limitation of currently available models lies in the
approximate descriptions of the dynamics of multiple
infections of cells employed. For example, the frequency
with which cells are doubly infected is assumed either to be
constant [18,20], proportional to the viral load, or propor-
tional to the square of the viral load [22]. Because multiple
infections of cells are a prerequisite for the formation of
heterozygous virions, an accurate description of HIV dynam-
ics with recombination depends critically on the underlying
description of multiple infections, as suggested also by Fraser
[22]. The frequency of multiple infections depends not only
on the viral load, but also on CD4 down-modulation induced
by viral gene expression following the first infection of a cell
[26–28], which lowers the susceptibility of the cell to further
infections. In a recent study, Dixit and Perelson developed a
model that explicitly accounts for CD4 down-modulation and
presents a rigorous description of the orchestration of
multiple infections of cells by free virions [29]. The model
elucidates the origins of one of the two scaling relationships
observed by Levy et al. [7]: that the number of doubly infected
cells is proportional to the square of the total number of
infected cells. Levy et al. note that at the onset of infection in
their experiments, because equal numbers of the two kinds of
reporter viruses are employed, the probability that a cell is
infected with both the reporter genomes is the product of the
probabilities that the cell is infected independently with each
of the genomes, which explains the origin of the observed
scaling early during infection. Later in the infection process,
multiple infections of a cell need not be simultaneous and
may be sequential. Yet, the quadratic scaling persists. Levy et
al. speculate that the absence of any functional hindrance to
multiple infections may underlie the persistence of the
scaling throughout the infection period. The inhibition of
multiple infections by CD4 down-modulation, however, may
not be negligible. Dixit and Perelson consider the expected
inhibition of multiple infections by CD4 down-modulation
and identify conditions under which the observed scaling
relationship may hold [29].

The latter model, however, does not distinguish between
different viral genomes that infect cells and thereby
precludes a description of recombination. Thus, for instance,
the dynamics of the emergence of recombinant genomes and
the origins of the second scaling relationship observed by
Levy et al.—that the percentage of cells infected by
recombinant genomes is linearly proportional to the per-
centage of cells coinfected with both the reporter genomes
employed for infection—remain to be elucidated.

The analysis of Dixit and Perelson [29] provides insights
into the origins of the latter scaling. According to the
analysis, one set of conditions under which the quadratic
scaling between the population of coinfected cells and that of
all infected cells holds occurs at time periods that are long
compared to the characteristic viral production and clear-
ance times, so that viral populations are in pseudo equili-
brium with the infected cell populations [29]. Under the same

conditions, when two distinct reporter genomes are em-
ployed for infection, the population of heterozygous virions
containing a copy each of the two reporter genomes is
expected be in pseudo equilibrium with, and hence propor-
tional to, the population of cells coinfected with both the
reporter genomes. Further, for time periods long compared
to the lifetimes of infected cells and the characteristic
timescale of the infection of uninfected cells, the production
and death rates of infected cells are expected to exhibit a
pseudo steady state. The number of cells infected with
recombinant proviruses would then be proportional to the
population of heterozygous virions and hence to the
population of coinfected cells, which may explain the origins
of the second scaling relationship observed by Levy et al. [7].
(We present more mathematical arguments below.)
Whether currently available models of HIV dynamics that

include infections by distinct viral genomes and recombina-
tion validate the above arguments and predict the observed
scaling remains unclear. Dixit and Perelson predict the
existence of the above scaling relationships under certain
parameter regimes and, importantly, that the scaling rela-
tionships may depend on the length of time following the
onset of infection [29]. In contrast, Levy et al. found that the
scaling is independent of the time following the onset of
infection [7]. Further, Levy et al. found that for the different
initial viral loads employed, which varied well over two orders
of magnitude, the parametric plots of different cell popula-
tions defining the scaling relationships superimpose remark-
ably tightly [7], whereas a similar superimposition at all times
following the onset of infection is not apparent from the
above scaling arguments, which hold after the establishment
of pseudo equilibrium between viral production and clear-
ance. A comprehensive model of HIV dynamics with
recombination that quantitatively captures available exper-
imental data is currently lacking.
In this work, we develop a detailed model of HIV dynamics

that considers multiple infections of cells by distinct viral
genomes and describes recombination. Our model captures
several recent in vitro experimental findings quantitatively
and provides key insights into the mechanisms underlying the
emergence of recombinant forms of HIV. At the same time,
our model is consistent with the standard model of viral
dynamics, which successfully captures viral load changes in
patients following the onset of antiretroviral therapy, and
may therefore be extended to describe HIV dynamics with
recombination in vivo.

Results

Model Formulation
We consider in vitro experiments where a population of

uninfected CD4þ cells, T, is exposed simultaneously to two
populations, V11 and V22, of homozygous virions containing
genomes 1 and 2, respectively. The genomes 1 and 2 are
assumed to be distinct at two nucleotide positions, l1 and l2, a
distance l apart on the viral genome, with genome 1 having a
mutation at position l1 and genome 2 at l2 (Figure 1A).
Following exposure, target cells become infected singly or
multiply with one of the genomes, or coinfected with both
genomes. Coinfected cells produce heterozygous virions, V12,
which contain a copy each of genomes 1 and 2.
Infection of target cells by the virions V12 yields two kinds

PLoS Computational Biology | www.ploscompbiol.org October 2007 | Volume 3 | Issue 10 | e2052005

HIV Dynamics with Recombination



of ‘‘recombinant’’ genomes depending on the template
switching events during reverse transcription (Figure 1B).
When the mutations at positions l1 and l2 are both included in
the resulting proviral DNA, a recombinant genome that we
denote as genome 3 is formed. When both the mutations are
excluded, the other recombinant, genome 4, results. When
one of the two mutations is included but not the other,
genomes 1 and 2 are recovered. Thus, four kinds of viral
genomes, 1, 2, 3, and 4, eventually infect cells.

We distinguish infected cells by the proviral genomes they
contain. We denote by Ti cells containing a single provirus i,
where i 2 f1, 2, 3, 4g represents the four genomes above.
Thus, cells T1 contain a single provirus 1, cells T2 contain a
single provirus 2, and so on. We denote by Tij, where i and j 2
f1, 2, 3, 4g, cells that contain two proviruses. Thus, cells T11

contain two copies of provirus 1, and cells T12 contain a copy
of provirus 1 and a copy of provirus 2. Because cells Tij are
indistinguishable from cells Tji, we subject i and j to the
constraint i � j, resulting in ten kinds of doubly infected cells:
T11, T12, T13, T14, T22, T23, T24, T33, T34, and T44. Extending the
description, cells Tijk are infected with three proviruses, and
so on. Our aim is to describe the dynamics of recombination
observed in experiments that employ two kinds of reporter
viruses to infect cells. In these experiments, the number of
cells infected with more than two genomes is estimated to be
small [7]. Therefore, and for simplicity, we restrict our model
to single and double infections of cells.

Random assortment of viral RNA produced in infected
cells gives rise to ten different viral populations, which we
denote Vij, where i � j and i and j 2 f1, 2, 3, 4g, based on the
viral genomes, i and j, contained in the virions. Thus, for
instance, virions V34 contain a copy each of genomes 3 and 4.
Cells infected with a single kind of provirus, Ti and Tii, give

rise to homozygous virions, Vii. Cells coinfected with distinct
proviruses, Tij, produce the homozygous virions Vii and Vjj

and the heterozygous virions Vij.
Below, we write equations to describe changes in the

various cell and viral populations following the onset of
infection.

