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Abstract
Health factors impacting both the occurrence of, and recovery from traumatic brain injury (TBI) vary in complex-
ity, and present genuine challenges to researchers and healthcare professionals seeking to characterize injury
consequences and determine prognosis. However, attempts to clarify causal links between injury characteristics
and clinical outcomes (including mortality) often compel researchers to exclude pre-existing health conditions
(PECs) in their samples, including psychiatric history, medication usage, and other comorbid conditions. In this
pre-registered population-based study (total starting n = 939,123 patients), we examined trends in PEC incidence
over 22 years in the state of Pennsylvania (1997–2019) in individuals sustaining TBI (n = 169,452) and individuals
with orthopedic injury (n = 87,637). The goal was to determine how PECs interact with age and injury severity
to influence short-term outcomes. A further goal was to determine whether number of PECs, or specific PEC
clusters contributed to worse outcomes within the TBI cohort, compared with orthopedic injury alone. Pri-
mary findings indicate that PECs significantly influenced mortality within the TBI cohort; patients having
four or more PECs were associated with approximately a two times greater likelihood of dying in acute
care (odds ratio [OR] 1.9). Additionally, cluster analyses revealed four distinct PEC clusters that are age and
TBI severity dependent. Overall, the likelihood of zero PECs hovers at *25%, which is critical to consider
in TBI outcomes work and could potentially contribute to the challenges facing intervention science with
regard to reproducibility of findings.
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Introduction
Despite the dense literatures examining the role of
demographic and injury related/severity factors that
influence early recovery from traumatic brain injury
(TBI),1–8 pre-existing health conditions (PECs) are
relatively under-studied outcomes. Health conditions
co-occurring with injury increase as a function of ad-
vancing age, and contribute to variability in both
post-injury trajectories as well as heterogeneous factors
involved in recovery.9–14 Emerging research has dem-
onstrated that comorbidities can complicate functional
recovery and symptom resolution. However, these

studies frequently focus on select (notably psychiatric)
PECs, or examine the contribution of TBI to exacer-
bated systemic disorders or illness rather than the op-
posing directionality.15,16 Similarly, incongruity in the
terminology utilized to discuss PECs, combined with
diversity in identification and classification methods
of these conditions (self-report, extraction from medi-
cal records, semi-structured interview), can also com-
plicate our ability to reconcile findings from existing
studies. For our purposes, the term PEC is used to sig-
nify conditions or disorders present, self-reported, or
otherwise diagnosed before the time of injury. This is

1Department of Psychology, 2Social and Life and Engineering Sciences Imaging Center, The Pennsylvania State University, University Park, Pennsylvania, USA.
3Department of Psychology, Saint Joseph’s University, Philadelphia, Pennsylvania, USA.
4Department of Neurology, Hershey Medical Center, Hershey, Pennsylvania, USA.

*Address correspondence to: Frank G. Hillary, PhD, Department of Psychology, The Pennsylvania State University, 313 Bruce V. Moore Building, University Park, PA 16802,
USA; E-mail: fhillary@psu.edu

ª Kristine C. Dell et al., 2021; Published by Mary Ann Liebert, Inc. This Open Access article is distributed under the terms of the Creative Commons
License (CC-BY) (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly credited.

Neurotrauma Reports
Volume 2.1, 2021
DOI: 10.1089/neur.2020.0065

255



in contrast to ‘‘nosocomial conditions,’’ which are
healthcare-associated conditions originating during or
as a result of a hospital stay,17–19 and ‘‘comorbid’’ con-
ditions such as substance abuse and psychiatric re-
sponse to injury that are the focus months to years
after the injury occurred.13,14,20–24

The Centers for Disease Control and Prevention’s
(CDC’s) National Center for Chronic Disease Preven-
tion and Health Promotion (NCCDPHP) estimates
that 6 out of every 10 adults (18 years or older) in
the United States have at least one chronic disease,
and 4 out of 10 adults have at least two chronic condi-
tions.25 Over the last 10 years, cardiac conditions, psy-
chiatric conditions, diabetes, respiratory disorders, and
musculoskeletal conditions have remained stable as the
most frequent chronic conditions.26 Further, the
NCCDPHP denotes heart disease, dementias, diabetes,
arthritis, and cancer as the leading contributors of dis-
ability, death, and healthcare costs in the United States,
with age conferring increased risk of these disease
conditions.25

Understanding the influence of the increased disease
burden introduced by the development and progres-
sion of these PECs is critical across all severities of
TBI.15,16,27 In addition, the impact of PECs does not
appear limited to the acute period following TBI.
Patients with moderate-to-severe TBI (msTBI) with a
greater total disease burden reported reduced levels of
functioning and life satisfaction up to 10 years follow-
ing injury.28 Together, these studies add to the
growing literature examining the impacts of both
psychiatric1,10,13,14,20–23,29 and other medical condi-
tions24,30–34 on outcomes following TBI. Such multi-
morbidity adds complexity to the care required for
these TBI patients in comparison to individuals with
singular or no reported PECs and provides evidence
for a systemic disease burden on the individual. Simi-
larly, clinical care focused on a single diagnosis may
not accurately depict the patient’s comprehensive clin-
ical picture or rehabilitative needs.15,24,35–37

