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In mammals, sperm cells produced within the testis are structurally differentiated but
remain immotile and are unable to fertilize the oocyte unless they undergo a series
of maturation events during their transit in the male and female genital tracts. This
post-testicular functional maturation is known to rely on the micro-environment of both
male and female genital tracts, and is tightly controlled by the pH of their luminal
milieus. In particular, within the epididymis, the establishment of a low bicarbonate
(HCO3

−) concentration contributes to luminal acidification, which is necessary for sperm
maturation and subsequent storage in a quiescent state. Following ejaculation, sperm
is exposed to the basic pH of the female genital tract and bicarbonate (HCO3

−),
calcium (Ca2+), and chloride (Cl−) influxes induce biochemical and electrophysiological
changes to the sperm cells (cytoplasmic alkalinization, increased cAMP concentration,
and protein phosphorylation cascades), which are indispensable for the acquisition of
fertilization potential, a process called capacitation. Solute carrier 26 (SLC26) members
are conserved membranous proteins that mediate the transport of various anions
across the plasma membrane of epithelial cells and constitute important regulators
of pH and HCO3

− concentration. Most SLC26 members were shown to physically
interact and cooperate with the cystic fibrosis transmembrane conductance regulator
channel (CFTR) in various epithelia, mainly by stimulating its Cl− channel activity. Among
SLC26 members, the function of SLC26A3, A6, and A8 were particularly investigated
in the male genital tract and the sperm cells. In this review, we will focus on SLC26s
contributions to ionic- and pH-dependent processes during sperm post-testicular
maturation. We will specify the current knowledge regarding their functions, based on
data from the literature generated by means of in vitro and in vivo studies in knock-out
mouse models together with genetic studies of infertile patients. We will also discuss
the limits of those studies, the current research gaps and identify some key points for
potential developments in this field.
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INTRODUCTION

Spermatozoa constitute one of the most differentiated cell types of
the body and are produced within the seminiferous tubules of the
testis during spermatogenesis, a complex and tightly regulated
process of nearly 2.5 months long in humans and 7 weeks in mice
(Heller and Clermont, 1964; Clermont, 1972). At the end of this
process, spermatozoa are fully differentiated at the morphological
level, and comprise two main compartments: the head and
the tail, each fulfilling specific functions that are essential for
fertilization (Figure 1). The sperm head comprises the nucleus,
in which the haploid paternal DNA is highly compacted through
replacement of histones by protamines that mediate hyper
condensation of the chromatin during spermiogenesis (Miller
et al., 2010). In addition, the acrosome, a peculiar vesicle which
derives from the Golgi, locates to the anterior half of the sperm
head and forms a large cap containing various proteases and
membrane receptor that are required to cross the cumulus cell
layer and digest the zona pellucida that surround the oocyte
(Foster and Gerton, 2016). The tail or flagellum is an organelle
of 50 to 100 micrometer long in mammals, which sustains sperm
motility and progression within the female genital tract and is
thus also indispensable for fertilization. It is composed of an
evolutionary conserved microtubule-based structure, called the
axoneme, which is also shared with cilia, and contains nine
microtubules doublets (MTD) organized around a central pair
of microtubules (CP) (Inaba, 2007, 2011). Attached to the MTD,
the Inner and Outer Dynein Arms (IDAs and ODAs), which
constitute multiprotein complexes with ATPase activity, drive
the sliding of the MTD, and orchestrate the sperm flagellum
beating. In addition, MTD are connected to each other through
the nexin-dynein regulatory complex (NDRC) and to the CP
complex via the radial spokes (RS) (Inaba, 2007, 2011; Figure 1).
This latter multi-protein complex ensures the stability of the
axonemal structure and may also function as a scaffold for
signaling molecules such as Calmodulin (CaM) and Protein
kinase A (Yang et al., 2006).

In spermatozoa from primitive species such as fishes, the
flagellum is similar to that of cilia and only comprises the
microtubular axoneme surrounded by the plasma membrane.
In mammals, the sperm cells harbor peri-axonemal structures
that surround the microtubule-based cytoskeleton of the tail
beneath the plasma membrane and are required for structural
cohesion, energy regulation and cell signaling (Eddy et al., 2003;
Eddy, 2007). The structure of mammalian sperm tail can be
divided in several compartments, based on their content on peri-
axonemal structures. Hence, the midpiece (MP) is characterized
by the presence of the mitochondrial sheath (MS) and contains
outer dense fibers (ODFs), which ensure elasticity and structural
integrity (Lehti and Sironen, 2017). The principal piece (PP)
is characterized by the fibrous sheath (FS), which comprises
two longitudinal columns attached to doublets 3 and 8 that
partially displace ODFs and are connected by semi-circular ribs.
Proteins from the FS are stabilized by di-sulfide bonds, which
suggest that the FS might strengthen the sperm structure and
influence its flexibility (Eddy et al., 2003). The FS also behaves as
a scaffold for proteins regulating sperm motility and functionality

as it harbors glycolytic enzymes and signaling molecules, such
as AKAP proteins and cAMP-dependent protein kinase (Eddy,
2007; Lehti and Sironen, 2017). Lastly, the terminal piece encloses
the sperm tail and is only composed of the axoneme. In addition,
two specific structures of the sperm tail are also distinguishable:
the connecting piece, which anchors the tail to the sperm head
(Inaba, 2007, 2011) and the annulus, a Septin-ring structure
(also called Jensen’s ring), which locates at the boundary of
the midpiece and the principal piece and acts as a diffusion
barrier to ensure the correct localization of proteins along the
different compartments of the sperm flagellum (Toure et al.,
2011; Figure 1).

While spermatozoa released from the testicular seminiferous
tubules are morphologically differentiated, they are immotile
and unable to recognize and fertilize the oocyte. Importantly,
sperm functionality will be conferred by a series of maturation
events occurring during their transit through the male and
female genital tracts (Fraser, 1992; Yeung and Cooper, 2003).
Such post-testicular functional maturation is known to rely
on the luminal milieus of the male and female genital tracts,
which composition results from specific absorptive and secretory
activities of epithelial cells that line the lumen of both tracts.
In particular, sperm maturation is tightly controlled by the pH
of the luminal milieu. In the first part of this review we will
describe the current knowledge on (i) the cellular cross-talks and
membrane transporters that are involved in the establishment of
the acidic luminal milieu required for epididymal maturation,
and (ii) the ionic fluxes and physiological changes occurring
in the sperm cells upon capacitation, which are triggered by
sperm exposition to high concentration of HCO3

− in the
female genital tract. We will next focus on SLC26 proteins,
a well-established transmembrane protein family involved in
anionic transport and pH regulation in various epithelia. We will
provide a comprehensive description of their contributions in the
regulation of some hallmarks associated with capacitation and
present recent data, which revealed their functions within the
epididymal cells. Lastly, we will describe the human disorders
related to SLC26 dysfunctions in the male reproductive organs.
We will conclude the review by discussing some of the current
research gaps in this field and presenting potential perspectives
for future research.

SPERM EPIDIDYMAL MATURATION

Epididymis Structure and Function
When spermatogenesis is completed within the seminiferous
tubules of the testis, spermatozoa are released in the lumen and
collected through the rete testis and the efferent ducts to join
the epididymal tract. The epididymis consists in a unique and
highly convoluted tube of nearly 1 and 6 m long, in mice and
humans, respectively (Hinton et al., 2011). It is anatomically
divided into three principal regions, the caput, corpus, and cauda,
following the proximal-distal axis (Hirsh, 1995; Turner, 2008);
each of them being further divided in several segments as it
is well-documented in rodents (10 and 19 segments in mouse
and rats, respectively) (Johnston et al., 2007; Figure 2). In some
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FIGURE 1 | Schematic representation of mammalian spermatozoa and flagellum structure. Left panel, overall view of the spermatozoa showing the main head and
flagellum structures and compartments. Right panel, cross section from the principal piece of the flagellum showing the organization of the axoneme: microtubule
doublets (MTD), central pair (CP), radial spokes (RS), nexin dynein regulatory complex (NDRC), inner and outer dynein arms (IDA and ODA), together with some of
the peri-axonemal structures: fibrous sheath (FS), outer dense fiber (ODF), and longitudinal columns (LC).

species, specific morphological features can be observed, like in
rodents, where a proximal segment adjoined to the testis, called
the initial segment, is distinguishable (Soranzo et al., 1982). The
epididymal epithelium is composed of different cell types, which
are the principal cells (PCs), the clear cells (CCs), the narrow
cells (NCs), the apical/basal cells and the halo cells together with
immune cells such as macrophages and dendritic cells (Da Silva
and Smith, 2015; Voisin et al., 2018; Breton et al., 2019; Figure 2).
The proportion of each epididymal cell-type is variable between
the different segments of the epididymis, which are associated
with specific secretory and absorptive activities providing distinct
luminal micro-environments along the tract contributing to
sperm maturation (Breton et al., 2019). For instance, PCs, which
are the most abundant cell type, are present in all epididymal
regions while NCs exclusively locate to the initial segment and
CCs are present in the caput and corpus, and highly enriched in
the cauda (Hermo et al., 1992; Adamali and Hermo, 1996).

