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For a century, since the pioneering work of Otto Warburg, the interwoven relationship
between metabolism and cancer has been appreciated. More recently, with obesity rates
rising in the U.S. and worldwide, epidemiologic evidence has supported a link between
obesity and cancer. A substantial body of work seeks to mechanistically unpack the
association between obesity, altered metabolism, and cancer. Without question, these
relationships are multifactorial and cannot be distilled to a single obesity- and metabol-
ism-altering hormone, substrate, or factor. However, it is important to understand the
hormone-specific associations between metabolism and cancer. Here, we review the
links between obesity, metabolic dysregulation, insulin, and cancer, with an emphasis on
current investigational metabolic adjuncts to standard-of-care cancer treatment.

Introduction: obesity and cancer epidemiology
Currently, the Centers for Disease Control have identified thirteen tumor types of which overweight
and obesity increase risk [1–27] (Table 1). In most of these, excess weight also worsens prognosis. It
should be noted that there may be a sampling bias in the link between obesity and cancer, though it
is complex: a meta-analysis by Fagan et al. [28] demonstrated that obesity was associated with a
decreased likelihood of screening for cervical and colorectal cancer, an increased likelihood of screen-
ing for prostate cancer, and no difference in rates of screening for breast cancer. Interestingly, there
are other tumor types in which overweight and/or obesity may confer an improved response to treat-
ment: in both lung cancer [29–30] and melanoma [31–33], as well as in pooled analyses of patients
with any tumor treated with immune checkpoint inhibitors [34,35], outcomes were improved in over-
weight/obese subjects. There appear to be opposing continua of both tumor immunogenicity and
association with obesity: in general, more immunogenic tumors appear to be less positively associated
with overweight and obesity, and vice versa. In this review, we concentrate on tumors positively corre-
lated with obesity, and the role of insulin in driving tumor progression, while recognizing that no
monolith regarding the relationship between metabolism and cancer exists.

Obesity’s link to insulin resistance and hyperinsulinemia
Obesity linked to high insulin
A critical consequence of excess adiposity is insulin resistance, which has been thoroughly reviewed
elsewhere [36–38]. There exists a wide spectrum of insulin resistance, where an insulin sensitive indi-
vidual will have low basal and postprandial insulin concentrations, an insulin resistant individual will
have hyperinsulinemia in both settings, and an individual with overt type 2 diabetes, whose pancreatic
beta cells cannot properly secrete insulin in response to elevated glucose, presents with hyperglycemia
without hyperinsulinemia [39]. A mildly insulin resistant individual will have obesity with or without
hyperglycemia, but elevated insulin concentrations in the basal and postprandial state. Therefore,
insulin resistant individuals have a decreased capacity to store plasma glucose as muscle and liver
glycogen and suppress hepatic gluconeogenesis in response to insulin, commonly resulting in simul-
taneous hyperinsulinemia and hyperglycemia [38].
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The molecular mechanism of insulin resistance, and thus elevated insulin levels, is downstream of the insulin
receptor (IR) in at least muscle, liver, and adipose tissue, and may be the result of the accumulation of ectopic
lipids, including ceramides and/or diacylglycerols, in these tissues. Several alternative mechanisms for the
induction of insulin resistance in obesity are also supported by the literature. Elevated non-esterified fatty acids,
branch-chained amino acids, and glucose have all been reported in the setting of obesity, each of which can
contribute to nutrient-induced insulin resistance through various purported mechanisms [36]. Systemic and
tissue-specific inflammation has also been implicated as a mechanistic link between obesity and insulin resist-
ance, with interleukin-6 and c-Jun N-terminal kinase ( JNK) signaling as key mediators [40–42]. Thus, it has
become apparent that both the local and systemic environment can play substantial roles in the context of
insulin resistance.

Nuanced definition of obesity (body weight versus adiposity)
Though obesity is often defined epidemiologically by excess weight (typically BMI > 30 kg/m2), there are short-
falls to this approach in metabolic disease and cancer. BMI appears to relatively underestimate body fat per-
centage in certain populations [43,44], and overestimate in others [45]. Nonetheless, at large scale, risk of
morbidity and mortality has been well described with BMI representing a proxy for excess adiposity. However,
other surrogates for adiposity, such as waist circumference, waist-hip ratio [46], skin-fold measurements,
medical imaging such as dual-energy x-ray absorptiometry (DXA) [47], computed tomography (CT) [48,49],
or magnetic resonance imaging (MRI) provide much more accurate measures of body fat. In addition, medical
imaging allows for the distinction between visceral and subcutaneous adiposity. Though visceral fat is only
∼5% and 3% of total adipose tissue for men and women, respectively [50], it confers a greater deleterious con-
sequences for metabolic disease and cancer than excess weight alone [51]. In addition, visceral fat content is
one of the strongest independent predictors of insulin resistance and hyperinsulinemia [52].
Few mechanisms have been explored in humans that interrogate how visceral adiposity modulates tumor