Dynamical Equations
Uninfected cells. The in vitro dynamics of the uninfected

cell population is governed by [29]
dT
dt
¼ ðk� lÞT � k0TV ; ð1Þ

where k and l are the proliferation and death rates of
uninfected cells in vitro, k0 is the second-order infection rate
of uninfected cells, and V ¼

X4

j¼i

X4

i¼1Vij is the total viral
load. Equation 1 is constrained by the initial condition that
the uninfected cell population at the onset of infection (t¼ 0)
is T0.
Infected cells. The singly infected cell subpopulations are

determined by the integral equations:

TiðtÞ ¼Zt
0

k0Tðt� sÞ
X4
h¼j

X4
j¼1

RiðjhÞVjhðt� sÞ
 !

expð�dsÞMði; tji; t� sÞds:

ð2aÞ

Here, k0T(t � s)Vjh(t � s)ds is the number of uninfected cells
that are first infected by virions Vjh in an infinitesimal
interval of time ds near time t� s � 0, where t¼ 0 marks the
onset of infection. We define Ri(jh) as the probability that
provirus i results from the recombination of genomes j and h,
where i, j, and h 2 f1, 2, 3, 4g and j � h. Thus, k0T(t �
s)Ri(jh)Vjh(t � s)ds is the expected number of uninfected cells
first infected by virions Vjh in the interval ds near time t � s
and in which recombination results in provirus i. We assume
that reverse transcription occurs rapidly following infection.
Summation of k0T(t� s)Ri(jh)Vjh(t� s)ds over j and h therefore
yields the total number of uninfected cells that are first
infected with a single provirus i in the interval ds near t � s.
The probability that these latter cells survive until time t is
exp(�ds), where d is the death rate of infected cells. We define
M(i,t j i,t� s) as the probability that a cell that is first infected
with provirus i at time t � s remains singly infected with the
provirus i at time t given that the cell survives the intervening
interval of duration s. The integrand in Equation 2a thus
represents the number of uninfected cells that are first
infected in the infinitesimal interval ds near time t � s and
survive with a single provirus i at time t. Integration over s
from 0 to t gives the total number of cells containing a single
provirus i at time t.
The doubly infected cell subpopulations are determined in

an analogous manner:

TiiðtÞ ¼Zt
0

k0Tðt� sÞ
X4
h¼j

X4
j¼1

RiðjhÞVjhðt� sÞ
 !

expð�dsÞMðii; tji; t� sÞds;

ð2bÞ

where M(ii,t j i,t � s) is the probability that a cell that is first
infected with provirus i at time t � s contains an additional

Figure 1. Schematic Representation of Viral Genomes and Recombina-

tion

Viral genomes 1 and 2 employed at the onset of infection (A) and the
four genomes resulting from the recombination of genomes 1 and 2 (B).
doi:10.1371/journal.pcbi.0030205.g001
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provirus i at time t given that the cell survives the intervening
interval of duration s.

For cells coinfected with two different kinds of proviruses,
we write

TijðtÞ ¼Zt
0

ðk0Tðt� sÞ
X4
h¼m

X4
m¼1

RiðhmÞVhmðt� sÞÞexpð�dsÞMðij; tji; t� sÞdsþ

Zt
0

ðk0Tðt� sÞ
X4
h¼m

X4
m¼1

RjðhmÞVhmðt� sÞÞexpð�dsÞMðji; tjj; t� sÞds

ð2cÞ

where i 6¼ j and M(ij,t j i,t� s) is the probability that a cell that
is first infected with provirus i at time t � s contains an
additional provirus j at time t given that the cell survives the
intervening interval of duration s. The two integrals in
Equation 2c correspond to the two ways of acquiring the two
proviruses: i followed by j and j followed by i, respectively.

Multiple infections. To evaluate the conditional probabil-
ities M, which characterize multiple infections, we consider a
cell first infected with provirus i at time t� s. For times s . t�
s, the rate of infection of the cell reduces exponentially
because of CD4 down-modulation [28], so that [29]

k ¼ k0expð�ðs� tþ sÞ=tdÞ; ð3Þ

where k0 is the infection rate of an uninfected cell and td is
the timescale of CD4 down-modulation. Three viral genes,
nef, env, and vpu, acting via independent pathways, together
induce nearly 100% down-modulation of CD4 molecules
from the surface of an infected cell [26]. Of the three genes,
the predominant influence is by nef [26], which induces
rapid down-modulation of CD4 receptors following infec-
tion [28]. The latter down-modulation profile is well-
described by an exponential decline (of timescale td) and is
extended to include the influence of env and vpu [29]. How
the susceptibility of a cell to new infections declines with
CD4 down-modulation remains unknown. Here, we follow
Dixit and Perelson [29] and assume that the infection rate k
is directly proportional to the CD4 expression level and
hence declines exponentially with time following the first
infection.

Assuming that the cell, following its first infection with
provirus i at time t � s, does not die, the probability that it
contains the provirus i alone at time s is by definition M(i,s j
i,t � s). In a subsequent infinitesimal interval Ds, in which at
most one infection may occur, the probability that the cell is
not infected is (1 – kV(s)Ds), where k is given by Equation 3
and V ¼

P4
j¼i
X4

i¼1Vij is the total viral load. The probability
that the cell remains singly infected with provirus i at time sþ
Ds is therefore

Mði; sþ Dsji; t� sÞ ¼ Mði; sji; t� sÞð1� kVðsÞDsÞ:

Subtracting M(i,s j i,t� s), dividing by Ds, and letting Ds ! 0,
we obtain

dMði; sji; t� sÞ
ds

¼ �kVðsÞMði; sji; t� sÞ; ð4aÞ

with the initial condition that M(i,t � s j i,t� s) ¼ 1.
Alternatively, a cell first infected with provirus i at time t� s

may contain two proviruses, i and j, at time sþDs if it contains

the provirus i alone at time s and acquires an additional
provirus j in the intervalDs, or if it contains both the proviruses
i and j at time s. (We ignore more than two infections of cells.)
In the interval Ds, the probability that the cell acquires a
second provirus j is kDs

P4
m¼h

P4
h¼1 RjðhmÞVhmðsÞ (see above),

so that

Mðij; sþ Dsji; t� sÞ ¼ Mði; sji; t� sÞkDs
X4
m¼h

X4
h¼1

RjðhmÞVhmðsÞ

þMðij; sji; t� sÞ:

Subtracting M(ij,s j i,t� s), dividing by Ds, and letting Ds! 0,
we obtain

dMðij; sji; t� sÞ
ds

¼ kMði; sji; t� sÞ
X4
m¼h

X4
h¼1

RjðhmÞVhmðsÞ; ð4bÞ

with the initial condition M(ij,t � s j i,t � s) ¼ 0.
Substituting j by i in Equation 4b yields the corresponding

evolution equation forM(ii,s j i,t� s) with the initial condition
M(ii,t � s j i,t � s) ¼ 0.
Recombination. We next determine the probability Ri(jh)

that provirus i results from the recombination of genomes j
and h. For homozygous virions, Vii, reverse transcription
yields the genome i alone so that

RiðjjÞ ¼
1 i ¼ j
0 i 6¼ j:

�
ð5aÞ

(Note that we ignore mutations here.) For heterozygous
virions, we consider first those combinations where the two
genomes j and h differ in a single position, which happens
when j is either 1 or 2 and h is either 3 or 4 (Figure 1B).
Because the difference is in a single position, reverse
transcription yields either of the two genomes with equal
probability. Thus,

RiðjhÞ ¼
1=2 i ¼ j or h
0 otherwise

when j 2 f1; 2g and h 2 f3; 4g:
�

ð5aÞ

Finally, when j¼ 1 and h¼ 2 and when j¼ 3 and h¼ 4, the
two genomes differ in two positions; we consider these
combinations explicitly. Let j ¼ 1 and h ¼ 2. Recall that
genome 1 has a mutation at position l1 and genome 2 at l2 and
that l2 – l1¼ l (Figure 1A). Recombination between genomes 1
and 2 yields genome 1 if the mutation on genome 1 is
included in the resulting provirus and that on genome 2 is
excluded (Figure 1B). Because reverse transcription is equally
likely to begin on either genome, the probability that reverse
transcriptase is on genome 1 at the position l1, i.e., the
probability that the mutation on genome 1 is included in the
resulting provirus, is 1/2. Given that the mutation on 1 is
included, the mutation on 2 will be excluded if an even
number of crossovers occurs between l1 and l2.
Let n be the average number of crossovers during reverse

transcription of the viral genome of length L. We define the
crossover frequency, or the recombination rate, as q ¼ n/L
crossovers per position. Assuming that crossovers occur
independently, the probability P(x) that x crossovers occur
in a length l of the genome follows the Poisson distribution
[14,30]

PðxÞ ¼ expð�qlÞ ðqlÞ
x

x!
;
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where x!¼ x(x� 1)...2.1. The probability that an even number
of crossovers occurs in the length l is therefore the sumX

x¼0;2;4;:::
PðxÞ ¼ expð�qlÞ

X
x¼0;2;4;:::

ðqlÞx

x!
¼ expð�qlÞcoshðqlÞ:

Thus, the probability that genome 1 results from recombina-
tion of genomes 1 and 2 is

R1ð12Þ ¼
1
2
expð�qlÞcoshðqlÞ: ð5cÞ

Similarly, genome 2 results from genomes 1 and 2 if the
mutation on genome 1 is excluded and an even number of
crossovers occurs between l1 and l2 so that the mutation on 2
is included. It follows that R2(12) ¼ R1(12).