The epithelium of the epididymis constitutes a physical barrier
which protects the sperm cells from the immune system and is
essential to mediate vectorial transport of ions, solutes, nutrients
and water from the blood circulation thus insuring sperm cell

survival and protection (Hinton et al., 1995; Gregory and Cyr,
2014). Some of the maturation events occurring during sperm
decent along the epididymal tract have been elucidated and
it is now well-established that spermatozoa will acquire their
motility when transiting through the caput and corpus regions
before being stored until ejaculation, in a quiescent state in the
caudal region (Bedford, 1967; Orgebin-Crist, 1967). Proteomic
and transcriptional analysis of sperm retrieved from the different
segments of the epididymis in several species, provided valuable
information regarding the changes occurring during epididymal
transit. Changes in surface protein content and post-translational
modifications have been reported; sperm lipid composition is
also described to be modified and influences membrane fluidity
in preparation for egg fusion and fertilization (Gervasi and
Visconti, 2017). Studies performed on the luminal fluid also
highlighted variations in its composition along the epididymal
tract, in respect to ions, soluble factors, proteins, non-coding
RNA (Johnston et al., 2005; Dacheux et al., 2006, 2009; Yuan
et al., 2006; Jelinsky et al., 2007; Dean et al., 2008; Moura et al.,
2010; Guyonnet et al., 2011; Liu and Liu, 2015; Liu et al., 2015;
Browne et al., 2019; for review see Sullivan and Mieusset, 2016;
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FIGURE 2 | Continued
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FIGURE 2 | Schematic representation of the epididymis structure and ionic exchanges between epithelial cells, which control luminal acidification. (A) Left panel, the
testis, efferent ductules and epididymis are schematized. The different regions within the epididymis, in mouse, are indicated: initial segment, caput, corpus and
cauda, following the proximal-distal axis. Right panel, the distribution of the different epithelial cell-types within the epididymal tract is also illustrated: principal cells
(PCs), clear cells (CCs), narrow cells (NCs), and basal cells; the luminal fluid shows epididymosomes, which are small vesicles transferring material from epithelia cells
to the sperm cells. (B) Simplified representation of the main ionic fluxes and cross talks occuring between principal, clear, and basal cells. CCs expressed the
V-ATPase pumps, which expression at the plasma membrane is induced by HCO3

− and c-AMP dependent pathway. The HCO3
− influx in CCs is mediated by the

NBC sodium- HCO3
− transporter. ATP also induces intracellular rise of Ca2+, which increase V-ATPase translocation at the plasma membrane and proton secretion.

PCs express the NHE3 sodium-proton antiporter, which contributes to proton secretion and luminal acidification. They also secrete HCO3
− through the CFTR

channel. Lastly, basal cells transmit physiological cues, in particular during sexual arousal, which regulate the activity of principal and CCs.

Zhou et al., 2018) most importantly, those studies uncovered the
existence of small vesicles, called epididymosomes, which enable
material transfer between epithelial and sperm cells and support
their maturation, in the absence of intrinsic de novo transcription
and translation events (Figure 2A; Sullivan et al., 2007; Frenette
et al., 2010; for review see Sullivan et al., 2007; Zhou et al., 2018;
Trigg et al., 2019).

Epididymis Luminal Milieu, Ionic Fluxes,
and pH
One important feature of epididymal maturation is the
establishment of an acidic luminal fluid, which is required for
sperm quiescence during their maturation and storage (Shum
et al., 2011). Such specific luminal environment starts to be
established within the efferent ductules, which exert an intensive
reabsorption of the fluid released with spermatozoa from the
testis (Clulow et al., 1998). The acidic pH of the epididymal
luminal fluid is related to particular ionic composition, with low
level of sodium, Cl− and HCO3

− ions, in comparison to that of
other organ fluids or blood plasma (Wales et al., 1966; Levine
and Marsh, 1971; Jenkins et al., 1980). Overall, it is conferred
by specific secretive and absorptive properties of each epithelial
cell type and complex intercellular cross-talks (Figure 2). First,
are involved the CCs, which are categorized as mitochondria-
rich cells, and actively secrete protons via the V-ATPase proton
pump, a multi-protein complex located at their apical side. In
those cells, activation of the soluble adenylate cyclase (sAC)
and a PKA-dependent pathway, trigger the accumulation of the
V-ATPase pump at the plasma membrane from intracytoplasmic
storage vesicles (Pastor-Soler et al., 2003; Belleannee et al.,
2011; Battistone et al., 2018). The luminal ATP also stimulates
membrane addressing of the V-ATPase pump in CCs, through
pH-activated ATP purinergic membrane receptors such as P2× 4
and elevation of the intracellular Ca2+ (Belleannee et al., 2011;
Battistone et al., 2018). In addition, CCs also express the cytosolic
carbonic anhydrase type II, which catalyzes hydration of carbon
dioxide to HCO3

− and is therefore essential for acid/base
transport (Breton, 2001). The PCs, which constitute the most
abundant cell type of the epididymis are also very active in
absorbing the HCO3

− in the proximal region of the mouse
epididymis (initial segment) and in secreting protons through
the sodium/hydrogen exchanger NHE3, in the distal region (Park
et al., 2017; Figure 2). Last, the basal cells are also critical as
they transmit physiological cues which regulate the activity of
both principal and CCs (Leung et al., 2004; Cheung et al., 2005;
Shum et al., 2008). In particular, during sexual arousal, prior to

ejaculation, basal cells activate the secretion of HCO3
− by the PCs

through the CFTR channel in a cAMP-PKA dependent manner
(Park et al., 2017), an action which is hypothesized to prime
the spermatozoa (Hagedorn et al., 2007; Pierucci-Alves et al.,
2010; Figure 2). Interestingly, the luminal HCO3

− may also be
incorporated into the CCs via the sodium HCO3

− co-transporter
NBC (Jensen et al., 1999), and subsequently activate the sAC-
PKA pathway triggering proton secretion. In this sense, CCs may
behave as counteractors of luminal pH elevation, and be involved
in the regulation of abnormal and/or sustained pH increase
conditions. In addition, or alternatively, HCO3

− secretion by the
PCs may be part of an integrated paracrine mechanism involving
a crosstalk between clear and PCs, and ultimately leading to
proton secretion by CCs and lumen acidification.

Overall, within the epididymal milieu, the established acidic
pH and the low HCO3

− concentration need to be tightly
regulated to insure proper sperm maturation and storage (for
review see Bernardino et al., 2019). The importance of such
epididymal intraluminal environment is well-demonstrated in
various mouse models associated with abnormally elevated pH or
ionic disequilibrium conditions, which all induce reduced sperm
fertilization potential and male infertility (Yeung et al., 1998,
2004; Zhou et al., 2001; Bigalke et al., 2010; Weissgerber et al.,
2012; for review see Zhou et al., 2018).