biology [51,53,54]. As alluded to earlier in this review, obesity appears to be protective for survival in lung cancer.
Recent work from our group tested the hypothesis that obesity as defined by BMI would uncover different immu-
nometabolic characteristics of tumors than using visceral adiposity as a readout of metabolic health [48].
We demonstrated that when tumor gene expression analyses were performed on high versus low BMI patients,
there were more differentially expressed genes with beneficial prognosis, including CBX6, TOX3, and TMPRSS2 in
patients with high BMI, consistent with BMI having a protective effect. However, high visceral adiposity versus
low visceral adiposity analyses demonstrated an opposite effect on prognosis: expression of detrimentally prognos-
tic genes (as determined from the PRECOG database [55]) including KRT6A, FEM1B, and S100A2, reveal that
visceral adiposity, the more deleterious component of excess body mass, is associated with vastly different tran-
scriptional profiles within the tumors. The mechanistic links of visceral adiposity to these transcriptomic profiles
remain to be uncovered. In addition to altered transcriptomics between BMI and visceral adiposity comparisons,

Table 1. Cancers associated with obesity in humans (adapted from [1])

Postmenopausal breast

Colorectal

Endometrial/uterine

Esophageal adenocarcinoma

Gallbladder

Gastric

Hepatocellular

Meningioma

Multiple myeloma

Ovarian

Pancreatic

Renal

Thyroid
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increased glucose uptake within lung tumors was positively correlated with visceral fat content, but not BMI, pro-
viding support for more nuanced relationships between body composition, metabolism, and prognosis than
simply relying upon BMI. Other research has implicated adipose-derived inflammatory mediators (including IL-6,
and IL-1β, but not MCP1) [53], altered amino acid metabolism (including serine/glycine and tryptophan metab-
olism) [56], or reactive oxygen species [57] as potential mediators of the link between body composition and
cancer progression. These findings among others have led some to interrogate the concept of metabolically
healthy obesity, and metabolically unhealthy leanness in metabolic disease and cancer [58–61].

Nuanced definition of obesity (metabolically healthy obesity)
Though there is no clear definition of metabolically healthy obesity, the concept is that a person with a BMI
greater than 30 kg/m2 can have normal blood glucose, triglycerides, cholesterol, and blood pressure, and that
these individuals, though obese, may not have elevated risk for disease [62]. However, large epidemiological
studies have shown that metabolically healthy obese individuals have greater all-cause mortality than metabolic-
ally healthy lean individuals [63], and that metabolically healthy obese individuals have greater odds of devel-
oping cancer than metabolically healthy lean individuals [64]. Conversely, there exist individuals with a BMI
between 18.5 and 25 kg/m2 who nevertheless exhibit elevated cardiometabolic risk factors with decreased skel-
etal muscle mass and elevated visceral fat mass, referred to as metabolically unhealthy normal-weight indivi-
duals [65], who have higher risk for diabetes [66], a three-folder high risk of all-cause mortality/cardiovascular
disease [67], and an increased risk of cancer [58].

Nuanced definition of obesity (sarcopenic obesity and cachexia)
Sarcopenic (loss of muscle mass, often associated with ageing) obesity is the concept that an individual can be
meet clinical definitions of obesity (BMI > 30 kg/m2) and simultaneously exhibit skeletal muscle wasting
[68,69]. Sarcopenic skeletal muscles are known to be insulin resistant even in the setting of low whole-body fat
stores [70], and considering that skeletal muscle is a primary site of both insulin action and glucose uptake/
storage [71–75], sarcopenia contributes significantly to systemic metabolic syndrome [76]. Numerous studies
have shown detrimental epidemiological consequences of sarcopenic obesity on cancer incidence, progression,
and survival, with the largest influence on cancer incidence [53,54,69,77–81]. Likely mechanisms of
sarcopenia-associated insulin resistance include reduced mitochondrial function (i.e. the ability to oxidize metabo-
lites) [82,83], reduced skeletal muscle mass and thus reduced skeletal muscle glucose disposal [53,84], as well as
protein wasting that involves the release of deleterious metabolites [85] (Figure 1). For example, elevated
branched-chain amino acid (BCAA) concentrations are an independent predictor of type 2 diabetes risk and inci-
dence [86–89], and considering that BCAAs are essential amino acids that cannot be synthesized de novo, BCAA
concentrations in plasma must reflect either dietary intake and/or an imbalance between skeletal muscle protein
anabolism and skeletal muscle protein catabolism. Sarcopenia tips the balance towards the net release of BCAAs
into the plasma, and when combined with obesity-associated hyperinsulinemia, could provide a tumor-promoting
hormonal and metabolic milieu in the plasma. It should be mentioned that cancer cachexia, in the presence or
absence of obesity, likely shares similar metabolic derangements induced by sarcopenia [53,90].
The definition of cachexia differs from sarcopenia based on the underlying cause. Cachexia is wasting of lean

