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Abstract

Background: Antibodies, particularly cytophilic IgG subclasses, with specificity for asexual blood stage antigens of
Plasmodium falciparum, are thought to play an important role in acquired immunity to malaria. Evaluating such responses in
longitudinal sero-epidemiological field studies, allied to increasing knowledge of the immunological mechanisms associated
with anti-malarial protection, will help in the development of malaria vaccines.

Methods and Findings: We conducted a 1-year follow-up study of 305 Senegalese children and identified those resistant or
susceptible to malaria. In retrospective analyses we then compared post-follow-up IgG responses to six asexual-stage
candidate malaria vaccine antigens in groups of individuals with clearly defined clinical and parasitological histories of
infection with P. falciparum. In age-adjusted analyses, children resistant to malaria as well as to high-density parasitemia,
had significantly higher IgG1 responses to GLURP and IgG3 responses to MSP2 than their susceptible counterparts. Among
those resistant to malaria, high anti-MSP1 IgG1 levels were associated with protection against high-density parasitemia. To
assess functional attributes, we used an in vitro parasite growth inhibition assay with purified IgG. Samples from individuals
with high levels of IgG directed to MSP1, MSP2 and AMA1 gave the strongest parasite growth inhibition, but a marked age-
related decline was observed in these effects.

Conclusion: Our data are consistent with the idea that protection against P. falciparum malaria in children depends on
acquisition of a constellation of appropriate, functionally active IgG subclass responses directed to multiple asexual stage
antigens. Our results suggest at least two distinct mechanisms via which antibodies may exert protective effects. Although
declining with age, the growth inhibitory effects of purified IgG measurable in vitro reflected levels of anti-AMA1, -MSP1 and
-MSP2, but not of anti-GLURP IgG. The latter could act on parasite growth via indirect parasiticidal pathways.
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Introduction

IgG antibodies’ pivotal role in anti-malarial protection was

demonstrated by seminal studies involving the passive transfer of

IgG, purified from sera of semi-immune adults, to non-immune

patients resulting in clearance of parasitaemia [1,2,3]. This

protection reflects antibody responses directed to blood stage

antigens of P. falciparum, although the precise mechanism(s)

involved remains unclear. Specific IgG are proposed to have

either a direct [4,5,6] and/or indirect effect [7] on parasite growth

inhibition. Among the IgG subclasses, IgG1 and IgG3 are thought

to play a key role in the protection [8,9]. It is believed that these

subclasses can neutralize parasites directly, by inhibiting parasite

invasion or growth in erythrocytes, or indirectly by a mechanism

involving cooperation between parasite-opsonizing antibodies and

monocytes through binding to the Fcc receptor IIA, leading to

secretion of soluble parasite growth-inhibitory factors such as nitric

oxide or tumor necrosis factor-alpha [7,10,11]. In the latter case

the cytophilic IgG subclasses IgG1 and IgG3 are thought to be of

paramount importance [10,11].

Defining immune surrogates or, even better, correlates of

protection is considered an essential step in the rational develop-

ment of malaria vaccines and sero-epidemiological studies are one

of the valuable tools with which putatively protective anti-malarial

antibody responses can be identified. Here, we present the results of

a sero-epidemiological study in the Niakhar area in Senegal in
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which parasitological, clinical and epidemiological data were

collected during one-year of close, active follow-up of a large

cohort of children and adolescents. Plasma samples, used for

antibody assessments, were collected from participants at the end of

the study period. The objectives we set were 1) to identify groups of

individuals based on clearly defined differences in their capacity to

control infection and/or disease due to P. falciparum, 2) to

retrospectively assess the association between anti-malarial protec-

tion and IgG antibody isotype responses to a panel of asexual stage

antigens representing the foremost vaccine candidates, and 3) to use

functional assays of antibody activity in vitro to determine their

predictive value for the results of the sero-epidemiological study.

Materials and Methods

Study site, study design and blood collection
The study took place during the whole of 2003 in Diohine and