SPERM CAPACITATION IN THE FEMALE
GENITAL TRACT

Definition, Function, and Associated
Sperm Changes
Following ejaculation, spermatozoa achieve their ultimate
functional maturation, which is initiated by secretions from
the male accessory glands (prostate and seminal vesicles) and
fully completed in the female genital tract, a process called
capacitation. The process of capacitation was discovered
by Chang (1951) and Austin (1952), respectively, who
experimentally demonstrated that spermatozoa from rabbits and
rats, need to spend enough time within the fallopian tubes of the
female genital tract, in order to acquire their fertilization. These
pioneer studies were immediately followed by investigations
aiming at defining the minimal conditions permitting to
capacitate sperm cells in vitro and the first successful experiment
of in vitro fertilization was performed with hamster eggs by
Yanagimachi and Chang (1963). This led to major achievements
in reproductive medicine through the development of assisted

Frontiers in Cell and Developmental Biology | www.frontiersin.org 5 October 2019 | Volume 7 | Article 230

https://www.frontiersin.org/journals/cell-and-developmental-biology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-07-00230 October 16, 2019 Time: 17:33 # 6

Touré SLC26 and Sperm Fertilization Potential

reproduction technologies. Many additional investigations
permitted to describe some of the molecular and biochemical
events associated with capacitation, in humans and other
species (see review Gervasi and Visconti, 2016), while sperm
epididymal maturation was much less investigated and remains
poorly understood.

It is now well-established that capacitation confers the sperm
cells a hyperactivated motility characterized by increased flagellar
amplitude and beating frequency, which enables sperm cells to
penetrate through the cumulus cell layer surrounding the oocyte
(Suarez, 2008). In addition, sperm acquire the ability to perform
the acrosomal reaction and to specifically recognize and interact
with oocyte (Tulsiani and Abou-Haila, 2011). This is associated
with biochemical and electrophysiological changes occurring
in the cytoplasm and the plasma membrane of the sperm
cells, which together constitute some hallmarks of capacitation.
Among these principal changes, were described an increase
of the plasma membrane fluidity mainly due to cholesterol
depletion, and complex ionic fluxes inducing alkalinization
of the cytoplasm, plasma membrane hyperpolarization and
flagellar protein phosphorylation (Figure 3; Visconti et al., 2011).
HCO3

−, Cl−, and Ca2+ ions were described to be involved
in those processes. In particular, Ca2+ and HCO3

− directly
bind to the soluble adenylate cyclase (sAC) and stimulate
cAMP production (Chen et al., 2000; Jaiswal and Conti, 2003).
The resulting increase in intracellular cAMP concentration is
responsible for the activation of the protein kinase A (PKA)
and subsequent phosphorylation cascades of flagellar proteins
that are indispensable for sperm fertilization (Visconti et al.,
2011; Figure 3). Among the phosphorylated targets, both
axonemal and peri-axonemal proteins of the sperm flagellum
were identified. Hence signaling proteins such as the AKAP
proteins (Carrera et al., 1996) together with enzymes involved
in energetic metabolism (pyruvate dehydrogenase and aldolase)
(Arcelay et al., 2008) that locate to the fibrous sheath of
the sperm flagellum are phosphorylated upon capacitation;
other peri-axonemal components of the flagellum, such as the
ODF (Mariappa et al., 2010) were also identified. Importantly,
structural protein of the axoneme such as Tubulin (Arcelay
et al., 2008) and dynein chains (Baker et al., 2010), which
orchestrate flagellar beating (see Figure 1), are phosphorylated
upon capacitation. Ca2+ also directly binds to CaM present
in the sperm cells (head and flagellum) (Jones et al., 1980;
Feinberg et al., 1981; Carrera et al., 1996) and regulates additional
phosphorylation cascades initiated by the Calmodulin kinase
(CaM kinase) (Gonzalez-Fernandez et al., 2012; Navarrete et al.,
2015; see review Suarez, 2008). Overall, ion fluxes induced during
capacitation tightly regulate both sperm flagellar beating and
energy homeostasis.

Sperm Capacitation, Ionic Fluxes, and
pH
Capacitation is induced by sperm exposition to high HCO3

−

concentration and basic pH in the female genital tract, as
compared to the acidic epididymal milieu (Zhou et al., 2005).
Hence in contrast to the recorded HCO3

− concentrations of

2–7 nmol/L (pH 6.4; rats) in epididymal cauda (Levine and
Marsh, 1971), sperm cells encounter HCO3

− concentrations of
30 nmol/L in the vas deferens (pH 7.5; rats) (Levine and Marsh,
1971), and approximatively 25 to 90 nmol/L in the fallopian
tubes (pH 7.61; rabbit) (Vishwakarma, 1962; see review Ng et al.,
2018). A panoply of ion transporters located at the surface of
murine and human sperm cells was identified and shown to
mediate some of the complex ionic fluxes during capacitation
(Figure 4; Puga Molina et al., 2017). Briefly, the combined proton
extrusion and HCO3

− influxes result in cytoplasm alkalinization.
Proton extrusion from the sperm cells is mediated by the voltage-
gated H+ channel (Hv1) in humans, and the Na+/H+ exchangers
(NHE), also called SLC9 proteins, in humans, mice and rats
(Puga Molina et al., 2017). Bicarbonate transporters involved in
capacitation include members of the SLC4 sodium-dependent
transporter and SLC26 Cl−/HCO3

− exchangers families (cf.
infra), together with the CFTR Cl− channel, which functions
by cooperating with SLC26 Cl−/HCO3

− exchangers, in mouse
and in humans (this later aspect regarding SLC26 proteins
will be developed in the next section of the review). In
addition, several isoforms of carbonic anhydrases (cytosolic and
membrane) are present in the sperm and likely contribute in
regulating sperm HCO3

− concentration (Puga Molina et al.,
2017). The resulting cytoplasm alkalinization regulates pH-
dependent channels; hence the Ksper and Slo outward potassium
channels are activated (Navarro et al., 2007; Santi et al., 2010)
while the inward sodium ENac channel is inhibited. This leads to
hyperpolarization of the plasma membrane and in turn activates
voltage- and pH-dependent channels. Among those, the CatSPER
channel (cation channel sperm associated) is a multiprotein
complex, which exclusively locates to the plasma membrane
of the principal piece in human and mouse sperm flagellum,
and mediates Ca2+ influxes (Figure 4; see review Singh and
Rajender, 2015). In consistence with their restricted expression
and function during capacitation, mutations in some genes
encoding for some of the above ionic transporters (CatSPER1,
CatSPER2, SLC26A3, and SLC26A8) were associated with male
infertility due to asthenozoospermia, a pathology defined by
reduced or absence of sperm motility (Hildebrand et al., 2010;
Ray et al., 2017; Wedenoja et al., 2017).

SLC26 PROTEINS IN SPERM FUNCTION
AND MALE FERTILITY

Overview of SLC26 Protein Family
The Solute carrier 26 (SLC26) members are evolutionary
conserved transmembrane proteins that mediate the transport of
various anions including Cl− (chloride), HCO3

− (bicarbonate),
SO4

2− (sulfate), iodide (I−), formate (HCOO−) and C2O4
2−

(oxalate), and contribute to the composition and the pH
of secreted fluids in the body (Alper and Sharma, 2013).
SLC26 belong to the highly conserved superfamily of amino
acid-polyamine-organocation (APC) transporters and SLC26-
related proteins are present in various organisms including
bacteria, yeast, algae, plants (SulP/Sultr proteins) and non-
mammalian vertebrates. In mammals, 10 members (SLC26A1 to
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FIGURE 3 | Schematic representation of the biochemical and electrophysiological changes during sperm capacitation in the female genital tract. Capacitation
confers the sperm cells a hyperactivated motility characterized by an increased flagellar amplitude and beating frequency, and the ability to perform the acrosomal
reaction and to specifically recognize and interact with oocyte. This functional activation is mainly induced by HCO3

−, Ca2+ and Cl− influxes, which trigger
biochemical and electrophysiological changes in the cytoplasm and the whole plasma membrane of the sperm cells. Among the principal changes, are observed an
increase of the plasma membrane fluidity through cholesterol depletion, which favor the relocation of proteins located in the sperm head and involved in oocyte
interaction, together with an alkalinization of the cytoplasm and plasma membrane hyperpolarization. Intense protein phosphorylation, which include some proteins
involved in flagellar beating, is observed on the sperm flagellum. pHi, intracellular pH; Em, membrane potential; [. . .], cytoplasmic ion concentrations; ↑, increase; ↓,
decrease. Plain and broken arrows indicate a direct and indirect effect, respectively.