mass due to underlying illness, while sarcopenia is lean mass wasting often associated with natural ageing [90].
Cancer-associated cachexia illustrates another concept: cancer per se may cause systemic metabolic perturba-
tions in skeletal muscle and other tissues. Tumor-derived inflammatory mediators, including IL-6 [91–93] and
TNFα [94–98] have causal roles in tissue-specific insulin resistance, including liver, adipose tissue, and skeletal
muscle. In addition, once a tumor grows to a certain size, it is likely that it can compete for nutrients to a
similar degree compared with that of other organs: 18F-FDG PET/CT data comparing tissue-specific glucose
uptake shows that maximal glucose uptake capacity in breast, head and neck squamous cell, soft tissue
sarcoma, and non-small cell lung tumors is 3–10 times greater than other organs including skeletal muscle,
adipose tissue, and spleen [99]. Thus, in considering the tumor as another fractional contributor to the con-
sumption of circulating metabolites, it is clear that relative sizes of each compartment (vital organs, muscle,
adipose tissue, and tumors) can drive relatively large changes in systemic nutrient partitioning.
In sum, there are manifold mechanisms related to excess adiposity, location of adipose tissue, and metabolic

derangements independent of body mass that confer risk for metabolic disease, cancer, and all-cause mortality.
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Canonical insulin signaling
Insulin is secreted by beta cells in the pancreatic islet and is recognized by IRs, which are expressed in all cell
types in the body, including tumor cells. Canonical insulin signaling pathways in tumor cells are depicted in
Figure 2. In support of a critical role for insulin in cancer progression, high IR expression is a poor prognostic
factor in lung cancer [100], breast cancer [101], and colon cancer [102]. After ligand binding, IR activates its
tyrosine kinase and initiates downstream signaling including the PI3K–AKT [103–105], mTOR [106–108], and
RAS–MAPK pathways [105,109,110]. Insulin receptor substrates (IRSs), which are the adaptor proteins of the
IR, recruit multiple signaling complexes [111–114]. In particular, growth factor receptor-bound protein 2
(Grb2) is recruited to the binding motif on IRS [115,116], which in turn forms a complex with guanine nucleo-
tide exchange factor Son of Sevenless and phosphorylates RAS. Activated RAS (RAS-GTP) activates the
mitogen-activated protein kinase (MAPK) signaling cascade, including extracellular signal-regulated kinase 1/2
(ERK1/2) [117,118]. Rac1, a member of the superfamily of small guanosine triphosphatases [119], is another
important signaling pathway downstream of the IR. Rac1 functions as a key regulator of insulin-induced
glucose uptake [120,121] and glucose-induced insulin secretion [122]. More importantly, up-regulation of Rac1
is closely related to tumor development in multiple cancer types by promoting cell proliferation and migration
as well as angiogenesis [119,123–126]. Taken together, there is no doubt that these kinases promote gene
expression in pathways related to cell survival and proliferation [127].
Insulin can also bind to the insulin-like growth factor 1 (IGF1) receptor [116,128,129], which consequently

activates the mitogenic signaling pathways that promotes cellular growth and proliferation. Although there is
significant redundancy in the intracellular insulin and IGF signaling pathways, some studies imply that they
may have distinct roles in malignancies. For instance, Gallagher et al. [130] showed in vivo that IR phosphoryl-
ation, but not IGF-IR or hybrid receptor phosphorylation, promotes mammary tumor growth in mice with
skeletal muscle insulin resistance. These authors also showed that AspB10, an insulin analog that binds specific-
ally to the IR, has a similar effect to increase tumor growth independently of IGF signaling.
However, the IGF signaling pathway also supports the formation and maintenance of cancer stem cells [131–133],

which play an important role in the epithelial-to-mesenchymal transition [134,135] and consequent tumor metasta-
sis in both liver cancer [135] and leukemia [136]. Recently, Shahbazi et al. [137] demonstrated that insulin acts as a
key stimulator of the mRNA transcriptome, seeding, proliferation, and phosphorylation in human induced

Figure 1. Sarcopenia creates an anabolic environment for tumors, while cancer cachexia creates a catabolic environment for

organs. Made in BioRender.com.
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pluripotent stem cells (hiPSC). These data highlight a new mechanism by which insulin may promote tumor pro-
gression by inducing and enhancing cancer stem cells, leading to tumor growth and metastasis.

Insulin and tumor cell energetics
Compared with healthy cells, tumor cells have tremendous energy requirements to support proliferation and inva-
sion. Therefore, tumor cells tend to modify their metabolic pattern, exemplified by the transition of the primary
glucose utilization pathway from oxidative phosphorylation to glycolysis, i.e. the Warburg effect [138–140]. This
metabolic shift not only allows tumor cells to convert nutrients into energy in an oxygen-deprived microenviron-
ment, but also provides building blocks for biosynthesis and cellular proliferation. For instance, glucose-6-
phosphate (a glycolytic intermediate) will enter the pentose phosphate pathway to generate ribulose-5-phosphate, a
precursor used for DNA and NADPH generation, as well as lipid synthesis [141]. Besides the proliferative and sur-
vival effect described previously, insulin also controls whole-body as well as intracellular metabolism by substrate
(glucose) partitioning [142]. Aberrant PI3K–mTOR signaling is common in tumor cells. For instance, a hyperacti-
vated mutation in eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1), a downstream effector of
mTOR that forms its transcription complex, is commonly observed in the head and neck squamous cell carcin-
omas [143]. mTOR also alters glucose availability in tumor cells by regulating glucose uptake [144] and glycogen-
olysis [107]. Glycogen synthase kinase (GSK)-3 can inhibit mTOR signaling via phosphorylation of tuberous
sclerosis complex subunit 2 (TSC2). Buller and colleagues showed that impeding activity of the tumor suppressor
gene TSC2 resulted in a substantial increase in GLUT1-mediated glucose uptake. This phenotype depended on
mTOR activity, suggesting a role for mTOR in modulating cellular glucose metabolism which may translate to
tumor cells [145], likely with a varying impact on cell division in different tumor types. Considering that GLUT1 is
the primary glucose transporter expressed in most tumor types, including breast [146], lung [147], renal cell [148],
colorectal [149], and melanoma [150], and high expression correlates with poorer prognosis of most tumor types
found in the Human Protein Atlas (available from www.proteinatlas.org) [151] including breast, cervical, endomet-
rial, ovarian, head and neck, liver, lung, pancreatic, renal, urothelial, and glioma, it is likely that part of mTOR’s
effect on cancer progression can be attributed to its modulation of glucose uptake and, consequently, metabolism.
However, many of these studies measure only enzymatic activities and nutrient/metabolite concentrations,