In patients older than age 50 years with msTBI, hy-
pertension emerged as a primary PEC and along with
related medical complications, predicted hospitaliza-
tion at 1 year post-injury.27 In elderly patients with
TBI, not only are PECs associated with worse out-
comes, but morbidity is more highly linked to PEC
complications than complications from the injury.27,38

In a cohort of elderly patients with TBI following treat-
ment in a neurosurgical department, patients with
comorbid cardiac, pulmonary, or renal conditions

and malignancy were almost three times more likely
to die or enter a vegetative state post-injury.39 Related
work has shown that patients age 50 years or older
are significantly more likely to have diabetes, elevated
cholesterol, osteoarthritis, and hypertension in com-
parison with individuals under the age of 50 who sus-
tain TBI.40

Although it may be difficult to directly link the onset
of these conditions post-injury as a result of TBI or
aging, what does emerge is evidence for reciprocal im-
pacts of central and peripheral nervous system func-
tioning,19,41–43 and how this interplay may confer risk
of pathological aging in the form of subsequent injury,
disease progression, or exacerbated recovery.30,44–46

Studying TBI without understanding or incorporating
PECs not only has broad implications for the reproduc-
ibility of findings,47 but also risks undermining the
detection of important pre-injury and recovery pheno-
types.28,48 Similarly, it may also play a role in the near
complete failure in advancing phase 2 clinical trials for
brain injury interventions.41,49,50

Study goal
Given the importance of understanding how the pres-
ence of PECs can contribute to the heterogeneity of TBI
recovery trajectories, we conducted a population-based
study to identify the base rates of PECs in TBI, to ex-
amine the influence of PECs on TBI outcome, and to
confirm the previously identified prevalence of PECs
in individuals with TBI. Although we examined all
cases of TBI during those years, we focused on moder-
ate and severe TBI in analyses to determine the interac-
tion between PEC and injury severity in predicting
mortality and functional outcomes. We also sought to
determine if PECs interact specifically with moderate
and severe TBI compared with orthopedic injury to
confer specific risk of prolonged hospital stay and di-
minished functional status at discharge.

Hypotheses

Pre-registered hypotheses

1. Mortality rate and days spent in the hospital will
be positively correlated with the quantity of PECs.

2. Patients with TBI with a greater number of PECs
will perform worse on measures of indepen-
dence, compared with patients with TBI with
fewer PECs.

3. PEC subtypes will be associated with poor out-
comes in elderly patients with TBI.
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Exploratory questions (all developed
before data analysis)

1. What can the results of K-modes clustering dem-
onstrate regarding specific characteristics of pa-
tients with TBI presenting with a higher
number of PECs?

2. Does TBI (as opposed to trauma-only) select for
certain PECs when examining all patients?

3. Does the frequency of PEC profiles change over
the lifespan?

Methods
Beginning in October 1986, the Pennsylvania Trauma
Systems Foundation (PTSF) initiated a trauma registry
(Pennsylvania Trauma Outcomes Study, or PTOS) to
receive data from participating hospitals, in an effort
to evaluate patient outcomes through research and
education across comparable centers state-wide. At
the authors’ request, the PTSF provided de-identified
data collected from 1986 to June 2019 comprising
two approximately equal-sized patient cohorts (total
n = 939,123 cases): trauma patients entering emer-
gency departments (EDs) with a documented TBI
(n = 476,006), and a second group of patients without
a documented TBI at admission (orthopedic control
group, n = 463,117). The TBI and orthopedic injury
cases were selected according to codes specific to TBI
(International Classification of Diseases, 9th Revision
[ICD9] code prefixes: 800–806, 850–854, 950, 951,
952; ICD10 codes: S02, S04, S06, S07, S12, S14.0–
S14.3, S22.0–S22.089, S32.0–S32.3, S34.0–S34.2,
S24.0–S24.2). When the PTSF provided the data,
they included the binary variable ‘‘TBI’’ denoting pa-
tients with a diagnosis code from the requested code
range, whereas patients with orthopedic injury were
those without any of the listed codes. Due to the
size of the raw dataset (2.1 GB, 1.2 billion cells of
data), data cleaning and analysis required a multi-
step process implemented through several software
applications.

For the framework outlined below, version control
and data provenance were performed through git51

and git annex.52 Data were received from the PTSF in
two CSV formatted files, one for each requested cohort
(TBI and orthopedic injury). Simple CSV validity
checks were performed on the data with csv-kit,53

then the two cohort files were converted to TSV to in-
crease speed and efficiency of use, and then were com-
bined. Initial evaluation of the data was performed via a

Docker54 based Elasticsearch55 and Kibana56 configu-
ration, using Logstash57 to consume the raw data,
and to index the resulting records to Elasticsearch.55

Kibana56 was used as an explorational tool for the
data and data cleaning, and normalization was then
implemented using a combination of Python58 and
R.59 All codes used to alter the data were tracked in
git,51 with original source data all subsequent revised
versions tracked through git annex.52 Docker54 com-
pose configuration files were created to automate the
use of the Elasticsearch55 and Kibana56 tools to provide
consistency in the software environment across all
computing resources.