SLC26A11; SLC26A10 being a pseudogene) have been identified,
and are expressed throughout the body with organ-specific
distribution (Alper and Sharma, 2013; Table 1). SLC26 proteins
mainly function as secondary anion transporters (ion-coupled
transporters), utilizing the electrochemical gradient of an ion to
drive the transport of another solute against its gradient. Some
of them also function as uncoupled electrogenic transporters
similar to Cl− channels (SLC26A7, A9) (Ohana et al., 2011;
Alper and Sharma, 2013; Table 1). A few exception are to be
mentioned: first, in mammals, no proper anion transport activity
was reported for SLC26A5 (Prestin) (in contrast to chicken, zebra
fish and insects) (Schaechinger and Oliver, 2007; Hirata et al.,
2012) and SLC26A5 is supposed to act as a motor protein and
to control outer hair cells of the cochlea in an anion-dependent
manner (Zheng et al., 2000; Rybalchenko and Santos-Sacchi,
2008); second, the activity of SLC26A8 and SLC26A11, has been
poorly investigated, and it is therefore difficult to precisely state
on their anion specificity and mode of transport.

SLC26 proteins share a common structure, including a
highly conserved transmembrane region with 10 to 14 spans,
supporting the anion transport activity, and a cytoplasmic region,
which comprises the STAS domain (Sulfate Transporter and
Anti-Sigma factor antagonist) involved in SLC26 trafficking

(Sharma et al., 2011; Bai et al., 2016), protein-protein interaction
and regulation (for reviews see Ohana et al., 2011; Alper and
Sharma, 2013; Figure 5). Several SLC26 members also carry
a PDZ binding domain at their carboxy-terminal extremity
(for reviews see Ohana et al., 2011; Alper and Sharma, 2013).
Interestingly, most SLC26 members were shown to physically
interact with the Cystic Fibrosis Transmembrane conductance
Regulator channel (CFTR; MIM 602421) via their STAS domain,
and to stimulate the CFTR Cl− channel activity in various
epithelia (Ko et al., 2004; Khouri and Toure, 2014; Figure 5).
Such physical and functional cooperation highlights the cross-
talks which are likely to exist between SLC26 and other
ionic transporters. Interestingly, while SlC26 proteins were
initially thought to function as monomers, some biochemical
studies indicate that they can form homo- and hetero-dimers,
providing an additional level of complexity in their mode of
function and regulation (Chavez et al., 2012). Studies of the
bacterial YeSLC26A2 protein indicated that homodimerization is
supported by the transmembrane core and not by the cytoplasmic
STAS domain (Compton et al., 2011) and recent work performed
by Chang et al. (2019) achieved structural modeling of the
membrane-embedded prokaryotic SLC26 dimer (SLC26Dg,
Deinococcus Geothermalis. In mammals, such transmembrane
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FIGURE 4 | Schematic representation of some of the identified sperm membrane transporters involved in ion fluxes during human sperm capacitation. Cholesterol
depletion occurring during capacitation also increases membrane fluidity. A panoply of ion transporters is involved in the complex ion fluxes, which induce membrane
hyperpolarization, cytoplasm alkalinization and protein hyperphosphorylation. Slo13, sperm-specific K+ channel; ENaC, epithelial Na+ channel; CFTR, cystic fibrosis
transmembrane conductance channel; SLC26, solute carrier 26; NBC, sodium HCO3

− transporter; CatSPER, sperm specific Ca2+ channel; Hv1, proton channel;
NHE, Na+/H+ exchanger; CA, carbonic anhydrases; pHi, intracellular pH; Em, membrane potential; [. . .], cytoplasmic ion concentrations; ↑, increase; ↓, decrease.
Plain and broken arrows indicate a direct and indirect effect, respectively. CFTR stimulation by SLC26 proteins is represented by an arrow with (+) and ENaC
inhibition by CFTR is represented by an arrow with (–).

homodimerization property was also described for SLC26A5
(Prestin) (Liu et al., 2003; Compton et al., 2011).

SLC26 proteins constitute one of the main classes of
transporters that are involved in HCO3

− and pH homeostasis
regulation; the other being SLC4, and HCO3

− transporters
(see review Bernardino et al., 2019). In humans, their
importance in maintaining correct ionic equilibrium and pH
in various tissues and differentiation processes is demonstrated
by the identification of SLC26 “loss of function” mutations in
several hereditary genetic diseases: nephrolithiasis (SLC26A1),
diastrophic dysplasia (SLC26A2), chloride loosing diarrhea
(SLC26A3), Pendred syndrome -deafness and goiter- (SLC26A4),
non-syndromic deafness (SLC26A5) and in men with reduced
fertility and asthenozoospermia (SLC26A3, SLC26A8) (Everett
and Green, 1999; Dawson and Markovich, 2005; El Khouri
and Toure, 2014; Seidler and Nikolovska, 2019; Table 1). All
the above phenotypes are in line with the nearly restricted
tissue expression profiles observed for most of SLC26 genes.
Notably, mutant mouse models have been generated for all
SLC26 members, and all reproduced the clinical features of
the SLC26 human-related diseases when applicable (Liberman
et al., 2002; Forlino et al., 2005; Schweinfest et al., 2006;
Touré et al., 2007; Dallos et al., 2008; Dror et al., 2010; El
Khouri et al., 2018). In addition, studies of members not
so far associated with human diseases (SLC26A7 and A11)
revealed their functions in various tissues such as kidney,
gastro intestinal tract, enamel, vestibular membrane of the

cochlea, and brain (Xu et al., 2009; Rahmati et al., 2013, 2016;
Kim et al., 2014; Yin et al., 2017), predicting that further
investigations might lead to the identification of novel SLC26
gene mutations associated with pathophysiological conditions in
humans (Table 1). Lastly SLC26 function may be critical for cystic
fibrosis condition (CF; MIM 219700), a disease which is due
to mutations in CFTR, and characterized by general defective
electrolyte transport, chronic lung infections and inflammation,
respiratory failure, digestive symptoms and male infertility (i.e.,
congenital bilateral absence of the vas deferens). Hence, genetic
variants in SLC26A9, impairing the established cross-talk and
interaction with CFTR contribute to the severity of respiratory
and gastrointestinal symptoms observed in cystic fibrosis (see
review El Khouri and Toure, 2014).

SLC26 and CFTR Protein Functions in
Sperm Cells and Epididymis
Among SLC26 proteins, SLC26A3, A6, and A8 were reported
to locate to the human and mouse sperm and their functions
were investigated through a range of cellular, biochemical and
electrophysiological approaches (Chan and Sun, 2014; El Khouri
and Toure, 2014). In addition, the generation and availability
of knock out mouse models for all three proteins permitted
to investigate in vivo their function and confirm some of the
findings. Herein we will describe SLC26 protein functions in the
sperm and epididymal cells, following their chronological order
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TABLE 1 | Principal features of SLC26 family members.

Protein Major tissue distribution
(mouse, human)

Anion transport
features

Associated Human
Diseases

Phenotype of the mouse
models

References

SLC26A1
(SAT1)

Kidney - Liver - Pancreas
-Small intestine -Colon - Lung
-Brain - Heart - Skeletal muscle
- Male reproductive organs:
mouse testis

SO4
2−, Cl- and

oxalate transporter
Nephrolithiasis Deregulation of sulfate and

oxalate homeostasis,
nephrolithiasis. Defects of
enamel maturation in
mandibular incisors.

Lee et al., 2003; Regeer et al., 2003; Dawson et al., 2010, 2013; Gee
et al., 2016; Yin et al., 2017

SLC26A2
(DTDST)

Ubiquitous with higher
expression in the cartilage
(chondrocytes) - Male
Reproductive organs : human
efferent ducts (ciliated cells)

SO4
2−/2Cl−,

SO4
2−/2OH−,

SO4
2−/OH−/Cl−

exchanger

Growth retardation and
Osteochondrodysplasia

Non-lethal chondrodysplasia Hästbacka et al., 1994; Rossi et al., 1996; Haila et al., 2001; Forlino
et al., 2005; Kujala et al., 2007; Ohana et al., 2012

SLC26A3
(DRA/CLD)

Gastrointestinal tract - Sweat
Gland - Male reproductive
organs: human testis (male
germ cells), human efferent
ducts (non ciliated cells),
human epididymis ducts (apical
mitochondrial rich cells), mouse
spermatozoa

2Cl−/HCO3
−,

Cl−/OH−

exchanger NO3
−

and SCN− channel

Congenital Chloride
Diarrhea. Human male
subfertility

Chloride - losing diarrhea,
Enhanced colonic proliferation.
Loss of colonic fluid absorption
and susceptibility to intestinal
inflammation. Male infertility :
epididymal defects, oligo-
astheno-teratozoospermia,
sperm capacitation defects

Silberg et al., 1995; Byeon et al., 1996; Hoglund et al., 1996; Melvin
et al., 1999; Hihnala et al., 2006; Hoglund et al., 2006; Schweinfest
et al., 2006; Shcheynikov et al., 2006; Dorwart et al., 2008; Chavez
et al., 2012; Xiao et al., 2014; Wedenoja et al., 2017; El Khouri et al.,
2018

SLC26A4
(PDS/Pendrin)

Thyroid - Inner ear - Kidney -
Salivary gland duct

Cl−/HCO3−,
Cl−/I−, I−/HCO3

−

and formate
exchanger

Pendred syndrome :
deafness and goiter.
Hypothyroidism

Deafness: enlargement of the
membranous labyrinth and
vestibular aqueduct, stria
vascularis dysfunction.
Impaired bicarbonate secretion
in kidney. Acidic urine and
hypercalciuria. Increased
contractile force of aorta.