lacking the gold-standard steady-state isotopic tracer analysis of metabolic fluxes. Without tracers, it is difficult
to distinguish between the effects of oncogenic signaling to reprogram tumor metabolism, from the nutrient-
dependent, cancer driver-independent, direct effects of metabolic reprogramming on cancer cell division. The

Figure 2. Insulin signaling promotes cell division in tumors. Made in BioRender.com.
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use of isotope tracers to assess tumor metabolism will identify metabolic targets of interest within the complex
interactions between oncogenic signaling pathways and pathways regulating substrate metabolism. The import-
ance of the interactions between metabolic and oncogenic signaling pathways is highlighted by the fact that,
because insulin signaling pathways are not specific to tumor cells, interventions directly targeting IR signaling
pathways result in deleterious effects on liver cells, muscle cells, and other tissues. Specifically, treatment with
PI3K–AKT–mTOR inhibitors can cause hyperglycemia and, in rare cases, diabetic ketoacidosis due to the
effect of these drugs to interfere with systemic insulin signaling [152–160], and hyperinsulinemia resulting
from the β-cells’ attempts to normalize blood glucose can limit the efficacy of these agents [104]. However, use
of glucose-wasting sodium-glucose cotransporter-2 (SGLT2) inhibitors or low-carbohydrate ketogenic diets can
minimize the deleterious effects of PI3K–AKT–mTOR inhibitors on both systemic glucose homeostasis and on
tumor growth, at least in rodent models [104]. Several case reports have suggested that the efficacy of SGLT2
inhibitors and low-carbohydrate diets to prevent PI3K inhibitor-induced hyperglycemia may translate to
humans [161,162], and a search of the U.S. ClinicalTrials.gov registry on November 21, 2021 revealed three
ongoing trials examining the efficacy of adding SGLT2 inhibitors and/or low-carbohydrate diets in patients
treated with PI3K inhibitors. Other experimental strategies to indirectly target insulin signaling in combination
with other cancer treatments, such as chemotherapy [163] and immunotherapy [32], are also being actively
pursued in the clinic, and will be discussed later in this review.

Epidemiology: hyperinsulinemia and cancer
Hyperinsulinemia is associated with increased risk of breast, endometrial, ovarian [164–166], and prostate
cancer [167,168]; increased pancreatic [169] and breast cancer mortality [170]; and increased any cancer mor-
tality [171]. This association holds true in both obese and normal-weight individuals [172], regardless of dia-
betes, visceral adiposity, or metabolic syndrome status [173]. Hyperinsulinemic dietary patterns are associated
with poorer survival and also with increased risk of recurrence in colorectal cancer patients [174–177] and with
increased all-cause mortality [178], while high whole-grain and dietary fiber intake lowers the risk of bladder
cancer [179] (Figure 3). Other evidence suggests that the influence of insulin on tumor formation has effects in
the early stages of cancer, as hyperinsulinemia is independently associated with benign proliferative breast
disease [180], and insulin resistance is a risk factor for progressing from Barrett’s esophagus to esophageal

Figure 3. Plasma Insulin is an independent tumor-promoting factor through all stages of cancer progression. Made in

BioRender.com.
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adenocarcinoma [181]. Evidence for a direct effect of hyperinsulinemia of tumor progression has been sug-
gested by the significantly higher presence of the IR on malignant than benign prostate epithelial cells from
human biopsies [182].
In combination with other risk factors including inflammatory markers, sex hormones, and elevated glucose

levels, insulin appears to confer independent and perhaps synergistic effects on tumor progression and cancer
outcomes.