Toucar, two villages located 6 km apart in the Niakhar district

situated 135 km south-east of the capital, Dakar. The study area,

study design, and local epidemiology of malaria have been

described in detail elsewhere [12]. Briefly, in this area, malaria is

characteristically seasonal but stable, with an inoculation rate

estimated at 9–12 infective bites per person per year. Transmission

occurs predominantly during the rainy season, between September

and December, and is due exclusively to mosquitoes of the

Anopheles gambiae s.l. complex [13]. The study design included

repeated cross-sectional surveys, to identify sub-clinical parasitae-

mias, conducted in both non-transmission (January, April, June),

and transmission (September, October, December) seasons, when

thick blood smears (TBS) were prepared according to standard

protocols. On the Giemsa-stained TBS, the number of parasites

was counted in 50 high-power fields. The parasite density (PD),

defined as the number of parasites per 100 leucocytes, was then

determined by dividing the mean number of parasites by the mean

number of leucocytes per field. The latter was assessed on 30

standardised microscopic fields. A TBS was declared negative

when no parasites were detected in 200 fields. Active surveillance

to detect malaria attacks was conducted during the transmission

season (September to December 2003). During this period, trained

primary health care personnel visited all study participants twice a

week to check axillary temperature and to assess their clinical

status. To be included in the study, children or young individuals

(less than 20 years old) and their parents had to be present in study

area (Niakhar) during the follow-up. Parents were invited to bring

their child to the dispensary in case of fever at any time. When a

diagnosis of malaria was suspected for any reason and on any

occasion, a TBS was performed and a questionnaire related to

clinical signs completed. Individuals were given anti-malarial

therapy according to the recommendations of the Senegalese

National Control Program for malaria at that time (i.e. first-line

treatment with chloroquine). After the transmission season and at

the end of the one-year parasitological and clinical follow-up

(December 2003), plasma samples were isolated from venous

blood collected from 305 individuals aged 7 to 19 years old.

The study was explained in detail to all participants and their

parents, and either they or their parents gave their signed

informed consent. The ethics committee of the Health Ministry of

Senegal approved the study protocol (Nu000526/MS/DERF/

DER).

Segregation of children according to malariometric data
Uncomplicated malaria attack (UMA) group. We defined

uncomplicated malaria attacks (UMA) as the association of an

axillary temperature greater than 37.5uC with a PD equal to or

higher than 2,500/ml and with no other apparent cause of fever, in

order to avoid potential bias. Any individual identified as having

had at least one UMA during the follow-up period was included in

the UMA group.
Asymptomatic carriage (AC) groups. Individuals with no

UMA during the follow-up and with at least one parasite-positive

TBS were considered as asymptomatic carriers (AC). All TBS

performed in the 15 day period immediately following anti-

malarial treatment were excluded when assessing the study

participants’ parasitological phenotype. The AC group was

further segregated according to their levels of parasitaemia (low

vs high). As a UMA was defined as the association of fever with a

parasite density equal to or higher than 2500/ml, we selected the

same threshold to discriminate between two AC groups. The AC

group with low parasitaemia (ACLP) group thus comprised

individuals who had at least one parasite-positive TBS but with

a PD below 2,500/ml on each occasion. The AC group with high

parasitaemia (ACHP) comprised individuals who had at least one

positive TBS during the follow-up but with a PD equal to or above

2,500/ml on at least one of the parasite-positive TBS. This sub-

segregation was designed to allow evaluation of antibody

response(s) potentially associated with anti-parasite (ACLP vs

ACHP groups), anti-disease (ACHP vs UMA groups) and/or

combined anti-parasitic/anti-disease (ACLP vs UMA groups).
Uninfected individuals. Children with no UMA during the

active follow-up and no P. falciparum parasites on any of their six

TBS could be considered to either be completely protected or

simply not exposed to infection. To avoid possible confounding we

excluded all such individuals (n = 33) from all analyses.

Antibody measurements and HBB AS genotype
An Enzyme-Linked Immuno-Sorbent Assay (ELISA) following

a standardized methodology described in the Afro-immunoassay

network standard operating procedure (procedure number AIA-

001-02) was used to assess the antibody response, at the end of the

follow-up (December 2003), to the following panel of recombinant

proteins derived from sequences of asexual stage antigens of P.

falciparum:

1. MSP119 20–43, 1615–1723/Uganda-Palo-Alto strain

2. MSP2/3D7 & MSP2/FC27

3. MSP3 161–276/FC27 strain

4. AMA1 25–545/FVO strain

5. GLURP 25–514/F32 strain

MSP119 (Pasteur Institute, Paris, France) was expressed in a

Baculovirus/insect cell system [14], AMA1 (Biomedical Primate

Research Centre, Rijswijk, The Netherlands) in Pichia pastorius

[15], and MSP2/3D7, MSP2/FC27 (both La Trobe University,

Melbourne, Australia), MSP-3 and GLURP R0 (both Statens

Serum Institute, Copenhagen, Denmark) all in Escherichia coli [16].

ELISA plates were coated with 100 ml of recombinant protein

solutions (1X PBS) at a final concentration of 1 mg/ml. 150 ml of

blocking buffer (3% milkpowder in PBS - 0.1% Tween 20) was

added and kept at room temperature for 1 hour. Plasma samples

were diluted in dilution buffer (1% milk powder in 1X PBS 0.1%

Tween 20, 0.02% NaAz) 1:200 for total IgG (IgGt) and 1:50 for

IgG1, IgG2, IgG3 and IgG4 for all recombinant proteins except

for AMA1 for which dilutions used were: 1:2000 (IgGt) and 1:500

(IgG1, IgG2, IgG3 and IgG4). The monoclonal antibodies used

for determination of the immunoglobulin isotypes were mouse

anti-IgG1 (clone NL16, Skybio), anti-IgG2 (clone HP 6002,

Sigma), anti-IgG3 (clone ZG4, Skybio) and anti-IgG4 (clone RJ4,

Skybio). Two polyclonal antibodies conjugated to HRPO were
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used: a goat anti-human IgG (gamma) (Caltag) diluted 1:3000 for