Li et al., 1998; Everett et al., 1999, 2001; Scott et al., 1999; Royaux
et al., 2001, 2003; Amlal et al., 2010; Kim and Wangemann, 2010; Lu
et al., 2011; Barone et al., 2012; Ito et al., 2014, 2015; Kopp, 2014;
Sutliff et al., 2014; Mukherjee et al., 2017; Wen et al., 2019

SLC25A5
(Prestin)

Cochlea : outer hair cells Antiporter:
SO4

2−/Cl− and
Cl−/HCO3

−Motor
protein:
electromotility

Non syndromic
deafness

Loss of outer hair cell
electromotility, Loss of cochlear
sensitivity

Zheng et al., 2000, 2003; Liberman et al., 2002; Liu et al., 2003;
Cheatham et al., 2004; Muallem and Ashmore, 2006; Dallos et al.,
2008; Mistrík et al., 2012

SLC26A6
(CFEX/ PAT1)

Intestine - Stomach - Skeletal
muscle - Heart - Kidney
-Pancreas - Enamel - Male
Reproductive organs : human
efferent ducts (non ciliated
cells), human ductus
epididymis (apical mitochondria
rich cells), mouse spermatozoa

Cl−/2HCO3
−,

Cl−/oxalate,
Cl−/formate
exchanger, NO3

−

and SCN− channel

Oxalate kidney stones;
hyperoxaluria

Alteration of Cl-/HCO3-
exchange in native pancreatic
duct Calcium oxalate
urolithiasis, Impairment of
cardiac function, Oxalate
secretion defects in saliva,
Normal epididymal and sperm
functions

Knauf et al., 2001; Jiang et al., 2002; Wang et al., 2002, 2005; Xie
et al., 2002; Alvarez et al., 2004; Kujala et al., 2005; Freel et al., 2006;
Jiang et al., 2006; Tuo et al., 2006; Ishiguro et al., 2007; Kujala et al.,
2007; Monico et al., 2008; Seidler et al., 2008; Singh et al., 2010;
Chavez et al., 2012; Song et al., 2012; Jalali et al., 2015; Sirish et al.,
2017; Yin et al., 2017; El Khouri et al., 2018; Mukaibo et al., 2018

(Continued)
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TABLE 1 | Continued

Protein Major tissue distribution
(mouse, human)

Anion transport
features

Associated Human
Diseases

Phenotype of the mouse
models

References

SLC26A7
(SUT2)

Kidney - Stomach - Inner ear
cells - Male Reproductive
organs : human testis and
ductus epididymis (basal cells)

Cl−/HCO3
−

exchanger Cl−

channel

Gastrointestinal
dysfunction, Goitrous
congenital
hypothyroidism

Distal renal tubular acidosis,
Impaired gastric acidification,
Defects of enamel maturation in
mandibular incisors, Normal
hearing

Lohi et al., 2002; Petrovic et al., 2003; Petrovic et al., 2004;
Kujala et al., 2005; Dudas et al., 2006; Kujala et al., 2007; Xu
et al., 2009; Kim et al., 2014; Yin et al., 2017; Cangul et al.,
2018; Ishii et al., 2019

SLC26A8
(TAT1)

Male Reproductive organs :
human and mouse testis (male
germ cells), spermatozoa

Cl−, SO4
2−,

oxalate transporter
Human male infertility
(asthenozoospermia)

Male infertility, reduced sperm
motility (asthenozoospermia),
Normal epididymal function

Toure et al., 2001; Lohi et al., 2002; Kujala et al., 2007; Rode
et al., 2012; Dirami et al., 2013; Touré, 2017

SLC26A9 Lung - Human bronchial
epithelial cells - Stomach -
Innear ear cells

Cl−/ HCO3
−,

Na+/anion
exchanger Cl−

channel

Diffuse idiopathic
bronchiectasis;
Impaired exocrine
pancreatic and lung
functions in Cystic
fibrosis patients

Impaired gastric secretion
(gastric hypochlorhydria),
Airway mucus obstruction in
inflammatory condition,
Reduction of renal chloride
excretion, Elevated systemic
arterial pressure, Impairment of
intestinal electrolyte transport

Lohi et al., 2002; Xu et al., 2005; , Arcelay et al., 2008; Xu et al.,
2008; Bertrand et al., 2009; Kim and Wangemann, 2010;
Anagnostopoulou et al., 2012; Bakouh et al., 2013; Liu et al.,
2015; Miller et al., 2015; Strug et al., 2016; Bertrand et al.,
2017; Corvol et al., 2018

SLC26A10
(Pseudogene)

N/A N/A N/A N/A N/A

SLC26A11
(SUT1/KBAT)

Kidney, Intestine, Brain SO4
2− transporter

Cl− channel
Renal tubular
dysfunction,
Impairment of
locomotor coordination

Dysfunction of chloride
homeostasis and neuronal
activity in the cerebellum

Vincourt et al., 2003; Xu et al., 2011; Rahmati et al., 2013, 2016

The table displays the tissues were SLC26 genes and proteins are mainly detected in humans and mice, together with their anion specificity and their mode of transport, when defined. The clinical signs of the human
genetic diseases associated with SLC26 mutations and the phenotype of the corresponding mutant mouse models are also described. References for information summarized in the table are indicated. In blue are
highlighted all the features in regard with male reproductive organs and this review.
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of discovery; in addition, as the CFTR channel was identified as
a main interactor of SLC26 proteins, we will also describe the
current knowledge about CFTR function in the sperm cells and
male reproductive tract (Table 2).

SLC26A8 Function in Sperm Cells
SLC26A8 (also called Testis Anion transporter 1) was cloned
almost concomitantly by Touré et al. in 2001 (Toure et al., 2001)
and Lohi et al. (2002), and reported to be exclusively expressed
in human testis and in the male germ cells (Toure et al., 2001;
Lohi et al., 2002). It was shown to interact with MgcRacGAP, a
regulator of small Rho GTPases, later identified to be required
for cytokinesis, in somatic and germ cells (Maddox and Oegema,
2003; Lores et al., 2014). SLC26A8 was the first member to be
investigated in male reproductive functions as the remarkable
tissue-specificity suggested that it might fulfill critical function
in the sperm cells. As mentioned above, the anion transport
activity of SLC26A8 has been poorly investigated. First studies
from Touré et al. (2001) indicated a Cl−-dependent SO4

2−

transport when the protein was expressed in COS cells, suggesting
that SLC26A8 might function as a coupled ion transporter.
To date the activity of SLC26A8 toward the HCO3

−, which
physiological relevance in sperm cell function is established,
has not been reported. Ubiquitous invalidation of Slc26a8 gene
was performed in the mouse by homologous recombination,
and resulted in male sterility due to total sperm immotility
while viability was unaffected. Functional analysis of Slc26a8-
null sperm indicated reduced ATP consumption and the absence
of capacitation-associated protein phosphorylation (Touré et al.,
2007). SLC26A8-null sperm also displayed structural defects of
the annulus, which induced a hairpin bending of the flagellum
(Touré et al., 2007). In line with this phenotype, the SLC26A8
protein was found to locate at the annulus and equatorial segment
of mouse and human sperm (Touré et al., 2007; Lhuillier et al.,
2008; Rode et al., 2012).