Genome 3 results from genomes 1 and 2 if the mutation on
genome 1 is included and an odd number of crossovers
occurs between l1 and l2 so that the mutation on genome 2 is
also included. Following the above arguments, we find that

R3ð12Þ ¼
1
2
expð�qlÞsinhðqlÞ; ð5dÞ

and that R4(12) ¼ R3(12).
Similarly, when j¼ 3 and h ¼ 4, we derive

R1ð34Þ ¼ R2ð34Þ ¼
1
2
expð�qlÞsinhðqlÞ; ð5eÞ

and

R3ð34Þ ¼ R4ð34Þ ¼
1
2
expð�qlÞcoshðqlÞ: ð5f Þ

Virions. Finally, we write equations for the time evolution
of the various viral populations:

dVii

dt
¼ Nd Ti þ Tii þ

1
4

X4
j¼iþ1

Tij þ
1
4

Xi�1
h¼1

Thi

 !
� cVii ð6aÞ

and

dVij

dt
¼ 1

2
NdTij � cVij; i 6¼ j; ð6bÞ

where we recognize that cells Ti and Tii produce homozygous
virions Vii, and cells Tij produce homozygous virions Vii and
Vjj and heterozygous virions Vij in the proportions 1/4, 1/4,
and 1/2, respectively. N is the viral burst size and d is the death
rate of infected cells, both assumed to be independent of the
multiplicity of infection [29]. Equations 6a and 6b are
constrained by the initial condition that the viral population
at the onset of infection is composed of equal subpopulations
of the homozygous virions V11 and V22 alone, i.e., V11¼ V22¼
V0 at t ¼ 0.
Equations 1–6 present a model of HIV dynamics with

multiple infections of cells and recombination.

Model Predictions
We solve Equations 1–6 (Methods) using the following

parameter estimates drawn from in vitro studies [29,31]: the
birth and death rate of target cells, k¼0.624 d�1 and l¼0.018
d�1; the death rate of infected cells, d ¼ 1.44 d�1; the viral
burst size, N¼1,000; and the clearance rate of free virions, c¼
0.35 d�1. We let an initial target cell population, T0¼ 106, be
exposed to two equal viral populations, V11¼ V22¼V0, which
we vary over the experimental range, 2V0 ¼ 106 to 1010 [7].
The infection rate constant, k0, the timescale of CD4 down-
modulation, td, and the recombination rate, q, are not well-
established, and we vary these parameters over ranges that
define their best current estimates. We choose l, the
separation between the mutations on genomes 1 and 2, in
accordance with experiments (see below).
Virus and cell dynamics. In Figure 2, we present the time

evolution of uninfected cells, T, the total infected cell
population, T� ¼

P4
i¼1 Ti þ

P4
j¼i
P4

i¼1 Tij , and the total viral
load, V ¼

P4
j¼i
P4

i¼1 Vij , for the parameter values 2V0¼108, k0
¼2310�10 d�1, td¼0.28 d, q¼8.3310�4 crossovers per position
(see below), and l¼ 408 base pairs. We find that T, T*, and V
evolve in two dominant phases, an initial rise and a subsequent
fall. The initial rise in T is due to the net proliferation of
uninfected cells at the rate (k�l)T (Equation 1), which in the
initial stages of infection is large compared to the loss of
uninfected cells by infection at the rate k0VT. The latter
infection process causes T* to rise. The rise in T* and hence
viral production results in an increase in V. When V becomes
large, the loss of uninfected cells by infection dominates cell
proliferation and induces a decline inT. In Figure 2,T reaches a
maximum at time t ’ 6 d after the onset of infection. The
decline in T lowers the formation of infected cells and T*

decreases at the death rate d. Finally, the loss of T* lowers viral
production and induces a decline in V at the clearance rate c.
This overall two-phase dynamics is similar to the T cell
dynamics observed in vitro [7].
In Figure 3A, we present the distribution of the infected

cells, T*, in Figure 2 into various singly and doubly infected
cell subpopulations. We find that the various infected cell

Figure 2. Model Predictions of the Overall Cell and Viral Dynamics

The time evolution of the number of uninfected cells, T, the total number
of infected cells, T*, and the total viral load, V, following the onset of
infection obtained by the solution of Equations 1–6 with the following
parameter values: the initial target cell number, T0¼ 106; the initial viral
load, 2V0 ¼ 108; the birth and death rates of uninfected cells, k¼ 0.624
d�1 and l¼ 0.018 d�1; the death rate of infected cells, d¼ 1.44 d�1; the
viral burst size, N¼ 1,000; the clearance rate of free virions, c¼ 0.35 d�1;
the infection rate constant of uninfected cells, k0¼2 3 10�10 d�1; the CD4
down-modulation timescale, td¼ 0.28 d; the recombination rate, q¼ 8.3
3 10�4 crossovers per position; and the separation between the
mutations on genomes 1 and 2, l ¼ 408 base pairs.
doi:10.1371/journal.pcbi.0030205.g002
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subpopulations also follow the two-phase dynamics above.
The relative prevalence of the latter subpopulations is
coupled to that of the corresponding viral subpopulations,
which we present in Figure 3B. Because virions V11 and V22

alone are employed at the onset of infection, their numbers
are larger than those of other viral subpopulations. When
target cells are abundant, CD4 down-modulation ensures that
singly infected cells occur more frequently than doubly
infected cells. Thus, during the first phase of the dynamics
following the onset of infection, cells singly infected with the
infecting genomes, i.e., T1 and T2, are the most prevalent.
Note that because V11¼V22¼V0 at the time of infection, at all
subsequent times T1 ¼ T2. Next in prevalence are cells
infected twice with genome 1 and/or 2. Because coinfection
by genomes 1 and 2 is twice as likely as double infection by
either 1 or 2, cells T12 are more prevalent than T11 (¼ T22).

The population of heterozygous virions, V12, increases
because of viral production from the coinfected cells T12.
Infections by V12 give rise to cells T3 and T4, infected singly

with the recombinant genomes, which in turn produce
virions V33 and V44, respectively. Coinfection by genomes 1
and 3 yields cells T13, whose numbers are larger than those of
the doubly infected cells T33 (¼ T44) because of the small
population of V33 compared to V11. Again, because coinfec-
tion by genomes 3 and 4 is twice as likely as double infection
by either 3 or 4, cells T34 are larger in number than T33. Yet,
homozygous virions V33 are more prevalent than hetero-
zygous virions V34 because cells T3, T33, and T34 produce V33,
whereas cells T34 alone produce V34.
In the second dynamical phase, infected cell subpopula-

tions decline because of cell death at rate d. Singly infected

Figure 3. Model Predictions of the Dynamics of Different Infected Cell and Viral Subpopulations

The time evolution of the various singly (solid lines) and doubly (dashed lines) infected cell (left panels) and homozygous (solid lines) and heterozygous
(dashed lines) viral subpopulations (right panels) following the onset of infection. Note that T1¼T2, T11¼T22, T3¼T4, T33¼T44, T13¼T23¼T14¼T24, V11¼
V22, V33¼ V44, and V13¼ V23¼ V14¼ V24. The parameter values employed are the same as those in Figure 2 except that td¼ 2.8 d in (C) and (D) and q¼
10�3 crossovers per position in (E) and (F).
doi:10.1371/journal.pcbi.0030205.g003
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cell subpopulations decline additionally because of second
infections. Viral populations decline at the clearance rate c.
The overall two-phase dynamics and the relative prevalence
of various infected cell subpopulations are again in agree-
ment with in vitro experiments [7].

Changes in the initial viral load, 2V0, or the infection rate,
k0, do not alter the dynamics above qualitatively (unpublished
data) [7,29]. Importantly, the CD4 down-modulation time-
scale, td, does not influence the overall dynamics in Figure 2
(unpublished data). We assume here that viral production

from cells is independent of the number of infections cells
suffer, which is expected when viral production is limited by
cellular rather than viral factors. Changes in td then alter the
distribution of infected cells into various multiply infected
cell subpopulations but do not alter the total population of
infected cells, T*, or, consequently, the overall viral dynamics
[29]. In Figure 3C and 3D, we present the calculations in
Figure 3A and 3B with td¼ 2.8 d. A higher value of td implies
slower CD4 down-modulation, which renders infected cells
susceptible to further infections for longer durations and
hence increases the relative prevalence of multiply infected
cells. Accordingly, we find that doubly infected and co-
infected cell subpopulations are higher in Figure 3C than in
Figure 3A. (The faster decline of singly infected cells in the
second phase in Figure 3C compared to that in Figure 3A is
due to increased second infections in the former.) Corre-
spondingly, the relative prevalence of heterozygous and
recombinant virions increases upon increasing td (Figure 3B
and 3D).
Interestingly, the recombination rate, q, also does not

influence the dynamics in Figure 2 (unpublished data). We
assume here that viral fitness is not affected by the mutations
at the positions l1 and l2. Consequently, an increase in q
increases the relative prevalence of recombinant genomes in
the viral population but not the total viral load or the
frequency of multiple infections. In Figure 3E and 3F, we
present the calculations in Figure 3A and 3B with q ¼ 10�3

crossovers per position. Note that the numbers of cells singly
and doubly infected with genomes 1 and/or 2 are identical to
those in Figure 3A, indicating that the frequency of multiple
infections remains unaltered by the increase in q. The relative
prevalence of cells infected with genomes 3 and 4, however,
and that of the recombinant virions V33 (¼ V44) is higher in
Figure 3E and 3F than in Figure 3A and 3B, respectively,
because of the enhanced frequency of recombination in the
former.
Scaling. We examine next whether the above dynamics

captures the scaling relationships between the different
infected cell subpopulations observed experimentally [7]. In
Figure 4A, we present parametric plots of the percentage of
cells coinfected with genomes 1 and 2, p12 ¼ 100T12/(T