To facilitate further processing and reporting on the
data, sub-datasets were created through selection of
limited numbers of columns, selection of records
based on column values (post-cleaning), and normali-
zation of the data within columns (converting
‘‘<UNK>’’ and ‘‘<n/a>’’ to either null values, or the ap-
propriate integer value for the column in which they
were discovered). For data fields of interest, all unique
values present in the data were collated, and compared
with the ‘‘2017 Pennsylvania Trauma Systems Founda-
tion Operational Manual for the Database Collection
System’’60 for compliance with data entry guidelines.
Data cleaning steps were applied where the unique val-
ues differed from the operational manual’s allowed val-
ues, in the following ways:

1. ‘‘<n/a>,’’ ‘‘<UNK>,’’ and ‘‘–,’’ were set to ‘‘–1,’’
�2,’’ and ‘‘–3,’’ respectively, in integer fields.

2. ‘‘<UNK>’’ and ‘‘<n/a>’’ were replaced with an
empty string in text fields.

3. Date and Time fields were converted from several
conventions to conform to ISO 8601 format. If
the date or time was ‘‘<UNK>’’ or ‘‘<n/a>,’’ it
was converted to an empty string.

After list-wise deletion of cases with missing data
(Fig. 1), 257,089 cases were available for use in the pres-
ent analyses dating from 1997 until 2019.

K-modes clustering analysis to establish
PEC profiles
Given that the PTOS permits coding of up to 10 dis-
tinct PEC entries, we elected to include all patients
(n = 257,089), regardless of the presence of TBI or in-
jury severity together, to implement a data-driven ap-
proach (K-modes clustering algorithm using the
klaR61 package in R)59 to aggregate clusters of PEC pro-
files. Only a binary matrix representing the presence or
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absence of each PEC for each patient was included in
the K-modes analysis; demographic or injury variables
were not included. We then sought to validate the op-
timal number of clusters in the manner consistent with
one of the traditional validation methods of examining
elbow plots of the within-cluster sum of squares (wss)
implemented in K-means clustering,62 given K-modes
has been presented as an extended application of the
original K-means algorithm.63,64 Within the K-modes
function, we set an initial seed randomly at the value
of (12345), estimated an initial number of clusters
(K) equal to 4, and requested a maximum of 10 itera-
tions. To confirm the optimal number of clusters, we
repeated these steps, with the exception of changing
the value of K to 3, 5, and then 6, and subsequently
plotted the wss values returned by the K-modes func-
tion for each of our runs. The resulting plots are
those presented in Figure 2.

A comprehensive list of the 19 PEC categories, which
the PTOS defines as ‘‘pre-existing comorbid factors
present before patient arrival at the Emergency Depart-
ment (ED)/hospital,’’ are provided in Supplementary
Table S1 and the PTOS data manual.60 Of note, several
of the PECs align with and use the same definition as
the National Trauma Data Bank (NTDB) data dictio-
nary.60 Further, during the process of data cleaning,
the PEC category of Pregnancy was dropped from the
dataset to remove bias in PEC count for female trauma

patients represented in the database, leaving a total of
18 PEC categories for the current analyses across 43
different participating trauma centers throughout the
state.

After filtering out mild TBI (mTBI) cases (Glasgow
Coma Scale [GCS] score 12–15; n = 150,721) and or-
thopedic injury cases (n = 87,633), we conducted logis-
tic regression with total count of PECs as the
independent variable for hypotheses examining the im-
pact of PECs on mortality in patients with msTBI
(n = 18,729), using the glm function in R.59 To ensure
comparable cell sizes for the logistic regression, we col-
lapsed PEC quantities 6 through 10 into one group
with a PEC count value of 6 or greater (‡6). For the
remaining hypotheses regarding functional indepen-
dence (FIM) and other hospital outcomes variables
(days spent in the hospital, days in the intensive care
unit [ICU]), we conducted linear regression on each
of the three dependent variables with either PEC
count or K-modes cluster assignment as the indepen-
dent variables.

Results
Demographics for all subjects are presented in
Table 1. Due to the high degree of missingness for
the Ethnicity variable specifically (30–90%), it was
not feasible to make reliable calculations for partici-
pants of Hispanic/Latino descent.

FIG. 1. List-wise deletion of cases with missing data during data cleaning. Each box identifies reasons
cases were moved to create the final sample used for analysis. FIM, functional independence measure; GCS,
Glasgow Coma Scale; ICU, intensive care unit; ISS, injury severity score; PEC, pre-existing condition; PTSF,
Pennsylvania Trauma Systems Foundation; TBI, traumatic brain injury.
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Hypothesis 1: PECs will influence mortality
and hospital outcomes
We analyzed mortality within a cohort of adult patients
with msTBI (n = 50,574; discharged alive = 73%). Logis-
tic regression revealed a significant overall effect of PEC
quantity in predicting mortality (v2 [6, n = 50,574] =

427.3, p < 0.001). Individual Wald’s tests for each
level of PEC confirmed each additional PEC signifi-
cantly increased the odds of patients with msTBI
being discharged dead in comparison with patients
with msTBI admitted with zero PECs. When compar-
ing patients with TBI without any PECs (odds ratio,

FIG. 2. Elbow plots for K-modes clustering analysis, plotting within cluster variability values across
numbers of clusters set to K = 3, 4, 5, or 6. Visual inspection of these four plots confirmed K = 4 as the
optimal number of clusters.