CFTR Function in Sperm Cells
In the same time, publications from different laboratories
indicated the expression and functions of the CFTR channel
during sperm capacitation. In addition to its expression in the
respiratory, digestive and genital epithelia, the CFTR channel
was shown to be expressed in mature sperm from mice, guinea
pigs and humans where it contributes to Cl− and HCO3

− fluxes
during capacitation (see review Touré, 2017). Hence in 2007,
Xu and coworkers identified the CFTR channel at the equatorial
segment of the sperm head in both mouse and human sperm.
They showed that sperm treatment with a selective inhibitor
of CFTR (CFTRinh-172), prevents the increases in intracellular
cAMP, and pH and the membrane hyperpolarization, which are
required for proper capacitation and acrosome reaction. The
study of a heterozygous mouse model for CF (CFTRtm1Unc)
also indicated low fertilization capacity, with impaired sperm
motility and capacitation (Xu et al., 2007). Hernández-González
et al. (2007) concomitantly reported the expression of CFTR
in mouse and human sperm but found it to be restricted to
the midpiece of the flagella; they showed that CFTR is required
for membrane potential hyperpolarization during capacitation

by regulating the epithelial sodium channels (ENaC). Those
findings were categorically confirmed by work from Figueiras-
Fierro et al. (2013) who specified CFTR currents in mouse sperm
cells by means of patch clamp measurements on wild-type vs.
CFTR 1F508-null sperm and by using specific CFTR agonists
and antagonists. More recently Puga Molina et al. (2017)
also demonstrated that in human sperm, CFTR activity is
required for capacitation-associated phosphorylation in a PKA-
dependent manner.

SLC26A8 and CFTR Cooperation in
Sperm Cells
Following the discovery of CFTR protein and activity in mature
sperm, Rode et al. (2012) demonstrated that SLC26A8 interacts
with the CFTR channel via the STAS domain; the molecular
complex was also identified by immunoprecipitation on mouse
testis protein extracts. By means of radioactive iodide efflux
measurements in CHO-K1 cells and patch clamp experiments
in Xenopus oocytes, they demonstrated that SLC26A8 stimulates
the CFTR Cl− transport activity (Rode et al., 2012). They further
studied the Slc26a8 knock out model and demonstrated that
the absence of capacitation-associated protein phosphorylation
and motility could be partially rescued when supplementing
with cAMP permeant analogs. They also demonstrated that
the soluble adenylate cyclase (sAC) relocates properly at the
annulus of Slc26a8-null sperm, despite their structural defects.
This indicated that overall, the motility and capacitation defects
observed in SLC26A8-null sperm result from a functional
deregulation; therefore in fine SLC26A8 localization at the
annulus may be conciliated with the regulation of anion
fluxes (Rode et al., 2012). Overall these data suggested that
SLC26A8 actively and/or indirectly contribute to Cl− and
HCO3

− influxes required for the activation of c-AMP-dependent
protein phosphorylation during capacitation.

SLC26A3 Function in Sperm Cells
SLC26A3, also called Down Regulated in Adenoma (DRA),
was cloned in 1993 by Schweinfest et al. (1993) and later
showed to encode for an intestinal anion transport molecule
(Silberg et al., 1995) whose mutations lead to congenital
Chloride Loosing Diarrhea (CLD; [MIM 214700]) (Hoglund
et al., 1996), an autosomal recessive disorder due to defective
intestinal electrolyte absorption (Kere et al., 1999; Wedenoja
et al., 2011). SLC26A3 acts as a Cl−/HCO3

− exchanger (PMID
10428871) with a 1:1 or 2:1 stoichiometry (see review Seidler and
Nikolovska, 2019) and is principally expressed in the enterocytes
of the gastrointestinal tract epithelium, in humans and rodents
(Jacob et al., 2002), where it is responsible for high HCO3

− output
rates in the mid to distal region of the colon (Xiao et al., 2012,
2014). Chen et al. (2009) reported for the first time the expression
of SLC26A3 in sperm cells from guinea pig. They showed that
the protein locates to the equatorial segment and colocalizes with
the CFTR channel. Importantly they demonstrated that Cl− was
required for the HCO3

−-dependent changes occurring during
capacitation (pH and cAMP rise, protein phosphorylation);
they proposed a cooperative model involving SLC26A3 for
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TABLE 2 | Principal characteristics and functions of SLC26A3, A6, A8, and CFTR in the sperm and epididymal cells.

Protein Expression in male
reproductive organs

Protein location
in sperm

Protein location
in epididymis

Mouse KO
phenotype in
sperm

Mouse KO
phenotype in
epididymis

Mutations and associated
diseases in Humans

References

SLC26A3
(DRA/CLD)

Human: testis (male
germ cells), efferent
ducts (non-ciliated
cells) and ductus
epididymis (apical
mitochondrial rich cells.
Mouse: spermatozoa

Flagellum: midpiece Luminal border of
apical
mitochondrial rich
cells

Homozygous
Slc26a3-null mice:
Oligo-astheno-
terato-zoospermia,
Sperm capacitation
defects

Homozygous
Slc26a3 knock-out
mice: Epididymal
dysplasia and
granulome in the
cauda

Homozygous loss of function:
Congenital Chloride Diarrhea
(CLD) with male subfertility
(oligo-astheno-zoospermia)
Heterozygous loss of function:
Male infertility
(asthenozoospermia)

Hihnala et al., 2006; Hoglund et al.,
2006; Chavez et al., 2012; Wedenoja
et al., 2017; El Khouri et al., 2018

SLC26A6
(CFEX/ PAT1)

Human: efferent ducts
(non-ciliated cells),
ductus epididymis
(apical mitochondrial
rich cells). Mouse:
spermatozoa

Flagellum: midpiece Apical
mitochondrial rich
cells

Homozygous
Slc26a6-null mice:
No sperm
phenotype

Homozygous
Slc26a6 knock-out
mice: No epididymal
phenotype

Not reported Kujala et al., 2007; El Khouri et al., 2018

SLC26A8
(TAT1)

Human and mouse:
testis (male germ cells),
spermatozoa.

Flagellum : annulus
Equatorial segment

Head: Not
expressed

Homozygous
Slc26a8-null mice:
Asthenozoospermia
Sperm capacitation
defects

Homozygous
Slc26a8 knock-out
mice: No epididymal
phenotype

Heterozygous loss of function:
Male infertility
(asthenozoospermia)

Toure et al., 2001; Lohi et al., 2002;
Kujala et al., 2007; Hildebrand et al.,
2010; Rode et al., 2012; Dirami et al.,
2013

CFTR Human: efferent ducts
(non-ciliated cells),
ductus epididymis
(apical mitochondrial
rich cells), vas deferens
spermatozoa. Mouse:
spermatozoa

Flagellum:
midpiece.
Equatorial segment

Head: Luminal
border of apical
mitochondrial rich
cells

Heterozygous
CFTR tm1Unc:
reduced sperm
capacitation and
fertilization potential

Homozygous
DeltaF508
(DeltaF/DeltaF) and
knock-out (cf/cf)
CFTR mice: normal
epididymis but
collased lumen of the
vas deferens

Homozygous loss of function:
Cystic fibrosis (CF); Isolated
obstructive azoospermia in
non-CF patients : congenital
bilateral absence of the vas
deferens, (CBAVD)

Tizzano et al., 1994; Reynaert et al.,
2000; Patrizio and Salameh, 1998;
Claustres, 2005; Hernández-González
et al., 2007; Touré et al., 2007; Xu
et al., 2007 (Book chapter:
https://doi.org/10.1159/000477279)

The table summarizes the tissues within the male reproductive organs where SLC26A3, A6, A8, and CFTR genes are expressed and the detection of the corresponding proteins in sperm and epididymal cells. The
sperm and epididymal phenotypes in the mouse knock out mouse models are reported together with the phenotype associated with mutations in those genes in humans. References for information summarized in the
table are indicated.
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FIGURE 5 | Schematic representation of SLC26 protein structure and interaction with the Cystic Fibrosis Transmembrane conductance Channel (CFTR). SLC26
proteins share a conserved transmembrane region of 10–14 hydrohobic spans, associated with their anion transport activity, and a cytoplasmic STAS domain
(Sulfate Transporter and Anti-Sigma factor antagonist), involved in protein-protein interaction and regulation. Some members also contain a PDZ binding motif at
their carboxy-terminal extremity. The CFTR protein consists of two transmembrane domains (TMD) (each containing six spans of alpha helices), two
nucleotide-binding domains (NBD1 and NBD2) and a central regulatory domain (R-domain). CFTR activity is regulated by PKA-phosphorylation of the R-domain and
ATP binding and hydrolysis at the two NBDs. Direct interaction of SLC26 with CFTR is mediated by the STAS domain and the regulatory (R) domain of CFTR.
Indirect interaction of the proteins occurs through binding of both SLC26s and CFTR to common PDZ motif-containing scaffold proteins.