* þ T),
versus the total percentage of infected cells, p*¼ 100T*/(T*þ
T), for different initial viral loads and with the parameter
values employed in Figure 2. Remarkably, we find that for all
the initial viral loads considered, p12 is proportional to (p*)2.
The scaling behavior is observed over the entire period of
infection (t ¼ 10 d) including both the phases of the overall
dynamics of Figure 2. Further, the parametric plots of p12
versus (p*)2 for different viral loads are superimposed, in
agreement with the robust scaling observed in experiments
[7].
In Figure 4B, we present the corresponding variation of the

percentage of cells infected with the recombinant 4,
p4 ¼ 100ðT4 þ

P4
i¼1 Ti4Þ=ðT� þ TÞ, with the percentage of

coinfected cells, p12. Interestingly, we find two scaling
regimes. When p12 is small, p4 is proportional to (p12)

2, and
the parametric plots are distinct for different values of V0.
For larger values of p12, p4 is linearly proportional to p12 and
independent of V0. Thus, the parametric plots in the latter
regime are again superimposed, as observed in experiments
[7].
We explain the origins of the above scaling regimes by

Figure 4. Model Predictions of Scaling Patterns

Parametric plots of (A) the percentage of cells coinfected with genomes
1 and 2, p12, versus the total percentage of infected cells, p*, and (B) the
percentage of cells infected with the recombinant 4, p4, versus p12,
obtained by solving Equations 1–6 for different initial viral loads, 2V0 ¼
106 (green), 107 (cyan), 108 (blue), 109 (purple), and 1010 (red). The
dashed lines are scaling patterns predicted by Equation 7. The insets
show the parametric plots for the individual cases, 2V0¼ 106 (green) and
107 (cyan).
doi:10.1371/journal.pcbi.0030205.g004
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considering two limiting scenarios in our model (Methods).
First, for times small compared to the CD4 down-modulation
timescale, i.e., t � td, and when changes in viral and cell
numbers are small, we find that

p12 ’
1

400
ðp�Þ2 and p4 ’

R4ð12ÞNdT0

2400k0V2
0

ðp12Þ2: ð7aÞ

Second, for times large compared to the time required for
viral load evolution to reach pseudo steady state, i.e., t � teq,
we obtain

p12 ’
1

400
k1
k0
ðp�Þ2 and p4 ’

R4ð12Þ
4

p12; ð7bÞ

where we define k1 as the mean rate of the second infection of
singly infected cells. As we show in Figure 4, Equations 7a and
7b capture the scaling regimes predicted by our simulations.

Remarkably, the scaling p12 ’ 1
400 ðp�Þ

2 (Equation 7a) is
independent of model parameters and viral and cell numbers.
Further, the quadratic scaling between p12 and p* continues
to hold for t . teq (Equation 7b), with the proportionality
constant lower than 1/400 by a factor k1/k0. We notice thus
that a transition from the small time (t � td) scaling,
p12 ’ 1

400 ðp�Þ
2, to the large time (t � teq) scaling,

p12 ’ 1
400

k1
k0
ðp�Þ2, occurs in the parametric plots in Figure 4A.

The transition occurs at larger values of p* with increasing
initial viral load. We find that a value of k1 ¼ 1.4 3 10�10 d�1

captures the long-time scaling for all initial viral loads
considered. On the other hand, the scaling between p4 and
p12 for t � td, p4 ’

R4ð12ÞNdT0

2;400k0V2
0
ðp12Þ2, depends on model

parameters and the initial viral load (Figure 4B). Interestingly,
however, the linear scaling between p4 and p12, p4 ’

R4ð12Þ
4 p12,

for t . teq is independent of the initial viral load.
For very large viral loads (2V0 � 1010) and/or infection rates

(k0 � 2 3 10�9 d�1; unpublished data), we find that rapid
infection and the consequent death of infected cells preempts
the establishment of pseudo steady state between viral
production and clearance in the first phase of infection, so
that the linear scaling relationship between p4 and p12 is not
observed (Figure 4B). Below, we compare model predictions
with experiments.

Comparison with Experiments
Available in vitro experiments, where cells are simulta-

neously exposed to two distinct kinds of viral genomes, may
be segregated into two categories. First, single-round in-
fection experiments employ replication-incompetent (heter-
ozygous) virions to infect cells, and measure the fraction of
cells that contain recombinant proviral genomes [3,7,13,14].
Second, viral dynamics experiments employ replication-
competent (homozygous) virions and determine the time
evolution of populations of cells infected with recombinant
genomes [7]. We employ our description of the recombina-
tion probability (Equation 5) to predict data from single-
round infection experiments and our entire model (Equa-
tions 1–6) to describe the latter viral dynamics experiments.

Single round of infection. We consider single-round
infection experiments, where target cells are exposed to a
mixed viral population comprising homozygous virions, V11

and V22, and heterozygous virions, V12, in the proportions 1/4,
1/4, and 1/2, respectively. Small viral loads are employed so
that multiple infections of cells are rare. Following infection,
cells in which recombinant proviruses result are identified.

Rhodes et al. [14] varied the separation l between the
distinguishing mutations on genomes 1 and 2 (Figure 1A)
and measured the fraction, f, of infected cells that contained
the recombinant genome 4, which carries neither of the
distinguishing mutations on genomes 1 and 2 (Figure 1B).
Rhodes et al. report the latter fraction as a percentage of the
theoretical maximum fraction, fmax, attained at arbitrarily
large separations and/or recombination rates (see below). We
reproduce the experimental data of Rhodes et al. in Figure
5A.
We estimate the percentage of cells infected with genome 4

in the experiments of Rhodes et al. as follows. We recognize
that cells infected with heterozygous virions V12 alone may
possess the recombinant provirus 4. With the above distri-
bution of the viral subpopulations, the probability that an
infection is due to a heterozygous virion is 1/2. Following
infection by a heterozygous virion, the probability that
recombination yields genome 4 is R4(12) (Equation 5). Thus,
the fraction, f, of infected cells that contain genome 4 is
expected to be (1/2)R4(12) ¼ (1/4)exp(�ql)sinh(ql). This
fraction attains a maximum value, fmax, of 1/8 (or 12.5%) as
ql ! ‘. (When ql ! ‘, a large number of crossovers occurs
between l1 and l2; the mutations at l1 and l2 are then selected
independently, each with a probability 1/2, so that R4(12)! 1/
4.) Thus, according to our model, f/fmax ¼ [(1/2)R4(12)] / (1/8),
which upon combining with Equation 5 yields

f
fmax
¼ 2expð�qlÞsinhðqlÞ: ð8Þ

We fit predictions of Equation 8 to the experimental data
of f/fmax versus l using q as an adjustable parameter (Figure
5A). Our model provides a good fit to the data, representing a
successful test of our description of the recombination
probabilities Ri(jh) (Equation 5). The best-fit estimate of q ¼
8.3 3 10�4 crossovers per position indicates that n ’ 8
crossovers occur on average (95% confidence interval: 6–10)
in a genome of length L¼ 9,700 nucleotides. This estimate of
n is in excellent agreement with a direct estimate from
sequence analysis of ;7.5 crossovers in a genome of 9,700
nucleotides [7]. We employ the best-fit estimate of q ¼ 8.3 3

10�4 crossovers per position in our calculations above.
Levy et al. [7] also performed single-round infection

experiments, where they exposed target cells simultaneously
to homozygous reporter viruses containing either the cyan
fluorescent protein (CFP) gene or the yellow fluorescent
protein (YFP) gene, and heterozygous viruses with one strand
containing the CFP gene and the other the YFP gene. The
CFP and YFP genes were obtained by introducing specific
mutations in the green fluorescent protein (GFP) gene. Thus,
recombination events between the CFP and YFP genes that
omit both the CFP and the YFP mutations yield the GFP gene.
In addition, Levy et al. [30] observed that the CFP gene has
certain distinguishing mutations between nucleotide posi-
tions ;440 and ;500. When recombination includes both the
critical CFP and YFP mutations, and also the latter
distinguishing mutations on the CFP gene, the resulting
genome exhibits green fluorescence. When the latter muta-
tions are not included, however, the resulting genomes
remain undetected. Levy et al. determined the percentage
of infected cells that exhibited green fluorescence as a
measure of the recombination rate.
To compare the observations of Levy et al. with our model
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predictions, we let genome 1 (Figure 1A) represent the
reporter virus with the CFP gene carrying the critical CFP
mutation at l1 ¼ 201 and genome 2 the virus with the YFP
gene carrying the critical YFP mutation at l2¼ 609, so that l¼
l2 � l1 ¼ 408 [7]. We redefine genome 4 to encompass all
genomes capable of green fluorescence. Thus, genome 4
includes genomes with the GFP gene, which contains neither
of the mutations at l1 and l2, and also those genomes that

contain both the mutations at l1 and l2 and the contents of
genome 1 from positions 440 to 500. Accordingly, genome 3
includes those genomes that carry both the mutations at l1
and l2 but not all of the contents of genome 1 from positions
440 to 500. With these definitions of genomes 3 and 4, we
recalculate the recombination probabilities of Equation 5d
and find