Table 1A. Demographics of Patients with and without Recorded PEC Data Prior to Data Cleaning

Data Racea % of n �M age in years (SD) Male Discharged alive Orthopedic

Adult patients with PEC data available at project start: Caucasian 78% 55.3 (22.8) 58% 95% 46%
N = 796,756 African-American 15% 40.7 (18.5) 73% 92% 59%
52% TBI Asian 0.8% 49.7 (21.2) 58% 94% 44%
Median GCS score = 15 Other 2.3% 42.2 (19.2) 72% 94% 49%
45% have zero PECs Unknown 3.2% 44.1 (20.2) 72% 94% 52%

No data 0.2% 45.6 (20.9) 65% 94% 49%
Adult patients w/out PEC data available at project startb: Caucasian 67% 45.4 (21.1) 67% 77% 41%

N = 39,771 African-American 25% 34.9 (16.5) 84% 55% 57%
48% TBI Asian 1.3% 40.6 (16.8) 74% 68% 42%
Median GCS = 3 Other 3.2% 36.2 (16.3) 83% 73% 42%

No data 3.3% 40.0 (21.4) 85% 47% 47%

aRace and ethnicity data were not available for all patients. Due to the high degree of missingness for the Ethnicity variable, percentages of patients
of Latino/Hispanic origin could not be reliably calculated.

bPatients without PEC data excluded from further analysis.
GCS, Glasgow Coma Scale; PEC, pre-exisiting health condition; SD, standard deviation; TBI, traumatic brain injury.
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[OR] = 0.28), the ORs for TBI cases with one or more
diagnosed PEC were (from 1 to 6 PECs): 1.3, 1.5, 1.6,
1.9, 1.7, and 1.7, respectively. For example, individuals
with 4 PECs were nearly twice (1.9 times) more likely
to die compared with those with no PECs. Separate
Wald’s tests also confirmed that the differences in the
coefficients for each additional level of PEC (0 versus
1, 1 versus 2, 2 versus 3, etc.) were all statistically signif-
icant, with the exception of the difference in coefficients
for PEC quantities 5 and 6 (v2 [1, n = 2328] = 0.032,
p = 0.86).

Hypothesis 2: Number of PECs will influence
outcomes in patients with TBI
The percentages of patients across injury sub-samples
reported for each PEC category are presented in
Figure 3. The PEC counts of patients with msTBI sig-
nificantly predicted FIM scores (F [1, 18729] = 206.1,
p < 0.001, g2 = 0.013). For each additional PEC, FIM
scores were predicted to decrease by half a point
(b =�0.5, t [18729] =�14.4, p < 0.001). Similarly,
PEC counts of patients with msTBI significantly pre-
dicted total days spent in the ICU, (F [1, 18729] = 9.3,
p = 0.002, g2 = 0.001). More specifically, each additional
PEC is expected to decrease days spent in the ICU by
4.8 h, (b =�0.2, t [18729] =�3.0, p = 0.002). To exam-
ine the impact of the number of PECs on total days
spent in the hospital, we collapsed patients with PEC

counts of 3 or more into one group with an assigned
PEC count value of 3. The total number of diagnosed
PECs did not significantly impact the number of days
patients with msTBI spent in the hospital, (F [3,
18727] = 1.64, p = 0.18, g2 < 0.001).

Hypothesis 3: Examining how PECs
combine to confer risk
Comparison of the four elbow plots generated by the var-
ious K-modes clustering runs confirmed four as the op-
timal number of PEC profiles (Fig. 2). We subsequently
named these clusters based on their predominant PEC
categories (Fig. 4). The four clusters that emerged
were: 1) Behavioral Risk, which includes patients with
zero recorded PECs (n = 6387), and individuals whose
primary diagnosed PECs were Substance Use Disorder
and/or Current Smoker (n = 5087); 2) Psychiatric and
Substance Use Risk; 3) Cardiovascular Risk; and 4) Ele-
vated Cardiovascular and Neuropsychiatric Risk, which
consists of patients with a combination of three or more
comorbid PEC diagnoses. Additional information re-
garding characteristic PEC sub-categories and demo-
graphics of these clusters is provided in Table 2 .

Exploratory question 1: Characteristics of patients
with increasing quantities of PECs
Examination of PEC counts (patients with msTBI
reporting 0, 1 to 2, or 3 or more PECs) regardless of

Table 1B. Sub-Sample Demographics following Data Cleaning

Final data samples Racea % of n �M age in years (SD) Male Discharged alive Most frequent discharge destination

Mild TBI: Caucasian 84% 56.2 (22.8) 59% 100% Home
N = 150,721 African-American 9% 43.3 (18.6) 73% 100% Home
27% have zero PECs Asian 0.9% 51.7 (21.4) 57% 100% Home

Other 2.1% 43.7 (19.7) 70% 100% Home
No data 4% 45.2 (20.2) 71% 100% Home

Moderate TBI: Caucasian 76% 54.0 (23.5) 62% 100% Home, rehab facility
N = 5839 African-American 14% 43.1 (18.1) 78% 100% Home, rehab facility
26% have zero PECs Asian 1.6% 50.6 (23.2) 62% 100% Home, rehab facility