HCO3
− entry (in exchange of Cl− efflux) and CFTR for Cl−

recycling pathway. In 2012, Chavez et al. (2012) reported the
expression of SLC26A3 transcripts in mouse spermatogenic cells
(spermatocytes, spermatids) and found SLC26A3 protein to be
restricted to the sperm flagellum midpiece, similar to the CFTR
channel. Chavez et al. (2012) also conducted a series of in vitro
measurements on mouse epididymal sperm, using MQAE and
DISC3, two fluorescent probes reflecting the intracellular Cl−
content and membrane hyperpolarization, respectively. These
assays were performed in presence or absence of a set of anion
transport antagonists: the CFTRinh172, which specifically targets
CFTR, or Tdap and 5099, which presumably target SLC26A3 (to
date, their specificity and selectivity among SLC26 members were
not proven). From those data, Chavez et al. (2012) concluded
that both SLC26A3 and CFTR are involved in regulating the Cl−
influx and HCO3

−-induced hyperpolarization upon capacitation.

SLC26A6 Function in Sperm Cells
In the course of their study, Chavez et al. (2012) similarly
analyzed SLC26A6, also called PAT-1, CFEX. SLC26A6 is highly
expressed in pancreas, kidney (Lohi et al., 2000; Waldegger et al.,
2001) and in the intestine (Wang et al., 2002) where it functions
as a Cl−/HCO3

− exchanger, both in mouse and in humans;
although the stoichiometry seems to differ between the two
species as an electroneutral exchange was measured in human
cells it is electrogenic in the mouse (Cl−/HCO3

−, 1:2) (Seidler
and Nikolovska, 2019). Chavez et al. (2012) demonstrated that
in sperm cells, SLC26A6 co-localized with SLC26A3 and CFTR
to the sperm flagellum midpiece. They also demonstrated by
co-immunoprecipitation that, in vivo, SLC26A6 is part of the
SLC26A3/CFTR protein complex. However, in vitro, the use of

DOG and PMA, two compounds that are described to inhibit
SLC26A6 through PKC activation, did not alter Cl− influx
nor membrane hyperpolarization upon capacitation, suggesting
that SLC26A6, in contrast to SLC26A3, is not critical for
those processes (Chavez et al., 2012). Taken together the above
studies indicate that in the sperm cells, the SLC26A3 and
A8 proteins locate to the flagellum midpiece and annulus,
respectively, and cooperate with the Cl− CFTR channel in
regulating Cl− influx, membrane hyperpolarization and protein
phosphorylation during capacitation. In addition, SLC26A3, A8
and CFTR are likely to colocalized at the equatorial segment of
mouse and human sperm and to control acrosomal reaction. In
mouse, although shown to locate to the sperm cells, the SLC26A6
protein seems dispensable for capacitation.

SLC26A3 Function in Epididymal Cells
Last year, El Khouri et al. (2018) investigated in vivo, the function
of SLC26A3 and SLC26A6 proteins, in sperm functionality
by analyzing ubiquitous knock out mouse models previously
generated to study their functions in the gastrointestinal system
(Singh et al., 2010; Xiao et al., 2012). They showed that in
addition to the previously reported phenotype of congenital
diarrhea (Xiao et al., 2012; Singh et al., 2013), SLC26A3−null
mice displayed severe lesions and abnormal cytoarchitecture
of the cauda epididymis, which strongly impacted the reserve
of sperm cells in epididymides (El Khouri et al., 2018). This
phenotype is in line with the subfertility previously observed for
a few CLD affected men (Hoglund et al., 2006). SLC26A3−null
mice showed a drastic reduction of the cauda size with reduced
tube sections observed within the epididymis while the caput
regions appeared overall not affected; in addition, the number
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of the presence of granuloma and fibrosis was observed,
indicative of an inflammatory context and a disruption of the
blood−epididymal barrier. The limited number of sperm cells,
which was produced, failed to swim and was not responsive to
the induction of capacitation as protein phosphorylation could
not be obtained when supplementing with HCO3

− and Ca2+.
Similar to what was observed for SLC26A8-null sperm, a partial
rescue of protein hyperphosphorylation was obtained when
adding cAMP permeant analog, indicating a failure to activate
the soluble adenylate cyclase. In addition, Slc26a3-null sperm
exhibited abnormal morphology with increased proportion of
bent and coiled flagellum, and the proportion of reacted
acrosome was also significantly increased. Importantly, similar
analyses were performed in parallel, on SLC26A6 knock out
mice and no epididymal, nor spermatic defects were observed.
This indicated that although co-expressed with SLC26A3 in
sperm and epididymal cells, in vivo, SLC26A6 is not critical for
sperm production and functionality. This could be due to subtle
differences in anion transport activity as different stoichiometry
and ion specificity were reported for these two members (i.e., A3
and A6); in addition, their activities could also vary between the
different tissues where they are expressed, due to tissue-specific
partners/regulators.

In humans, SLC26A3, SLC26A6, and CFTR proteins were
detected on the luminal border of the apical mitochondria-rich
cells (AMRC) of the ductus epididymis (Hihnala et al., 2006;
Kujala et al., 2007) while SLC26A8 was absent (Kujala et al.,
2007). In the mouse, El Khouri et al. (2018) detected SLC26A3
and SLC26A6 transcripts in epididymes while SLC26A8 was
absent. Ruan et al. (2012) detected CFTR protein in the PCs
of the mouse cauda epididymis while it was absent in other
epithelial cell types. CFTR protein was aslo recently detected
on the apical membrane of mouse caput epididymis and in
the smooth muscle myoid cells (Sharma and Hanukoglu, 2019).
Overall, such expression patterns are in line with the observed
epididymal phenotype in SLC26A3 knock out mice and suggests
an impairment of electrolyte homeostasis, which may impact
the pH and ionic content of the epididymal milieu and prevent
sperm maturation. Supporting this hypothesis, an increased
amount of V ATPase protein was observed in SLC26A3−null
epididymis caput compared to wild type tissues, a compensatory
mechanism reflecting HCO3- and pH deregulation within the
luminal fluid (Shum et al., 2009, 2011; Breton et al., 2016). As
observed in the context of the sperm cells, although present
within the epididymal ductus, SLC26A6 function seems to be
dispensable for epididymal cytoarchitecture and functionality.
Lastly, SLC26A8 protein was found absent from the epididymal
tract (Kujala et al., 2007; Wedenoja et al., 2017; El Khouri et al.,
2018) and rationally no epididymal phenotype was observed in
the knock-out mice (Touré et al., 2007).

Taken together those studies indicate that among the three
SLC26 proteins investigated in the male reproductive organs,
only SLC26A3 appears critical for epididymal luminal milieu
and sperm maturation. SLC26A3 is likely to contribute to
the cellular cross-talks regulating HCO3

− fluxes and leading
to luminal acidification. SLC26A3 function in epididymal
electrolyte regulation probably relies on interaction and/or

cooperation with CFTR channel, and the Na+/H+ antiporter 3,
NHE3, which is expressed in both the intestine and in the male
reproductive system (Melvin et al., 1999; Lamprecht et al., 2002;
Hihnala et al., 2006). Hence Wang et al. (2017) recently reported
that NHE3−deficient mice display ultrastructural defects of the
epididymis and the vas deferens, as well as significant reduction
of CFTR protein levels in these structures, ultimately leading
to male infertility. Such phenotype is comparable to that of
Slc26a3-null mice and support the hypothesis of a multi−channel
protein complex, CFTR/SLC26A3/NHE3, involved in electrolyte
regulation and luminal acidification of the epididymal ductus.