R4ð12Þ ¼
1
2
expð�qlÞsinhðqlÞ þ 1

2
expð�qlÞcoshðqlaÞsinhðqlbÞ:

ð9aÞ

The first term on the right-hand side of Equation 9a is the
probability that recombination excludes both the mutations
at l1 and l2 and is given by Equation 5d. The second term
represents the contribution to R4(12) that arises from
recombination events that include both the mutations at l1
and l2 and the contents of genome 1 from positions 440 to
500. The latter contribution is determined as follows. The
probability that reverse transcription begins on genome 1 at
position l1 ¼ 201 is 1/2. Given that the mutation at l1 is
included, reverse transcriptase would be on genome 1 at
position 440 if an even number of crossovers occurred
between positions l1 and 440, which happens with the
probability exp(�qla)cosh(qla), where la ¼ 440 – l1. For the
contents of genome 1 between positions 440 and 500 to be
included in the resulting provirus, no crossovers must occur
between positions 440 and 500, the probability of which is
exp(�q60). Finally, the mutation at l2 ¼ 609 on genome 2 is
included if an odd number of crossovers occurs between
positions 500 and l2, which happens with the probability
exp(�qlb)sinh(qlb), where lb ¼ l2 – 500. Multiplying the latter
probabilities and recognizing that la þ lb þ 60 ¼ l yields the
second contribution to R4(12) above. Similarly, we find that

R3ð12Þ ¼
1
2
expð�qlÞsinhðqlÞ � 1

2
expð�qlÞcoshðqlaÞsinhðqlbÞ:

ð9bÞ

We determine the fraction of infected cells that fluoresce
following exposure of cells to homozygous CFP and YFP
virions and heterozygous CFP/YFP virions in the proportions
1/4, 1/4, and 1/2, respectively, as follows. (Fluorescent cells are
detected in the experiments as infected.) When single
infections of cells predominate, half of the infections are
due to homozygous virions, which cause cells to fluoresce
regardless of recombination. The other half of the infections,
which are due to heterozygous virions, induce fluorescence
when recombination yields genome 1, 2, or 4. Levy et al.
ignore GFPþ cells in their estimate of the total fraction of
infected cells [30]. The latter fraction is thus 1/2þ (1/2)(R1(12)
þ R2(12)). The experimentally determined fraction, fg, of
infected cells that are GFPþ is therefore (1/2)R4(12)/[(1/2)þ (1/
2)(R1(12) þ R2(12))], which simplifies to

fg ¼ R4ð12Þ=½2� R3ð12Þ � R4ð12Þ�; ð9cÞ

where R3(12) and R4(12) are determined using Equations 9a
and 9b, respectively.
Levy et al. [7] report the mean percentage of infected cells

that are GFPþ to be 8.0 with Jurkat T cells, 5.5 with HeLa CD4
cells, and 9.1 with primary CD4þ T cells. We compare these
percentages with our prediction of fg and estimate the
recombination rate in the respective cell types (Figure 5B).
We find that the mean number of crossovers in a genome of

Figure 5. Comparisons of Model Predictions with Data from Single-

Round Infection Experiments

(A) The ratio of the percentage of cells infected with the recombinant 4, f,
and the theoretical maximum percentage, fmax, as a function of the
separation, l, between the mutations on genomes 1 and 2 (see Figure 1)
determined by Rhodes et al. [14] (circles) and by Equation 8 (line) with q
¼ 8.3 3 10�4 crossovers per position.
(B) The percentage of GFPþ cells as a function of the crossover frequency,
n, determined by Equation 9 (line), on which are mapped the
experimental percentages (circles) obtained by Levy et al. [7] with HeLa
CD4, Jurkat, and primary T cells (PBL). The inset shows the prediction of
Equation 9 over a larger range of values of n.
doi:10.1371/journal.pcbi.0030205.g005
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9,700 nucleotides is 7.1 in Jurkat T cells, 4.6 in HeLa CD4
cells, and 8.3 in primary CD4þ T cells. Direct sequence
analysis from Jurkat T cells showed a mean crossover
frequency of 7.5 (range 3–13) [7], in excellent agreement
with the estimate obtained here and from our analysis of the
experiments of Rhodes et al. [14] above. Whereas the mean

crossover frequency in HeLa cells is lower, that in primary
CD4þT cells is again in excellent agreement with the estimate
for Jurkat T cells and that from the data of Rhodes et al. [14].
With macrophages, Levy et al. [7] found that ;29% of

infected cells are GFPþ. We note that fg defined in Equation
9c is a non-monotonic function of q: increasing q increases
the probability of the accumulation of both the critical YFP
and CFP mutations at l1 and l2 but lowers the probability that
no crossovers occur between the positions 440 and 500 on
genome 1. As a result, the second contribution to R4(12) in
Equation 9a increases first and then decreases upon increas-
ing q. Thus, upon increasing q, fg increases (fg¼ 0 when q¼ 0),
reaches a maximum value of ;21% at q ¼ 0.007 crossovers
per position (;68 crossovers in 9,700 nucleotides), and
declines to an asymptotic value of ;16.7% as q ! ‘ (Figure
5B, inset). The 29% GFPþ cells observed with macrophages is
thus higher than the maximum value of fg predicted by our
model. We note that a higher percentage of GFPþ cells than
the theoretical maximum of ;21% may result if cells are
multiply infected, which we ignore in our description of
single-round infection experiments. Indeed, Levy et al. [30]
observed that a large percentage of macrophages are
coinfected despite the low viral loads employed. (Levy et al.
reanalyzed their experiments [7] by accounting for double
and triple infections of cells and estimated q [30]; the
differences in their estimates of q and our estimates above
may be attributed to the occurrence of multiple infections,
which we ignore.) In contrast, Chen et al. and Rhodes et al.
found no significant distinction between different cell types
in their experiments [13,14]. Whether nonrandom infection
processes [4,5] favored enhanced multiple infections of
macrophages in the experiments of Levy et al. [7] remains
to be ascertained.
Dynamics and scaling. We next compare our predictions

with the dynamical and scaling patterns that Levy et al. [7]
observed in their experiments with replication-competent
viruses. Levy et al. employed equal populations of homo-
zygous CFP and YFP reporter viruses to infect ;106 CD4þ T
cells and detected the total percentage of cells infected (i.e.,
that fluoresced), p*, the percentage of cells that were
coinfected with CFP and YFP genomes, p12, and the
percentage of cells that were GFPþ, p4, with time following
the onset of infection. The quantities evolved in two distinct
phases—an initial rise and a subsequent fall. Our model
captures the two-phase dynamics qualitatively, as we demon-
strate in Figure 4 (see ‘‘Model Predictions’’ above), and
elucidates the origins of the two phases and of the observed
relative prevalence of different infected cell subpopulations.
Quantitative comparisons with the dynamical data are
precluded by the possible presence in the experimental
cultures of cells not susceptible to infection, which we discuss
below. We focus here on the corresponding scaling relation-
ships observed by Levy et al. [7]. In Figure 6A, we reproduce
the experimental scaling relationship observed between p12
and p*, and in Figure 6B, the relationship between p4 and p12.
In Figure 6, we also present model predictions of p12 versus

p* and p4 versus p12 for the initial viral load 2V0¼108 and with
the parameters employed in Figure 4. In the calculations in
Figure 6, however, we replace Equation 5d for R3(12) and
R4(12) by Equations 9a and 9b and ignore cells infected with
genomes 3 alone, i.e., T3 and T33, in our count of the total
number of infected cells, T*, because the latter cells do not

Figure 6. Comparisons of Model Predictions with Experimental Scaling

Relationships

Model predictions (thick lines) obtained by solving Equations 1–6, but
with Equation 5d replaced by Equations 9a and 9b, compared with
experimental scaling relationships (symbols) between (A) the percentage
of coinfected cells (YFPþ/CFPþ) and the total percentage of infected cells,
and (B) the percentage of GFPþ cells and the percentage of coinfected
cells. The different symbols represent experiments conducted with cells
from different donors [7]. Parameters employed for calculations are
identical to those in Figure 2 except that for the red lines td¼ 2.8 d in (A)
and q¼10�3 crossovers per position in (B). The thin black line in (A) is the
experimental best-fit line [7].
doi:10.1371/journal.pcbi.0030205.g006
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fluoresce and remain undetected in the experiments [7]. We
recognize that unlike in single-round infection experiments,
the other recombination probabilities involving genome 4,
Ri(j4) in Equation 5 must also be altered to differentiate
between the two kinds of GFPþ genomes (see above) present
in the experiments. Based on the relative magnitudes of the
two contributions to R4(12) in Equation 9a (for q¼ 8.33 10�4

crossovers per position, the values of the two terms are ;0.12
and ;0.03, respectively), we expect, however, that a majority
of the GFPþ genomes are those that contain neither of the
mutations on genomes 1 and 2, i.e., as shown in Figure 1B. We
therefore employ, as an approximation, the remaining
recombination probabilities as defined in Equation 5.