Other 3% 43.4 (20.1) 79% 100% Home, rehab facility
No data 5.4% 43.4 (20.1) 73% 100% Home, rehab facility

Severe TBI: Caucasian 82% 41.2 (18.8) 74% 100% Rehab facility, LTC
N = 12,890 African-American 10% 39.8 (16.6) 83% 100% Home, rehab facilityb

38% have zero PECs Asian 0.9% 42.6 (17.5) 60% 100% Rehab facility, home
Other 2.8% 37.0 (16.4) 80% 100% Home, rehab facility
No data 4.8% 38.0 (16.9) 80% 100% Home, rehab facilityb

Orthopedic Injury: Caucasian 77% 54.2 (21.8) 60% 100% Home
N = 87,633 African-American 16% 37.4 (16.6) 77% 100% Home
30% have zero PECs Asian 0.8% 46.9 (20.1) 61% 100% Home

Other 2.2% 40.2 (17.3) 74% 100% Home
No data 4% 40.3 (18.1) 75% 100% Home

aRace and ethnicity data were not available for all patients. Due to the high degree of missingness for the Ethnicity variable, percentages of patients
of Latino/Hispanic origin could not be reliably calculated.

bDischarge destinations were equal in frequency.
LTC, long term care facility; PEC, pre-existing health condition; SD, standard deviation; TBI, traumatic brain injury.
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cluster membership reveals descriptive differences
across the three groups with respect to demographics,
but not hospital outcomes variables. Increasing PEC
counts are positively associated with age and the pro-
portion of female patients, but not with increasing
stays in the ICU or total hospital days. However, the av-
erage hospital lengths of stay and days spent in the ICU
were approximately 14 total days in the hospital and
around 8 days in the ICU for all three PEC count
groups.

Exploratory question 2: Frequency of PECs
within TBI and orthopedic injury
Comparison of the entire TBI sample with the orthope-
dic injury sample reveals similar frequencies of PEC
categories across both groups, supporting the decision
to include all patients regardless of injury status in the
K-modes clustering algorithm. The four most fre-
quently reported PECs categories for both orthopedic

patients and patients with mTBI were cardiac, psychi-
atric, hematologic, and vascular risk (predominantly
smoking) conditions. These same frequencies, how-
ever, did not hold for patients with msTBI, with car-
diac, substance use, psychiatric, vascular risk (again
predominantly smoking), and neurological conditions
reported in the msTBI group.

Exploratory question 3: Change in PECs
over the lifespan
K-modes results demonstrate a clear demographic shift
in the qualitative and quantitative characteristics (type
and count) of the PEC clusters within msTBI (see
Fig. 5). More specifically, the Behavioral Risk and Psy-
chiatric and Substance Use Risk PEC profile groups are
both younger on average than the Cardiovascular Risk
and Elevated Cardiovascular and Neuropsychiatric
Risk clusters. Shifts in the emergence of PEC cluster
types are most evident when patients are in their fifties

FIG. 3. Relative frequency of distinct PECs. Note frequencies for the Entire TBI Sample, Mild TBI Sample,
and Orthopedic Sample remain similar. The Moderate and Severe TBI Sample reveals higher frequencies for
substance use (1 in approximately 4) compared with the other three frequency graphs (1 in approximately
7). PEC, pre-existing condition; TBI, traumatic brain injury.

Dell et al.; Neurotrauma Reports 2021, 2.1
http://online.liebertpub.com/doi/10.1089/neur.2020.0065

261



and sixties, but emerge as early as one’s forties (Cardi-
ovascular Risk cluster), and persist in to one’s seventies
(Elevated Cardiovascular + Neuropsychiatric Risk).
Further, as the mean age of the PEC clusters begins
to increase, so too do the proportions of female patients
represented within each cluster.

To ensure equal cell sizes for the one-way analysis of
variance (ANOVA) tests (Welch’s F), we randomly
sampled 500 cases per cluster from the total sub-
sample of patients with msTBI (n = 18,731). Results
revealed cluster group differences in FIM (F [3,
1108.5] = 51.4, p < 0.001) and lengths of stay both in
the ICU (F [3, 1105.5] = 7.3, p < 0.001) as well as the
hospital overall (F [3, 1099.9] = 5.7, p < 0.001). Post
hoc tests with Bonferroni correction revealed mean dif-
ferences in FIM scores between the Behavioral Risk

cluster (M = 14:9) and the two oldest clusters: Cardio-
vascular Risk (M = 13:0, Cohen¢s d = 0:4) ) and Ele-
vated Cardiovascular and Neuropsychiatric Risk
(M = 12:1, Cohen¢s d = 0:6; both p < 0.001), but no
significant differences in mean FIM scores when com-
pared with the Psychiatric and Substance Use Risk
cluster (M = 15:6, p = 0:3)). Similarly, the Psychiatric
and Substance Use Risk cluster mean FIM score was
also significantly higher than the two oldest clusters
(both p < 0.001). Finally, mean FIM scores did not dif-
fer significantly between the Cardiovascular Risk and
Elevated Cardiovascular and Neuropsychiatric Risk,
p = 0.08.