Epidemiology: diabetes and cancer
Both type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) result in hyperglycemia, though
their etiologies are strikingly different. T1DM is caused by an autoimmune-mediated destruction of the insulin-
producing pancreatic beta cells leading to hyperglycemia through insulinopenia. The lack of endogenous
insulin production in T1DM is treated by subcutaneous administration of exogenous insulin. Oftentimes supra-
physiologic doses of exogenous insulin are required to suppress endogenous hepatic glucose production and to
allow for metabolism of exogenous carbohydrate intake [183]. Endogenous insulin, produced by the pancreas
of healthy individuals, can directly enter the portal vein to regulate hepatic glucose metabolism, but this is
lacking in those with T1DM. Therefore, to maintain glucose homeostasis as effectively as endogenous insulin
does, oftentimes supraphysiologic doses of exogenous insulin are needed. T2DM, on the other hand, is caused
by insulin resistance and thus impaired glucose clearance. In an attempt to overcome the inherent insulin
resistance, the pancreas increases its insulin production, leading to hyperinsulinemia. The resultant circulating
insulin levels in both T1DM, treated with exogenous insulin, and T2DM are substantially higher than those
produced by the pancreas of healthy controls. Concomitant hyperinsulinemia in both types of diabetes has
now become one of the major proposed mechanisms by which diabetes might promote cancer development,
regardless of its origin (i.e. endogenous or exogenous).
In recent years, epidemiologic studies have shown evidence for a higher incidence of various site-specific

cancers in people with diabetes mellitus, especially T2DM and to a lesser extent T1DM, compared with the
general population. More than a twofold relative risk has been reported for endometrial, hepatic, and pancreatic
cancer and an up to 1.5-fold relative risk for bladder, breast and colorectal cancer in T2DM [184–188]. In add-
ition to the higher risk for developing the aforementioned cancers, patients with diabetes reportedly suffer from
higher age adjusted short- and long-term mortality rates when diagnosed with cancer [184,189]. The epidemio-
logical association between diabetes mellitus and cancer has led to the investigation of possible mechanistic links
between the two as well as between the potential role of diabetes therapeutics in the development of cancer.
One of the major proposed mechanisms by which diabetes might promote cancer development is hyperinsuli-

nemia, regardless of its cause (endogenous or exogenous). The link between insulin and cancer is the topic of this
review, but we recognize the high likelihood that insulin is not the only link between obesity, diabetes, and
cancer. Additional proposed cancer-promoting factors, especially in the conjunction with concomitant obesity,
are hyperglycemia, hyperlipidemia as well as increasing circulating levels of leptin, estrogen, resistin, and inflam-
matory cytokines along with reduced concentrations of IGF binding proteins and adiponectin levels [190] which
are proposed to play a permissive role in tumor cell proliferation, dissemination, and oncogene expression [191].
In addition to diabetes, anti-diabetes therapy has also been implicated in the development of cancer [5]. The

list of agents includes incretin analogs, such as GLP-1 receptor agonists, incretin enhancers, such as dipeptidyl
peptidase-4 inhibitors, insulins like glargine, along with pioglitazone, and sulfonylureas. All of which have been
associated with cancer pathogenesis due to their enhancement of circulating insulin levels. However, many of
the studies performed were flawed by inadequate methodology, in vitro/in vivo conditions that were not con-
cordant/congruent with actual physiology and/or significant bias in study design and data interpretation, such
as prevalent-user bias, immortal time bias, and time-lag bias/confounding by indication. Furthermore, many
studies did not account and adjust for many covariates, such as disease duration, and severity, amongst others.
Despite the highly suggestive association between diabetes and cancer [184–188,192–201], the underlying

molecular and mechanistic links still remain fairly obscure. In addition, it is possible that there is no linear,
direct causality between diabetes and cancer, but the link might rather be as multifactorial as the pathology of
diabetes itself. For instance, mutuality between diabetes and cancer might be attributable to their common pre-
disposing factors, such as unhealthy lifestyles, including physical inactivity and excess caloric intake, higher
adipose mass and decreased lean muscle mass as well as ageing itself. Therefore, further research is needed to
identify exact underlying mechanistic causality and identify novel therapeutic and interventional targets.
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Hyperinsulinemia as a therapeutic target in animals with
cancer
Despite mechanistic uncertainties, considering the strong epidemiologic evidence in support of a pathogenic
link between insulin and cancer, numerous in vivo preclinical studies have explored this possibility interven-
tionally. Both endogenous hyperinsulinemia [202] and exogenous insulin injection [203] promote colorectal
cancer growth in rats. Similarly, insulin injection also promotes the progression of pancreatic cancer in Syrian
hamsters [204], as well as the development and metastasis of breast [205–207] and colon cancer in mice [208].
To be noted, insulin did not significantly alter body composition in these studies, consistent with a direct
impact of insulin to accelerate tumor growth. Preclinical in vivo rodent studies have demonstrated that hyperin-
sulinemia can activate not only its cognate IR but can also bind to and hence stimulate the insulin-like growth
factor 1 receptor (IGF1R). Additionally, hyperinsulinemia also promoted increased production of IGF-1 by the
liver which in turn further amplified IGF1R signaling through the PI3K–AKT–mTOR and RAS–MAPK path-
ways, which stimulate expression of the MYC proto-oncogene, cell proliferation, anti-apoptotic, and anabolic
effects in tumor cells [104,190,209–212]. Of course, hyperinsulinemia is not the only mechanistic link between
obesity and cancer. Although discussion of these alternative mechanisms is beyond the scope of this review, we
acknowledge that insulin-independent mechanisms — for example, lipid peroxidation and metabolism [213],
fibroblast growth factor receptor-1 [214], creatine [215], leptin [216], inflammatory cytokines [217], and many
others which space limitations do not permit us to discuss in any detail (Figure 4) — play a key role in the pro-
gression of obesity-associated cancers as well.