We find that our model captures the quadratic scaling, p12
; (p*)2, qualitatively. Our model predicts that for small values
of p*, the scaling relationship p12 ’ 1

400 ðp�Þ
2 holds (Equation

7a), and that it transitions to p12 ’ k1
k0

1
400 ðp�Þ

2 for larger values
of p* (Equation 7b). Because k1/k0 , 1, the parametric plot of
p12 versus p* exhibits a parallel shift to lower values of p12 at
large values of p*. Indeed, this shift is also observed in
experiments, where the data lie on the experimental best-fit
scaling relationship, p12 ’ 1

40 ðp�Þ
2, for small p*, but below the

best-fit line for large p*.
Quantitatively, our model underpredicts the percentage of

coinfected cells p12 compared to the experiments: the
experimental proportionality constant relating p12 and p*,
1/40, is an order of magnitude larger than that estimated by
our model, 1/400. One reason for this discrepancy might be
the presence in the experimental cultures of cells not
susceptible to infection. Hypothesize, for instance, the
presence of a population, Tns, of non-susceptible cells in
culture. The percentage of infected cells, p*, then becomes
100T*/(T*þTþTns), where T is now the susceptible target cell
population governed by Equation 1, and T* is the total
population of infected cells. Similarly, the percentage of
coinfected cells, p12, becomes 100T12/(T

* þ T þ Tns). The
resulting proportionality constant, p12=ðp�Þ2 ¼ T12

ðT�Þ2
T�þTþTns

100
is greater than that determined by our model (Tns¼ 0) by the
factor 1 þ Tns/(T

* þ T). An estimate of the latter factor is
obtained by noting that the maximum percentage of cells
infected in experiments is ;20% for the two highest initial
viral loads employed [7]. At the peak infection, we may
assume that nearly all susceptible cells are infected, i.e., T ’ 0,
so that T*/(T*þTns) ’ 1/5. Thus, the factor above, 1þTns/T

* ’

5, explains at least in part the difference between the
experimental proportionality constant and that derived from
our model. Further, uncertainties exist in our knowledge of
the CD4 down-modulation timescale, td, of the cells in culture
[26,28,29]. A larger value of td may enhance the frequency of
multiple infections and increase p12 for a given value of p*.
Indeed, our model predictions assuming td¼ 2.8 d appear to
be in better agreement with the experimental scaling between
p12 and p* (Figure 6A). We note, however, that td ¼ 2.8 d
implies that k1 ’ k0 throughout, so that several assumptions
underlying the scaling relations in Equation 7 are not
expected to hold. In particular, we find that for large p*,
the proportionality constant relating p12 and p* is higher than
1/400, the value of the constant for small p*, in contrast to
that predicted for smaller values of td and observed in the
experimental data. Nonetheless, quantitative comparison
with the experimental scaling between p12 and p* requires a
description of the dynamics of the non-susceptible cell

population including possible transitions from non-suscept-
ibility to susceptibility and vice versa due to stimulation by
regular IL-2 addition and loss of cell activation, respectively,
which is beyond the scope of the present paper.
The presence of non-susceptible cells, however, does not

influence the linear scaling relationship between p12 and p4.
Given that p4 ¼ 100ðT4 þ

P4
i¼1 Ti4Þ=ðT� þ T þ TnsÞ, the pro-

portionality constant for the linear scaling, p4/p12 ’
T4þ
P4

i¼1Ti4

T12
, is

independent of Tns. Our model predicts that for small p12, p4 is
proportional to (p12)

2 and for large p12, p4 is proportional to
p12 (Equation 7; Figure 4B). In the experiments, the quadratic
scaling at small p12 is not observed [7]. For low initial viral
loads, the transition from the quadratic to the linear scaling
regime occurs at small values of p12 that may lie below
experimental detection limits (Figure 4B). Upon increasing
the initial viral load, the value of p12 at the transition
increases but the quadratic scaling is short-lived. Thus, for
larger viral loads, the transition to the linear scaling regime
appears to occur before the first measurement following the
onset of infection is made (at t ’ 2 d). Consequently, the
linear scaling regime may alone be accessed in experiments.
We find remarkably that our model quantitatively captures

the experimental linear scaling between p4 and p12 (Figure
6B). For small values of p12, the model is in excellent
agreement with the data. Interestingly, the same recombina-
tion rate (n¼ 8 crossovers in a genome of 9,700 nucleotides)
obtained from single-round infection experiments is em-
ployed in the latter predictions. (The latter predictions,
however, are not adequately sensitive to changes in the
recombination rate; calculations with a higher recombination
rate, q¼ 0.001 crossovers per position [n¼ 10 crossovers in a
genome of 9,700 nucleotides], yield only a marginal improve-
ment in the comparison between model predictions and
experiment [Figure 6B].) For large values of p12, the model
slightly underpredicts the experimental data, possibly be-
cause of the increased likelihood of more than two infections
of cells, which we ignore. Nonetheless, the quantitative
agreement between model predictions and the experimental
scaling relationship and the consistency of the predictions
with the recombination rate estimated from independent
single-round infection assays indicate that our model
accurately captures the underlying dynamics of recombina-
tion during HIV infection.

Discussion

The emergence of recombinant forms of HIV that are
resistant to multiple drugs often underlies the failure of
current antiretroviral therapies for HIV infection. Yet, the
dynamics of the emergence of recombinant genomes in
individuals infected with HIV remains poorly understood.
Current models of HIV dynamics are unable to explain
available experimental data of the frequency of occurrence
and the time evolution of recombinant HIV genomes
quantitatively. We developed a model that describes the
dynamics of the emergence of recombinant forms of HIV and
quantitatively captures key experimental observations. Mim-
icking recent experiments [5,7,14], we considered target cells
exposed simultaneously to two kinds of homozygous virions.
We constructed integral equations that predict the time
evolution of the population of cells coinfected with both
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kinds of viruses. Following the first infection of a cell, viral
gene expression induces CD4 down-modulation, which lowers
the susceptibility of the cell to further infections. Because
cells are infected asynchronously, determination of the
frequency of multiple infections requires accounting for the
different susceptibilities of individual cells to further
infections at any given time based on the different times
elapsed from their respective first infections, which is
accomplished by the integral equation formalism [29].
Coinfected cells produce heterozygous progeny virions,
which infect cells and yield recombinant proviral genomes.
We developed a probabilistic description of template switch-
ing during reverse transcription and predicted the frequency
with which heterozygous virions give rise to recombinant
genomes. We integrated our descriptions of multiple in-
fections of cells and recombination into standard models of
HIV dynamics [15–17] and formulated dynamical equations
that predict the time evolution of the populations of
uninfected, singly infected, and multiply infected cells, and
of homozygous, heterozygous, and recombinant viruses.

Model predictions are in agreement with the T cell
dynamics observed in vitro. Levy et al. [7] found that
following the onset of infection, the infected cell subpopu-
lations evolve in two phases, an initial rise and a subsequent
fall. Further, the percentage of cells infected by recombi-
nant genomes, p4, is a small fraction of the percentage of
coinfected cells, p12, which in turn is a small fraction of the
total percentage of cells infected, p*. The two-phase
dynamics and the relative prevalence of various infected
cell subpopulations are in agreement with our model
predictions. Our model also captures the scaling patterns
relating the frequency of infection, coinfection, and
recombination observed experimentally. Levy et al. [7]
found remarkably that p12 is proportional to (p*)2 and that
p4 is proportional to p12, independent of the initial viral
load and the time following the onset of infection. Our
model predicts both these scaling patterns and that the
patterns are independent of the initial viral load and the
time following the onset of infection. Quantitative compar-
ison between our model predictions and the experimental
scaling relationship between p12 and (p*)2 is precluded by
the poorly characterized dynamics of cells not susceptible to
infection by HIV that may be present in the experimental
cultures. We showed, however, that the presence of non-
susceptible cells does not influence the linear scaling
relationship between p4 and p12. Indeed, our model
predictions are in quantitative agreement with the exper-
imental scaling relationship between p4 and p12.
The quantitative agreement indicates that our model
captures the underlying dynamics of HIV recombination
accurately.