With respect to total days in the hospital, mean dif-
ferences did not reach significance for comparisons
across the Behavioral Risk (M = 14:2 days), Psychiatric

FIG. 4. Results of the K-modes cluster analysis. Four clusters are represented in panels: 1) Behavioral Risk:
which includes patients with no recorded PECs, and individuals whose primary diagnosed PECs were
Substance Use Disorder and/or Current Smoker; 2) Psychiatric and Substance Use Risk: primary PEC
diagnoses were Psychological or Personality Disorder, followed by Substance Use Disorder, and Current
Smoker; 3) Cardiovascular Risk: patients with predominantly Cardiac Conditions, followed by Hematologic,
Diabetes, and Vascular Risk PECs; 4) Elevated Cardiovascular and Neuropsychiatric Risk: patients primarily
with Cardiac, Psychiatric, Diabetes, Neurological, and Vascular Risk conditions. PEC, pre-existing condition;
TBI, traumatic brain injury.
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Table 2. Descriptive Characteristics by K-Modes Cluster of Patients with Moderate and Severe TBI

Cluster (n)
M age (SD)

in years Male
Caucasiana

(African-American) Median hospital days
M GCS score
on admission

Behavioral Risk (total n = 11,474), consisting of two subgroups
1. No PECs reported (6,387, 56%) 33 (14.3) 78% 83% (11%) 10 5.6

% of group endorsing trait % only endorsing this trait

No PECs reported 100% 100%

2. PEC-positive (5087, 44%) 41 (17.4) 77% 81% (15%) 9 6.1

% of group endorsing trait % only endorsing this trait

Chronic alcohol abuse
Substance use disorder

35% 23%
22% 15%

Psychiatric and Substance Use Risk (2523) 39 (15.9) 65% 89% (9%) 10 6.1
PEC sub-categoriesb % of cluster endorsing trait % only endorsing this trait

Diagnosed psychiatric/Personality disorder
Chronic alcohol abuse
Substance use disorder
Current smoker
Diagnosed ADHD
Respiratory disease or COPD

91% 31%
25% 0%
19% 0%
14% 0%
10% 4%
10% 0%

Cardiovascular Risk (3903) 64 (17.2) 67% 87% (11%) 11 6.8
PEC sub-categories % of cluster endorsing trait % only endorsing this trait

Hypertension requiring medication
Coronary artery disease
Chronic alcohol abuse
Diabetes mellitus
Diagnosed psychiatric/Personality disorder
Obesity
Respiratory disease or COPD

89% 18%
22% 3%
17% 0%
16% 0%
15% 0%
10% 0%
14% 0%

Elevated Cardiovascular and Neuropsychiatric Risk (831) 72 (15.7) 50% 89% (9%) 7 8.3
PEC sub-categories % of cluster endorsing trait % only endorsing this trait

Hypertension requiring medication
Diagnosed psychiatric/Personality disorder
Diabetes mellitus
Dementia
CVA/Hemiparesis (stroke with residual)
Coronary artery disease
Anticoagulant therapy
Respiratory disease or COPD
Seizures
Functionally dependent health status
Congestive heart failure
Arthritis
Obesity
Chronic alcohol abuse
History of cardiac surgery
Advanced directive-limited care

87% 0%
71% 0%
66% 0%
49%c 0%
31% 0%
33% 0%
29%d 0%
19% 0%
14% 0%
14% 0%
14% 0%
11% 0%
11%
11%

0%
0%

10.5% 0%
0%10%

aRace data were not available for all participants.
bPEC sub-categories were those endorsed by at least 10% of the cluster.
cCoding changes over the lifetime of the PTOS database collapsed previously separate codes for 1. Alzheimer’s disease and 2. chronic dementia,

into a new third code for Dementia. The percentage in this table is the sum of those three subcategories.
dCoding collapsed previously separate codes for Anticoagulant therapy, Anti-platelet agents, and Pradaxa therapy in to one new code for Antico-

agulant therapy. The percentage in this table is the sum of those four subcategories.
ADHD, attention deficit hyperactivity disorder; COPD, chronic obstructive pulmonary disease; CVD, cardiovascular disease; GCS, Glasgow Coma

Scale; PEC, pre-exisiting health condition; PTOS, Pennsylvania Trauma Outcomes Study; SD, standard deviation; TBI, traumatic brain injury.
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and Substance Use Risk (M = 14:5 days), and Cardio-
vascular Risk clusters (M = 13:8 days; all p > 0.05), but
did so for each of these clusters when compared with
the Elevated Cardiovascular and Neuropsychiatric
Risk cluster (M = 11:3 days, p-values = 0.02, 0.005,
and 0.05, respectively, all Cohen’s d sizes = 0.2). Finally,
although days in the ICU for the two younger groups
(Behavioral Risk [M = 8:3 days] and Psychiatric and
Substance Use Risk [M = 7:5 days]) do not differ signif-
icantly from one another ( p = 1.0) or from the Cardio-
vascular Risk cluster (M = 8:5 days, p-value = 1.0,
p-value = 0.7); patients in all three clusters spent more
time in the ICU in comparison with the Elevated Car-
diovascular and Neuropsychiatric Risk cluster (M = 5.8
days, p� values < 0.001, 0.04, and < 0.001, respectively,
all Cohen’s d sizes = 0.2).

Discussion
We aimed to understand relative frequency of distinct
PECs after trauma and the influence PECs have for
mortality and early outcomes indicators for msTBI.