Hyperinsulinemia as a therapeutic target in patients with
cancer
Several epidemiologic studies have correlated antihyperglycemic medication use with risk or outcomes of
cancer, and have generally concluded that patients with type 2 diabetes treated with insulin and with sulfony-
lureas, which stimulate insulin secretion, have higher cancer incidence and mortality than those treated with

Figure 4. Proposed mechanisms by which obesity may promote the progression of certain tumors. Made in BioRender.com.
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metformin [218–223]. However, these results do not uniformly point to a direct link between insulin and
cancer: despite strong preclinical evidence [208,224,225], the addition of metformin to chemotherapy for non-
small cell lung cancer reduced hyperinsulinemia, but did not provide survival benefit [226]. In this same study,
however, patients with high 18F-Fluorodeoxyglucose uptake on their PET scans received a mortality benefit
from metformin, suggesting certain glucose-dependent but insulin-independent effects in the tumor micro-
environment. In addition, metformin reduced the risk of cancer in a type 2 diabetic population, with no differ-
ences in fasting insulin or the homeostatic model assessment for insulin resistance (HOMA-IR), but the
metformin group had less exogenous insulin use [227]. Another study found that use of insulin, glinides, and
sulfonylureas increased the risk for gastrointestinal and lung cancers [220]. Clearly, more evidence is required
in humans to determine whether and how the reversal of hyperinsulinemia can slow tumor growth and
improve clinical outcomes.
Likely, it is of particular importance to develop and apply strategies to enhance systemic metabolism during

cancer treatment because of the effects of standard-of-care therapies to induce metabolic dysfunction. In addition
to the effect of immune checkpoint inhibitors to cause autoimmune diabetes, which will be discussed later in this
review, chemotherapy commonly causes weight gain and insulin resistance [228]. Moreover, insulin resistance is a
predictor of poor outcomes in those treated with chemotherapy: a recent study found the probability of a patho-
logical complete response to treatment for breast cancer to be close to five times lower in those with insulin resist-
ance, as compared with those without [229], with other studies generating similar conclusions regarding the
detrimental effect of chemotherapy on metabolic health in multiple tumor types [230–234]. Although less com-
monly studied, androgen deprivation therapy [235], radiotherapy [236–238], and stem cell transplant [239], as
well as chemotherapy in combination with radiotherapy [240], also appear to pose an increased risk of excess
weight and impaired insulin sensitivity in cancer survivors. However, surprisingly little work has focused on the
mechanisms by which these standard-of-care cancer treatments may lead to metabolic dysfunction. Historically,
chemotherapy was commonly administered in 5% glucose water; although normal saline is increasingly preferred,
the epidemiologic data may recommend a more robust examination of this common practice, considering the
extra carbohydrate load presented by glucose diluent and its potential impact on systemic metabolism during
chemotherapy treatment.

Exercise and cancer
Exercise is a well-established insulin-sensitizing intervention. Studies dating back at least 100 years [241] have
demonstrated that both acutely and chronically, aerobic exercise has the capacity to reduce plasma glycemia
and enhance insulin action in skeletal muscle, in both an intensity- and duration-dependent manner [242–
262]. Exercise research has been fundamental in understanding glucose transport, and exercise was used as a
model to illustrate insulin-independent (GLUT4-dependent) skeletal muscle glucose uptake, making exercise
prescription in patients with insulin resistance an appealing therapeutic modality [263,264]. As the links
between insulin resistance and cancer have emerged over the past several decades, exercise quickly became a
standard adjuvant for cancer therapy [265–273].
Basic and translational studies have consistently shown immense effects of exercise (most commonly volun-

tary wheel running in rodents) to slow tumor growth [274–282] and reduce metastases [283–286] in tumor-
bearing animals. Multiple mechanisms have been suggested to mediate exercise’s anti-cancer effects: enhanced
angiogenesis and thus increased immune cell infiltration [280,284], forced-swimming-induced catecholamine
induction has been suggested to enhance natural killer cell infiltration into tumors [282,287], and exercise train-
ing induced improvements in insulin resistance [288,289], and thus reductions in tumor anabolism, among
others, have been suggested.
As would be predicted by the epidemiologic and clinical data, exercise exerts a modest but significant effect

to reduce cancer risk and slow tumor progression [290–294]; however, whether and to what extent the benefi-
cial effect of exercise is mediated by reversal of hyperinsulinemia per se and to what extent this effect is reliant
on alterations in tumor and/or immunometabolism is an open question. The PreHAB study, where obese
women with breast cancer were randomized to a combination of aerobic and resistance exercise training
program, compared with a mindfulness control group, for 4 weeks prior to surgical excision, demonstrated that
exercise reduced circulating insulin, IGF1, and leptin, though only leptin reductions were significantly different
from control patients [295]. Future clinical trials on the impact of exercise on tumor biology should continue
to collect biomarker data to provide further insight into the mechanistic basis of exercise and cancer
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interactions. In addition, the frequency, intensity, type, and duration of exercise necessary to induce beneficial
metabolic and anti-tumor effects in patients is unknown and largely unexplored.
A topic of recent interest involves how exercise may alter immune function through metabolic reprogramming.