Our model also captures data from single-round infection
experiments on the frequency of the accumulation by
recombination of distinct mutations present on the two
RNA strands within a virion. From comparisons of model
predictions with the experiments of Rhodes et al. [14], we
estimate that ;8 template switches, or crossovers, occur on
average (95% confidence interval: 6–10) during the reverse
transcription of an entire HIV genome of ;104 nucleotides.
This number is in agreement with independent estimates
from direct sequence analysis by Levy et al. [7], who observed
;7.5 crossovers (range 3–13) on average. Comparison of our

model predictions with the single-round infection assays
performed by Levy et al. yields crossover frequencies of ;7.1
in Jurkat T cells, ;4.6 in HeLa CD4 cells, and ;8.3 in primary
CD4þ T cells. Whereas the crossover frequency in HeLa cells
is lower, the frequency in the other two cell types is in
agreement with the estimate obtained from our analysis of
the experiments of Rhodes et al. [14]. Further, the scaling
relationship between p4 and p12 described above is also
consistent with a recombination rate of ;8 crossovers per
;104 nucleotides.
The power law scaling that the number of doubly infected

cells is proportional to the square of the total number of
infected cells is also predicted by the model of HIV dynamics
with multiple infections developed by Dixit and Perelson [29].
In contrast to experiments, however, the predicted scaling is
dependent on the time following the onset of infection and
the initial viral load. Here, by considering percentages rather
than numbers of infected cells and by distinguishing between
cells doubly infected by a single kind of genome and
coinfected with distinct genomes, we mimic experimental
quantities more accurately and find that the scaling relation-
ship is independent of the time following infection or the
initial viral load, as observed in experiments [7]. Fraser argues
that the quadratic scaling observed between the percentage
of doubly infected cells and the total percentage of infected
cells, the latter predominantly singly infected, may imply a
deviation from mass action kinetics for the second (and
perhaps further) infections of cells and suggests, motivated by
the scaling, that the rate of second infection of cells may be
proportional to the square of the viral load (r ; kV2) [22].
Here, we find that the quadratic scaling emerges without
deviations from mass action kinetics (r ; kV). Further, to
address possible differences between the rates of first, second,
and third infections, due, for instance, to CD4 down-
modulation, Fraser postulates the use of different values of
the rate constants, k, for successive infections. In our model,
the differences in the rate constants for multiple infections
follow naturally from our description of CD4 down-modu-
lation (Equation 3). The latter description facilitates accurate
estimation of the frequency of multiple infections under
varying viral loads: when the viral load is high, for instance,
the second infection of a cell may occur rapidly after its first
infection, in which case the rate constants for the first and
second infections are expected to be similar due to negligible
CD4 down-modulation in the intervening interval. A fixed
rate constant for second infection (independent of the viral
load) would then tend to underestimate the frequency of
double infections. The dependence on the viral load of the
variation of the apparent infection rate constant with the
number of infections implies that when viral load changes are
rapid, the likelihood of a cell suffering multiple infections
would depend on the instant of its first infection. For
instance, in patients undergoing efficacious antiretroviral
therapy, a cell first infected at the start of therapy, when the
viral load is large, is expected to have a higher rate constant
for second infection than a cell that is first infected a day
after the onset of therapy, when the viral load is significantly
reduced. Our integral equation formalism, which accounts
for the asynchronous first infections of cells, allows accurate
determination of the frequency of multiple infections and
consequently the influence of recombination throughout the
infection period.
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If the distinction between different viral genomes is
ignored, our model reduces to the model of HIV dynamics
with multiple infections developed by Dixit and Perelson [29]
when more than two infections of cells are rare. Indeed,
changes in the total viral load, target cell numbers, and total
infected cell numbers predicted by our model (Figure 2) are
identical to those predicted by the latter model. Importantly,
the latter model reduces to the standard model of HIV
dynamics [15–17] when viral production from cells is
independent of the number of infections cells suffer. Our
model is thus consistent with the standard model of HIV
dynamics, which successfully predicts viral load changes in
patients following the onset of antiretroviral therapy [15–17].
Further, infections in SCID-hu mice also show scaling
patterns similar to those observed in vitro [7] and predicted
by our model, reinforcing the notion that our model may be
applied to describe the dynamics of recombination in vivo.

Several advances of our model are essential, however, to
predict the emergence of recombinant genomes in vivo. First,
that infected splenocytes from two HIV patients harbored 3–
4 proviruses per cell on average [6] suggests that multiple
infections of cells may be more prevalent in vivo than is
assumed in our model. Second, multiple infections in vivo
may be orchestrated by cell–cell transmission as well as by
free virions [32,33]. Third, HIV has a high mutation rate [34],
which introduces genomic variations in vivo that may
subsequently be accumulated by recombination. Indeed, the
high mutation and turnover rates of HIV in vivo [17,35]
suggest that the likelihood of the preexistence of individual
drug resistance mutations in patients is high [36]: approx-
imately half of the HIV patients in the United States are
estimated to be infected with genomes that possess resistance
to at least one of the currently available drugs [37]. Our
model describes how preexisting mutations may become
associated by recombination. Determination of the existence
of individual mutations, however, requires a description of
the HIV mutation process, which we ignore. Fourth, fitness
interactions between mutations [24] modulate the relative
prevalence of recombinant genomes, whereas we assume all
viral genomes to be equally fit. We note that incorporating
fitness selection enables our present model to describe
additionally in vitro serial passage experiments of the
emergence of drug resistance via recombination [2,38].
Finally, whereas we consider two loci, a description of
recombination between more than two loci is essential in
vivo, as more than two mutations are typically responsible for
resistance to individual drugs [37]. With the above advances,
some of which are suggested in currently available models
[18,20,22,23], our model may facilitate prediction of the
emergence of multi-drug–resistant strains of HIV in infected
individuals.

Methods

Solution of dynamical equations. We non-dimensionalize Equa-
tions 1–4 and 6 using the following dimensionless quantities:

~T ¼ T
T0
; ~Ti ¼

Ti

T0
; ~Tii ¼

Tii

T0
; ~Tij ¼

Tij

T0
; ~Vij ¼

Vij

V0
;~t ¼ dt;~s ¼ ds;~s ¼ ds;

~td ¼ dtd;N ¼
c
d
;K ¼ k� l

d
;X ¼ k0V0

d
;C ¼ NT0

V0

ð10Þ

and obtain

d ~T
d~t
¼ K ~T � X ~V ~T; ð11Þ

~Tið~tÞ ¼ X
Z~t
0

~Tð~t� ~sÞ
X4
h¼j

X4
j¼1

RiðjhÞ ~Vjhð~t� ~sÞ
 !

expð�~sÞMði;~tji;~t� ~sÞd~s;

ð12aÞ

~Tiið~tÞ ¼ X
Z~t
0

~Tð~t� ~sÞ
X4
h¼j

X4
j¼1

RiðjhÞ ~Vjhð~t� ~sÞ
 !

expð�~sÞMðii;~t j i;~t� ~sÞd~s;

ð12bÞ

~TijðtÞ ¼ X
Z~t
0

~Tð~t� ~sÞ
X4
h¼m

X4
m¼1

RiðhmÞ ~Vhmð~t� ~sÞ
 !

expð�~sÞMðij;~t j i;~t� ~sÞd~s

þX
Z~t
0

~Tð~t� ~sÞ
X4
h¼m

X4
m¼1

RjðhmÞ ~Vhmð~t� ~sÞ
 !