We leveraged the enormous resources in the PTOS to
conduct a population-based study of PECs in TBI.
Clusters of clinically relevant PECs can be reliably ob-
served in trauma populations, and hold important im-
plications for early patient outcomes. The data also
reveal that the frequency for both simple PEC count
(i.e., number of PECs any one patient may have) and
PEC clusters (symptom groupings) are critically influ-
enced by age and even injury severity, but their respec-
tive effects on post-injury outcomes may emerge
months to years following hospital discharge, and
thus are not captured in these hospital admission data.

Impact of PECs on acute TBI recovery trajectories
Within the patients with msTBI who were examined,
the sheer number and types of PECs had conse-
quence for outcomes. First, as the number of PECs in-
creases, mortality rate climbs incrementally by a factor
of 1.7–1.9. Second, distinct PEC cluster types confer
differential risk for recovery following injury, and per-
haps unsurprisingly, age plays a critical role in the

FIG. 5. Patient age plays a role in membership to specific PEC clusters. The observed shifts appear most
notable between the fifth and sixth decades of life, but can emerge as early as a patient’s forties, and
persist in to a patient’s seventies. PEC, pre-existing condition; TBI, traumatic brain injury.
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emergence of PECs (Fig. 5). In the early recovery pe-
riod, these PEC clusters also confer risk of differential
recovery following msTBI as measured by FIM, days
spent in the hospital, and days in the ICU. The impact
of PECs on recovery from TBI appears linked to the
interactive characteristics of the chronic conditions
carried by the patients with msTBI examined here,
rather than the overall total number of PECs as evi-
denced by the small effect sizes associated with our
results.

Age and PECs hold association with injury severity
Given the preponderance of mTBI injuries (more than
60%) across all four clusters in the initial K-modes clus-
tering results, we also suggest these data may speak to
differences in injury mechanism as a result of both age
and PEC types.65 More specifically, although the youn-
ger PEC profiles present with lower total number of
PEC sub-categories, they also have a greater proportion
of severe TBI cases in comparison with the two older
PEC profiles, representing a trade-off between decreas-
ing injury severity with age, and increased aggregation
of age-dependent PECs. Further, only 6% or fewer of
patients with TBI endorsed one PEC exclusively.
More specifically, it appears that PEC diagnoses fre-
quently co-occur, and this comorbidity does not appear
restricted solely to a function of advanced age.

Influence of sex on PECs
Patient sex proportions also appear to shift within the
PEC clusters. Although the Behavioral Risk cluster
contains the largest proportion of injured males, the
Psychiatric and Substance Use Risk cluster demon-
strates an increased number of injured females despite
being of similar mean age and proportions of TBI se-
verity. A key sex-by-PEC sub-category difference be-
tween these two clusters is the Psychiatric/Personality
Disorder diagnosis; 43% of patients within this cluster
endorsing this trait were female. Within the Cardiovas-
cular Risk and Elevated Cardiovascular Risk clusters,
an increase in mean age also emerges alongside a
switch from a greater number of males to more female
injuries, and an increase in the total number of
reported PECs, aligning with prior research in both
TBI and aging.38

Inflammation and immunosenescence
as part of TBI research
Accumulation of PECs induces necessary inflamma-
tory processes in the acute phase; however, prolonged

exposure to sub-clinical hyper-inflammation resulting
from chronic conditions compromises the body’s abil-
ity to effectively respond to additional physical and
neurological insults.66–69 Despite established research
examining reciprocal impacts between central and pe-
ripheral inflammatory processes,19,41,42,70,71 research
protocols frequently detail omission of potential par-
ticipants with diagnosed PECs, notably psychiatric
conditions. As global populations continue to age, un-
derstanding the impact of multiple morbidity, and the
interactions between timing and type of PEC onset, no-
tably with advancing age, remain critical avenues for
research determining both risk of and recovery from
injuries.30,72,73

More specifically, overly restrictive exclusion criteria
can eliminate the variability imparted by the presence
of PECs, and impact understanding of health mecha-
nisms that influence outcomes trajectory.31,38,74,75 For
example, Isokourtti and colleagues74 demonstrated
that in a Finnish cohort of patients with mTBI
(n = 3023), only 2.5% (76 patients) met criteria for iso-
lated mTBI, that is a patient with mTBI absent of any
pre-existing medical or mental health problems. The
broad PEC categories described by Isokourtti and col-
leagues74 are consistent with both our findings here
and mirror research in TBI and non-TBI patient co-
horts across the lifespan.15,30,31,35,76,77 Patients with
msTBI presenting with no diagnosed PECs comprise
only about 25% of the TBI sample analyzed here, so
continued focus on ‘‘isolated TBI’’ samples for research
protocols will not only exclude a majority of affected
patients with TBI (thus leading to poor generalizability
of findings), but also eliminate opportunities to exam-
ine the comorbidities complicating patient recovery
and the associated costs. Further, TBI research is
under-served by the under-representation of geriatric
patient samples,38,78–80 often due to restrictive inclu-
sion criteria.38,81,82 This poses significant challenges
to understanding post-injury outcomes that may
emerge years to decades post-injury.83,84 This is partic-
ularly concerning, given the increase in TBI-related
hospitalizations and deaths in geriatric populations in
comparison with other age demographics over the
last several years.38,65,78,80,81