Work primarily derived from RNA sequencing and metabolomics has suggested that different substrates play key
regulatory roles in immune action. Conventional wisdom holds that glucose and glutamine metabolism may be
crucial to promote differentiation, activation, and clonal expansion [296–306], while fatty acid metabolism may
also play a key role in immune cell longevity, including preventing exhaustion in T cells and dendritic cells
[307,308] and promoting regulatory and memory T cell formation and survival [303,307,309–314]. These data
would predict that approaches to transiently increase systemic glucose metabolism in a cyclic pattern, while
chronically increasing fatty acid metabolism, would be most beneficial in improving anti-cancer immunity.
Aerobic exercise is a classic means of inducing just these changes. Acutely upon initiation of intense exercise,

there is a shift to glucose metabolism [315–317]; however, during recovery from exercise and during exercise train-
ing, a shift in whole-body metabolism to increase fatty acid oxidation has been repeatedly observed [318–320]. As
discussed in the next section, it is possible — though not yet proven — that both alterations may yield anti-cancer
benefits by their actions on immune cells.

Cancer immunology, nutrients, and insulin
With rising recognition of the interactions between insulin, substrates, and tumor progression, dietary modifi-
cations represent an area of burgeoning interest in cancer therapeutics. The impact of diet on tumor metabol-
ism and prognosis is likely nuanced: while a low-carbohydrate, ketogenic diet reduces tumor glucose uptake in
human patients [321–323], a high fat, low-carbohydrate diet — seemingly paradoxically — increases tumor
glucose uptake in rodents [207,208,324]. In addition to potential species differences, studies in this vein are
plagued by a critical confounder: there is wide variance in both adherence to any diet, and in the total caloric
load ingested on most diets, leading to discrepancies in dietary intervention studies in terms of whether partici-
pants experience a positive, negative, or neutral energy balance. These differences in diet-induced alterations in
energy balance across various studies may lead to differences in the effect of the diet on insulin responsiveness.
Additionally, recent research has highlighted the possibility that various diets may affect cancer outcomes in

a tumor cell-autonomous manner: by affecting the immune response to cancer. Insulin has been implicated in
the modulation of different immune phenotypes and responses [325], as evidenced by the expression of insulin
receptors (IRs) on T, B cells and macrophages after activation [326,327]. Furthermore, conditional knockdown
of these IRs has been found to reduce aerobic glycolysis, which is evidenced in the decreased expression of
GLUT 3,4 and the reduction in lactate production [328], all of which are hallmarks of the Warburg effect of
cancer. The immunomodulatory role of insulin has been mechanistically linked to the PI3K/Akt/mTOR signal-
ing pathway; binding of insulin to an IR results in its dimerization and autophosphorylation, which results in
the activation of IRSs [329,330]. These activated IRSs in-turn stimulates PI3K resulting in the phosphorylation
of AKT at tyrosine-308 by PDK1 and at Serine-473 by mTORC2. Interestingly, PI3K/Akt/mTOR signaling
pathway is also often dysregulated in many cancer pathologies. Furthermore, IR-deficient T cells have been
found to have decreased expression of Myc, which is a transcription factor that is downstream of the PI3K/
Akt/mTOR signaling pathway and it is involved in glycolytic metabolism [329,331]. Myc is also an oncogene,
whose dysregulation results in the propagation of many cancer pathologies [332].
Whether insulin-dependent or -independent, it is clear that substrate metabolism also plays a role in

immune function and longevity. It has been suggested that metabolic competition in the TME is a key mechan-
ism by which immune cells limit tumor growth [296,297,333]. While this possibility could be dismissed
offhand by considering the much greater biomass of tumor cells versus immune cells in a typical tumor, it is
important to consider the primary glucose transporters expressed by each cell type. While as mentioned earlier
GLUT1 is the primary glucose transporter expressed in most tumor types, the higher-affinity GLUT3 is the
primary glucose transporter expressed by T cells, and data from the open-access Immunological Proteome
Resource (ImmPRes) show that its expression is markedly increased in activated T cells. As the Km of GLUT1
is 7–26 mM [334,335] while the Km of GLUT3 is less than 2 mM [335], GLUT3 is better able to facilitate
glucose uptake at the low glucose concentrations characteristic of the TME, suggesting that tumor-T cell com-
petition for glucose may be relevant in determining cancer prognosis.
In addition, exercise is another well-studied modulator of systemic and tissue-specific nutrient partitioning.