SLC26 Dysfunctions in Human Male
Infertility
Following the identification of SLC26A8, genetic investigations in
human infertility were promptly initiated owing to its exclusive
expression in the testis and the male germ cells. Hence in 2005,
Mäkelä et al. screened a cohort of 83 men with oligo- and
azoospermia but did not identified variants in SLC26A8 genes
associated to this phenotype (Makela et al., 2005). In 2013, based
on the phenotype of Slc26a8-null mice, Dirami et al. (2013)
screened a cohort of 146 men consulting for infertility and
displaying moderate asthenozoospermia. Asthenozoospermia is
defined by a reduction or an absence of sperm motility (less
that 32% of progressive sperm, following the values established
by the World Health Organization) (Cooper et al., 2010) and
is found in nearly 80% of infertile men (Curi et al., 2003).
Dirami and collaborators identified three heterozygous missense
variants, c.260G > A (p.Arg87Gln), c.2434G > A (p.Glu812Lys),
and c.2860C > T (p.Arg954Cys), which they showed to be
absent from control individuals and to impact the functional
cooperation between SLC26A8 and CFTR. They demonstrated,
in vitro, that while physical interaction was not altered, all
identified variants conducted to reduced protein amounts of
SLC26A8 and that of the associated CFTR channel. They showed
that in vitro, SLC26A8 protein amounts could be restored to
control levels by proteasome inhibition, indicating that the
variants impacted protein stability, likely by inducing deleterious
protein conformational changes (Dirami et al., 2013). These three
mutations were identified at the heterozygous state, in contrast
to mutations identified in other SLC26-related diseases, which all
segregate following an autosomal recessive mode (Dawson and
Markovich, 2005); this could be attributed to the fact that only
men displaying asthenozoospermia of moderate severity were
screened in this study.

Following a similar strategy, Wedenoja et al. published
in 2017, the screening of a cohort of 283 asthenozoospermic
men and the identification of the c.2062 G > C (p.Asp688His)
heterozygous variant in SLC26A3, in 3.2% of the patients
(Wedenoja et al., 2017). Analysis of the variant’s frequency
in Exac database indicated that it is enriched in the Finnish
population. Furthermore, functional studies showed that
the p.Asp688His variant did not impact SLC26A3 intrinsic
Cl−/HCO3

− exchange activity, nor its protein amount. The
p.Asp688His variant, which locates to the STAS domain, was
able to interact with the CFTR channel but failed to stimulate
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CFTR Cl− transport activity, in vitro, in Xenopus oocytes.
Here again, the variant was identified at the heterozygous level,
but in this case, this might be consistent with the fact that
SLC26A3 homozygous loss of function induce Chloride Loosing
Diarrhea and subfertility, a much more severe phenotype
(Wedenoja et al., 2011).

DISCUSSION

SLC26 constitute one of the largest family of membrane proteins
but their functions have only been recently investigated, mainly
in the gastrointestinal and renal tissues where they appear
critical for electrolyte transport and pH regulation. The male
and female genital tracts also rely on pH homeostasis but few
investigations were performed in the reproductive organs. As
described in this review, recent work was performed by means
of electrophysiological and in vitro studies on human and mouse
sperm, which permitted to describe the critical role of SLC26A3
and A8 in regulating the electrophysiological and biochemical
changes occurring in the sperm cells during capacitation. In
addition, the phenotypical characterization of Slc26 knock-out
mouse models together with translational studies of human
infertility conditions, permitted to confirm their physiological
relevance for sperm fertilization potential; importantly, the
requirement of SLC26A3 for proper peididymal structure and
functions was uncovered.

One of the main research gaps to be overtaken concerns
the delineation of each SLC26 member contribution, in those
processes. In this regard, a comprehensive and comparative
analysis of SLC26 cellular and subcellular expression patterns,
within the male reproductive tract, is cruelly missing. Hence,
except SLC26A8, for which a clear-cut expression pattern
is available (i.e., exclusively sperm specific), the expression
pattern of SLC26 members is still unclear and the observed
protein localizations, as in the case of SLC26A3, were found
to diverge between different laboratories. The development of
high-throughput sequencing technologies and single cell analyses
has facilitated the access to large public expression datasets and
therefore constitutes one asset to further progress in this field. In
particular, few expression databases dedicated to the reproductive
tissues have been established: The ReproGenomics viewer (Darde
et al., 2015, 2019) and The Mammalian Reproductive Genetics
database. When analyzing three distinct RNAseq datasets from
mouse purified germ cells, conflicting results were obtained
as compared to the assumed expression pattern of SLC26
members in the sperm cells. Hence while SLC26A6 and A8
transcripts were clearly detected in the mouse germ cells
from spermatogonia to spermatid stage (Gan et al., 2013;
Green et al., 2018; Lukassen et al., 2018), SLC26A3 transcripts
were not detected at all. The analyses of the same datasets
also exclude any expression of SLC26A1, A4, A5, and A9
in the mouse germ cells while SLC26A2, A7, and A11 were
detected. Similar analyses of epididymal expression dataset,
through the Mammalian Reproductive Genetics database,
indicated that SLC26A3 transcripts are readily detected in
the mouse epididymis, which is coherent with transcript and

protein detection in mouse and in human epididymides that
were reported by distinct laboratories, (Hihnala et al., 2006;
El Khouri et al., 2018).

The discrepancy regarding SLC26A3 expression in the
germline really question the presence and the function of
SLC26A3, if any, in the mouse sperm cells. These conflicting
data result from the limited biochemical tools available to
analyze SLC26 protein expression, and potentially from antibody
cross-reaction with different SLC26 members. Importantly, the
situation is very different in humans as analysis of RNAseq
data indicated that SLC26A3 transcripts are detected in human
differentiating germ cells, as opposed to the mouse germ cells.
This clearly alerts about the risk of generalizing data obtained
from one specie to another. The differences in cytoarchitecture
and compartmentations of the epididymis ductus between
humans and mouse together with the difference in the sperm
“status” used in studies (epididymal sperm in mouse vs.
ejaculated sperm in human) constitute additional arguments, if
required, to prohibit data transfer from one specie to another.

Considering the profound epididymal defects reported in
the Slc26a3 knock out mouse model, an important connected
point is to determine whether the dysfunctions observed in
Slc26a3-null sperm when performing in vitro capacitation,
could result from defects initially occurring during epididymal
maturation. Hence it is highly probable that functional defects
occurring within the epididymis could impair sperm “priming”
and later prevent proper response to capacitation in the
female genital tract. This point is particularly important to
address, considering the uncertain expression of SLC26A3
in the sperm cells. The discrimination between those two
intricated processes (epididymal priming and maturation
vs. capacitation in the female genital tract) constitutes a
requisite if one wants to better define sperm post-testicular
maturation events; in the future this may be performed by
generating conditional mutant mouse models with gene
invalidation restricted to the epididymal epithelium or to the
germ cell lineage.

Lastly, an important progress concerns the development
of pharmacological compounds specifically targeting SLC26
proteins. To date some compounds such as Tenidap, 5099,
DOG and PMA, were utilized, in vitro, to inhibit SLC26 protein
functions in the sperm cells but their inhibitory mechanisms
are sometimes indirect or unknown; in addition, no information
is available regarding their selectivity among SLC26 members,
which may limit the interpretation of the data and even lead
to confusion in specifying the contribution of each member.
A major work in this field was recently published by Haggie
et al. (2018) who identified SLC26A3 specific antagonists with the
aim of treating gastrointestinal defects. The authors performed
a fluorescent high-throughput screening based on the Cl−/I−
exchange activity mediated by SLC26A3 and a halide-sensitive
yellow fluorescent probe (YFP). The strength of this study relies
on the demonstrated selectivity of the identified compounds
by means of various and complementary approaches: in vitro
study on different representative members of the SLC26 family
(human and mouse orthologs) together with in vivo studies
using a mouse model with gastrointestinal defects resulting from
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SLC26A3 dysfunction. In the future, the use of such compounds
will definitely help to better understand SLC26 functions
and molecular mechanisms in the processes of sperm post-
testicular maturation and fertilization potential. The study
of other SLC26 members expressed in the epididymal and
sperm cells, such as SLC26A2, A7 and A11, will also provide
additional information regarding the multiple cross-talks and
hierarchical regulatory mechanisms between SLC26 and other
ion transporters.
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