Our findings align with a growing literature examin-
ing the impact of pre-existing health conditions on re-
covery following TBI. More specifically, Kumar and
colleagues15 implemented Treelet Transform classifica-
tion, which resulted in three clusters, which they
broadly classified as ‘‘acute medical diseases/infections,
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chronic conditions, and substance abuse disorders.’’
Similarities between our results and the Treelet Trans-
form clusters offered by Kumar and colleagues include
the emergence of chronic conditions, specifically those
impacting cardiovascular health, such as cardiac condi-
tions (including heart disease) and diabetes. Additional
commonalities include the emergence of substance use
disorders, a prominent feature in two of our four clus-
ters. Two important distinctions between our classifica-
tion methods, however, warrant mention. First, our
resulting clusters from K-modes clustering do not per-
mit patients to belong to more than one cluster,
whereas Treelet Transform clustering undertaken by
Kumar and colleagues27 does permit patients to have
overlapping cluster membership. Second, the PTOS de-
fines PECs as conditions present before admission to
the hospital, and thereby does not code for hospital-
acquired infections (nosocomial conditions); this is in
contrast to the data analyzed by Kumar and col-
leagues,15 which included hospital codes documenting
health conditions present prior to hospital entry and
those acquired during patients’ hospital stays.

Further, one of our overarching research aims of
descriptively examining all PECs rather than focusing
on an individual or subset of conditions aligns with yet
additional work by Kumar and colleagues.28 Although
our work presented here stems from trauma center
data in the acute stage post-injury, and Kumar and col-
leagues28 examined outcomes 10 years post-injury, our
findings speak to the importance of studying multi-
morbidity as it better simulates real-world conditions.
Further, Kumar and colleagues28 also argue that physical
and mental health conditions may reciprocally exacer-
bate one another, a qualitative aspect that is illustrated
within our K-modes clustering results, and is highlighted
in the discussion offered in this article regarding exclu-
sion criteria that prohibit individuals with these condi-
tions from enrolling in research.

Limitations and future directions
The results and proposed clinical implications should
be considered in the context of the following caveats.
The hospital-based data analyzed here may be im-
pacted by an inherent selection bias of individuals
who are more likely to seek medical services. Similarly,
the de-identified nature of the data prevented assess-
ment of whether the cases analyzed here were repeti-
tive admissions for trauma. Repetitive experiences of
TBI, and both neurological and psychiatric conditions
have been demonstrated to confer greater risk of

hospital re-entry for TBI.29 Additionally, given the
emergency/trauma center environment, the cases ana-
lyzed here do not have pre-injury functional status data
available to assess change in functional status from
before hospital admission. Further, the cross-sectional
data here do not delineate when patients were diagnosed
with PECs, precluding our ability establish direct causal-
ity of specific PECs on either chronological acquisition
of systemically related PECs or injury specifically.83

Relatedly, the availability of insurance (and access to
care) may also impact whether PECs can be diagnosed,
subsequently disclosed by these patients when they
present for care, and may impact inclusion in research
examining the questions presented here. The PTOS
data permit coding for an array of insurance types,60

ranging from those without insurance coverage to
those with a private indemnity, and the data presented
here are from patients from every possible category of
insurance (6.8% did not identify a third-party payor
and bills for service were rendered to the patient, com-
pared with 7.9% prior to data cleaning). As a final
point, prior work in our lab demonstrates that these
differences in insurance exert influence on post-
discharge outcomes, rather than the outcomes linked
to acute hospital stay presented here.85

Further, the proportion of African-American patients
without recorded PEC data, and the degree to which His-
panic ethnicity was missing from the data make it difficult
to generalize these analyses to non-Caucasian patient pop-
ulations. This data gap remains both concerning and crit-
ically important, considering current statistics that non-
Caucasian patients are more likely to suffer from a greater
number of PECs, have a higher incidence of TBI, and are
at greater risk for developing dementia-related conditions
(for which both prior TBI and pre-existing conditions
confer greater risk).86 Given the known impact of race
and ethnicity status on TBI outcomes, neurotrauma in-
vestigators should be proactive about how to guarantee
that aggregated data are representative of brain injury
as it occurs in the population, and that includes all race
and socioeconomic demographics.

Conclusion
The findings presented across the aims of this study
demonstrate that implementing a data-driven approach
revealed distinct groups (clusters) of PECs across the
lifespan. The prominent PECs present in these four clus-
ters emerge at specific ages, with increasing age associ-
ated with a simultaneous increase in the quantity of
specific age-related conditions, but also decreasing TBI
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severity. Similarly, PEC quantity and type were signifi-
cantly, yet weakly associated with measures of functional
independence and hospital stay. These findings add to
the literature examining the impact of pre-existing con-
ditions on risk of and recovery from TBI, and infer the
importance of re-conceptualizing the impact of PECs on
recovery above and beyond a single number or solitary
condition. Continued inclusion of individuals absent
any diagnosed PECs in TBI research captures only a lim-
ited scope of the population, indirectly omitting older
and non-Caucasian patients with TBI who may be at
greater risk for exacerbated recovery or pathological
aging, and presents salient challenges to understanding
recovery mechanisms post-TBI as well as for reproduc-
ibility of findings.
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