A single bout of exercise stimulates whole-body glucose metabolism by increasing both insulin-mediated and
insulin-independent glucose uptake in tissues [245,247,249,253,336–343]. During acute exercise, the exercising
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muscle and, therefore, whole organism rely first on breakdown of glycogen, the short-term storage form of
glucose. Once endurance exercise is sustained for longer durations (beyond ∼10 min), de novo glucose synthesis
(gluconeogenesis) increases to enable systemic increases in rates of aerobic and non-aerobic glucose metabolism
[344,345]. This rapid increase in systemic reliance upon glucose is made possible by a 2–3-fold induction of
hepatic, and possibly renal, glucose production [249,340–342]. As glucose is considered the primary driver of T
cell activation [306,346–350], exercise-induced increases in glucose metabolism could mediate the effect of
exercise to promote cytotoxic T cell function in mice with cancer.
However, chronically, exercise rehabilitation and training reduce the whole-organism respiratory exchange

ratio, reflecting a shift in systemic metabolism from oxidation of glucose to oxidation of fatty acids [351–356].
This increased reliance on fatty acids has important implications for all-cause mortality: a lower respiratory
exchange ratio is associated with a lower incidence of postoperative complications [357–359] and improved sur-
vival in patients with sepsis [360,361] and heart failure [362–364] as well as in ageing mice [365], highlighting
the intriguing possibility that chronically increased systemic fatty acid metabolism may improve outcomes in
other conditions in which the immune system is important, including cancer.
While glucose metabolism has received most of the attention paid to cancer immunometabolism, increasing

evidence suggests that fatty acid metabolism should not be ignored. Metabolic flexibility appears to be critical
in promoting cytotoxic effector function while also preserving long-term immune cell health and longevity,
with glucose and glutamine metabolism promoting effector function [296,297,366–370] and fatty acid metabol-
ism predominantly fueling naïve T cell metabolism [298,371–373], Treg formation [313], memory T cell forma-
tion and survival [307,312,314,374–377], and natural killer cell [378] and dendritic cell maturation and
function [379]. Systemic metabolic inflexibility — that is, a constant and exclusive reliance upon either glucose
or fatty acid metabolism would, then, be predicted to worsen outcomes: excessive reliance on glucose may
acutely promote effector function but chronically promote exhaustion and worsen memory cell formation,
whereas excessive reliance on fatty acids may enhance longevity but worsen effector function.
In considering possible targets to mimic the effect of exercise on anti-cancer immune function, carnitine pal-

mitoyltransferase I (CPT1) represents an attractive target. CPT1 is considered the gatekeeper for mitochondrial
fatty acid oxidation, as it catalyzes the formation of acylcarnitines for transport from the cytosol into the mito-
chondria. Chronic exercise increases CPT1 expression in skeletal muscles and peripheral blood mononuclear
cells of rodents [380–386] and humans [387–390]; however, future studies will be required to determine the
functional relevance of this increase in CPT1 expression on anti-cancer immune function per se.
Given these links between insulin, immune function and cancer, including the exhaustive evidence provided

for the connections between obesity, inflammation, insulin-dependent diabetes, and cancer, this serves the
logical thinking that there are links between cancer immunology and insulin. Though this field is relatively
understudied, there are certain lines of evidence that could invigorate future research work. One line of such
evidence described in 2015, follows the use of anti-programmed cell death-1 (PD-1) therapies such as pembro-
lizumab in a patient with BRAF wild-type cutaneous melanoma that subsequently developed autoimmune dia-
betes [391]. Pembrolizumab is an immune checkpoint inhibitor and an IgG4 monoclonal antibody that targets
PD-1 [391]. Interestingly, immune checkpoint inhibitors such as pembrolizumab seem to modulate the same
nodal networks that are involved insulin signaling [331]. Though the ability of immune checkpoint inhibitors
to induce autoimmune diabetes has been well described, this serious adverse effect of immune checkpoint inhi-
bitors is extremely rare at ∼1% of those treated with ICIs for cancer [392].
Though a clear mechanistic relationship between immune checkpoint inhibitors and the subsequent presen-

tation of autoimmune diabetes is yet to be described, some inferences can be made. CD28 is a co-activator for
T cell function and similar to the IR activation of the PI3K/Akt/mTOR signaling pathway described above,
tyrosine phosphorylation of the cytoplasmic tail of CD28 up-regulates the activity PI3K/Akt signaling in T cells
[393]. Given that activation of PD-1 directly and CTLA-4 indirectly antagonizes the up-regulation of PI3K/Akt
signaling, it is quite possible that efficacy of immune checkpoint inhibitors is tied to insulin signaling.

Concluding thoughts
Although many studies, including from our group, have attempted to draw linear relationships between obesity,
diabetes, hyperinsulinemia, and cancer, and have assessed the links between these devastating conditions in iso-
lation, it is likely that the relationships between these conditions are more complex than that. While scientific
rigor requires one to choose a target of interest and probe it as independently as possible, in vivo there is
undoubtedly interplay between insulin and many other tumor-promoting or -limiting factors. However, this
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does not undercut the potential for insulin-targeting therapies to serve as a useful adjunct to standard-of-care
therapies in cancer. What is unarguably clear at this time is that there is a link between altered systemic metab-
olism and cancer. Future studies to mechanistically understand this link are of critical importance as we stand
on a precipice of continuing increases in rates of both obesity, diabetes, and cancer in the U.S. and worldwide.
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