expð�~sÞMðji;~t j j;~t� ~sÞd~s

ð12cÞ

~k ¼ expð�ð~s� ~tþ ~sÞ=~tdÞ; ð13Þ

dMði;~sji;~t� ~sÞ
d~s

¼ �X~k ~Vð~sÞMði;~sji;~t� ~sÞ; ð14aÞ

dMðij;~sji;~t� ~sÞ
d~s

¼ X~k
X4
m¼h

X4
h¼1

RjðhmÞ ~Vhmð~sÞMðij;~sji;~t� ~sÞ; ð14bÞ

d ~Vii

d~t
¼ C ~Ti þ ~Tii þ

1
4

X4
j.i

~Tij þ
1
4

Xi�1
h¼1

~Thi

 !
� N ~Vii; ð15aÞ

and

d ~Vij

d~t
¼ 1

2
C ~Tij � N ~Vij ; i 6¼ j: ð15bÞ

We solve the dimensionless Equations 5 and 11–15 as follows. We
recognize that the equations are strongly coupled because of the
integral equation formalism (Equation 12) employed; for instance,
evaluation of the integral in Equation 12a to determine ~Tið~tÞ requires
knowledge of ~Vjh at all times from 0 to ~t, which in turn depends on ~Ti
through Equation 15. Using the initial conditions, we first integrate
the differential equations for ~T and ~Vjh (Equations 11 and 15) for a
small time step h, i.e., from ~t ¼ 0 to ~t ¼ h. Next, we integrate the
differential equations for the conditional probabilities M (Equation
14) by discretizing ~s, which can vary from 0 to h, into intervals of
length hm and determining ~VjhðahmÞ, where a assumes integer values
from 0 to h/hm, by linear interpolation between ~Vjhð0Þ and ~VjhðhÞ. We
then evaluate the integrals in Equation 12 to determine ~TiðhÞ, ~TiiðhÞ,
and ~TijðhÞ. We march forward in time and evaluate ~Tð2hÞ and ~Vjhð2hÞ
by integrating Equations 11 and 15 from time ~t ¼ h to ~t ¼ 2h,
integrate Equation 14 by allowing ~s to vary from 0 to 2h, and evaluate
the integrals in Equation 12 to determine ~Tið2hÞ, ~Tiið2hÞ, and ~Tijð2hÞ.
We repeat the procedure until ~t ¼ 10d (i.e., t¼ 10 d). The solution is
implemented by a computer program written in Fortran 90.

Scaling analysis. We derive below the scaling relationships
mentioned in Equation 7. Following the onset of infection, for times
small compared to the timescale of CD4 down-modulation, i.e., t� td,
because k ’ k0, we write the dynamics of singly infected cells as

dT1

dt
¼ k0T

X4
k¼j

X4
j¼1

R1ðjkÞVjkðtÞ � k0T1V � dT1; ð16Þ

where the first term on the right-hand side is the rate of formation of
T1 by the infection of uninfected cells, and the second and third
terms are the losses of T1 due to further infections and cell death. At
the start of infection, the dominant viral populations are V11 and V22
(Figure 3B), of which infection by the former alone yields T1. Further,
because T1 is small (Figure 3A), the loss terms, which are linear in T1,
are negligible. Equation 16 then simplifies to
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dT1

dt
’ k0TV11: ð17Þ

For lengths of time short compared to the timescales over which V
and T change, we let T ’ T0 and V11 ’ V0 and integrate Equation 17
to obtain

T1 ’ k0T0V0t; ð18Þ

where we use the initial condition T1(0)¼0. With assumptions similar
to those employed in obtaining Equation 17, we find that the
coinfected cell population evolves according to the following
equation:

dT12

dt
’ k0T1V22 þ k0T2V11 ¼ 2k0T1V0; ð19Þ

where we recognize that T1¼ T2 and V11¼ V22 ’ V0. Substituting for
T1 from Equation 18 and integrating with the initial condition T12(0)
¼ 0, we get

T12 ’ k20T0V2
0 t

2: ð20Þ

The evolution of the heterozygous viral population, V12, is given by

dV12

dt
’
1
2
NdT12;

where we note that 1/2 of the virions produced from cells T12 are
heterozygous. We ignore viral clearance because V12 is expected to be
small. Substituting for T12 from Equation 20 and integrating with the
initial condition V12(0) ¼ 0, we obtain

V12 ’
1
6
Ndk20T0V2

0 t
3: ð21Þ

The time evolution of the cell population infected with recombi-
nants, T4, is then given by

dT4

dt
’ k0T0V12R4ð12Þ; ð22Þ

where we recognize that because V12� V44� V14, most of the cells T4
are formed due to infection by V12 followed by recombination.
Substituting for V12 from Equation 21, and integrating with the initial
condition that T4(0) ¼ 0, we find

T4 ’
1
24

R4ð12ÞNdk30T
2
0V

2
0 t

4: ð23Þ

Because the total infected cell population comprises largely cells
T1 and T2, which in turn are significantly smaller in number than
uninfected cells (Figures 2 and 3A), we obtain the total percentage of
infected cells,

p� ¼ 100T�

T� þ T
’
200T1

T0
¼ 200k0V0t: ð24Þ

Similarly, the percentage of coinfected cells,

p12 ¼
100T12

T� þ T
’ 100k20V

2
0 t

2; ð25Þ

and the percentage of cells infected with recombinants,

p4 ¼
100T4

T� þ T
’
25
6
R4ð12ÞNdk30T0V2

0 t
4: ð26Þ

Combining Equations 24–26, we obtain

p12 ’
1

400
ðp�Þ2 and p4 ’

R4ð12ÞNdT0

2; 400k0V2
0

ðp12Þ2: ð27Þ

We thus find that early during infection, the scaling laws p12 ; (p*)2

and p4 ; (p12)
2 hold.

We next consider times longer than the timescale over which viral
production and clearance reach pseudo steady state, t . teq. The
magnitudes of the viral subpopulations still follow V11¼V22� V12�
V44 (Figure 3B). Similarly, for the infected cell subpopulations, we
have T1 ¼ T2 � T12 � T4 (Figure 3A). The relevant evolution
equations may then be written as

dT1

dt
’ k0TV11 � k1T1V � dT1;

ð28Þ

dT12

dt
’ k1T2V11 þ k1T1V22 � dT12 ’ 2k1T1V11 � dT12;

ð29Þ

dT4

dt
’ k0TV12R4ð12Þ � dT4; ð30Þ

dV11

dt
¼ NdT1 � cV11; ð31Þ

and

dV12

dt
¼ 1

2
NdT12 � cV12; ð32Þ

where we let k1 be the ‘‘mean’’ infection rate of singly infected cells.
We note that k1 is a function of the CD4 down-modulation timescale,
td. If td is large, for instance, then k1 ’ k0. Applying the pseudo steady
state approximation for the viral populations yields

V11 ¼
NdT1

c
and V12 ¼

NdT12

2c
: ð33Þ

Substituting for V11 from Equation 33 in Equation 28, we obtain

dT1

dt
’ k0T

NdT1

c
� k1T1V � dT1: ð34Þ

Assuming that changes in the target cell population, T, and the total
viral load, V, occur slowly compared to changes in T1, which is
expected in the initial stages of infection, we integrate Equation 34 to
obtain

T1 ¼ Teq
1 expðKtÞ ð35Þ

where K ¼ k0TNd
c � k1V � d and Teq

1 is the value of T1 when t¼ teq. Note
that in Equation 35, t � teq. Substituting for V11 and T1 in Equation
29 yields

dT12

dt
’

2k1Nd
c
ðTeq

1 Þ
2expð2KtÞ � dT12;

which upon integrating with the initial condition T12 ¼ Teq
12 when t¼

teq and recognizing that Teq
12 � Teq

1 gives

T12 ¼
2k1Nd

cð2K þ dÞ ðT
eq
1 Þ

2expð2KtÞ ¼ 2k1Nd
cð2K þ dÞ ðT1Þ2: ð36Þ

Combining Equations 30, 33, and 36, we get

dT4

dt
’

Nd
c

� �2 k1k0TR4ð12Þ
ð2K þ dÞ ðT

eq
1 Þ

2expð2KtÞ � dT4: ð37Þ

Integrating Equation 37 and assuming Teq
4 � Teq

12 yields

T4 ’
Nd
c

� �2 k1k0TR4ð12Þ
ð2K þ dÞ2

ðTeq
1 Þ

2expð2KtÞ ¼ Ndk0TR4ð12Þ
2cð2K þ dÞ T12: ð38Þ

Again, assuming that the singly infected cells are predominant in the
infected cell population, the percentage of total infected cells is

p� ¼ 100T�

T� þ T
’

200T1

T
; ð39Þ

where the small percentage of infected cells allows us to write T*þ T
’ T. The percentage of coinfected cells is then

p12 ¼
100T12

T� þ T
’
100
T

2k1Nd
cð2K þ dÞ ðT1Þ2 ¼

1
200

k1NdT
cð2K þ dÞ ðp

�Þ2 ’
1

400
k1
k0
ðp�Þ2;

ð40Þ

where the last approximation follows from the sharp rise in T1
following the establishment of pseudo steady state (Figure 3A), which
according to Equation 34 implies that K ¼ k0TNd

c � k1V � d ’ k0TNd
c .

Finally, the percentage of cells T4 infected with recombinants is

p4 ¼
100T4

T� þ T
’
100Ndk0TR4ð12Þ

2cð2K þ dÞT T12 ¼
R4ð12Þ

4
p12: ð41Þ

Thus, later in the infection (t . teq), the scaling laws p12 ; (p*)2 and p4
; p12 hold.
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