IgG and a goat anti-mouse IgG (H+L) (Catltag) diluted 1:2000 for

IgG1, 1:5000 IgG2 and IgG3, and 1:3000 for IgG4. Bound

enzyme was detected with TMB and the reaction was stopped with

0.2 M H2SO4 (100 ml/well). Plates were extensively washed

between each incubation period with PBS Tween-20 (0.1%) NaCl

(0.5 M). The optical density (OD) was read at 450 nm (reference

filter 620 nm). Positive-control plasma samples from Gabonese

individuals and negative-control plasma samples from Dutch

individuals were included in each plate and results were expressed

in arbitrary units (AU) calculated from the formula: 1006 [ln(OD

test plasma)2ln(OD negative control plasma)]/[ln(OD positive

control plasma)2ln(OD negative control plasma)] [17]. The

positivity thresholds were determined from the mean reactivities

+2 SD of 30 plasma samples from Dutch non-immune volunteers.

Since it is known that antibodies of the IgG2 and IgG4 isotypes

with specificity for the asexual stage antigens assessed here are

generally present at lower prevalence and intensity compared with

cytophilic isotypes, they were quantified, in a first step, on a sub-set

of 42 samples. If the proportion of responders among these samples,

for either isotype, was .30% (an arbitrarily chosen threshold), we

proceeded to determine the corresponding responses in samples

from the whole study population.

Previous studies have shown that carriage of the sickle cell

trait is associated with protection against uncomplicated malaria

and with the modulation of anti-parasite antibody responses

[18,19,20,21,22], therefore all the individuals carrying the HBB

AS genotype (n = 32) were excluded from analyses that compared

antibody responses between groups. The determination of the

different HBB genotypes was performed by PCR/RFLP as

previously described [23].

Antibody purification for functional assay
Thirty plasma samples, matched according to age, gender and

area of residence, were randomly selected from each of the ACLP,

ACHP and UMA groups. IgG was purified from 600 ml of each of

these plasma samples using SpinTrap Protein G columns (GE,

Eindhoven, The Netherlands) using procedures recommended by

the manufacturer. The purified IgG samples were concentrated

using Vivaspin 20 ultrafiltration spin columns (Sartorius, Palai-

seau, France) according to the recommended protocol to a final

concentration of at least 20 mg/ml and the concentrated IgG were

then filter-sterilized using 0.22 mm centrifuge filters (Millipore,

Carrigtwohill, Ireland). The IgG were quantified using the

NanoDropH ND-1000 spectrophotometer and the required IgG

concentration for the parasite growth assay (20 mg/ml) was

obtained through appropriate dilution in RPMI 1640 medium

before each functional assay.

Parasite Growth Inhibition Assay
Parasite Growth Inhibition (PGI) was performed as previously

described with minor modification [24]. Briefly, 3D7 strain P.

falciparum parasites maintained in culture in vitro were synchronized

using alanine treatment and collected for use at the beginning of

schizogony. Assays were initiated in flat-bottomed 96-well tissue

culture plates with a starting parasitaemia of 0.3% in a final

volume of 100 ml containing 10% normal human serum, 20 mg/

ml of gentamicin, a final concentration of test IgG of 10 mg/ml

(50 ml of the 20 mg/ml IgG preparation) at a haematocrit of 2% in

RPMI 1640. The growth inhibitory capacity of each sample was

assayed in triplicate and each assay plate included positive

(purified rabbit anti-AMA1 IgG) and negative control samples

(RBC alone and parasite culture without IgG). Assays were

collected for analysis 42–44 h after initiation and the PGI in the

presence of IgG was assessed by measuring the Plasmodium lactate

dehydrogenase levels in parasite cultures [25]. The PGI was

calculated as follows: % PGI~ 1{ OD IgG sample OD RBCððð
controlÞ= OD schizont control{OD RBC controlð ÞÞÞ � 100:

Statistical analyses
The association of specific IgG responses with anti-malarial

protection was first assessed using a linear model (ANCOVA)

taking into account the age effect on the IgG levels. The

comparison of IgG levels between the UMA and AC groups was

performed to investigate the potential anti-malarial protective

responses and the comparison of the IgG levels between the UMA

vs ACHP, ACHP vs ACLP, UMA vs ACLP groups aimed to

identify more precisely anti-parasite and/or anti-malarial (clinical)

protective responses.

Logistic regression was applied for the analysis of associations

with protection against malaria attacks (UMA vs AC groups) which

was used as the dependent variable against the explanatory

variables (IgG responses/age) shown to be associated by ANCOVA.

This approach allowed for assessment of the independence of

associations of IgG responses with protection in the linear model

and to additionally check for the presence or absence of interactions

between putatively protective IgG responses. The relationship

between the number of antigens recognized at high titre by each

individual and group (UMA, ACHP and ACLP) was also

investigated using logistic regression. For this purpose, antibody

titres (IgGt responses to AMA1 and MSP1, IgG3 to MSP3 and

MSP2 [average of responses to the FC27 and 3D7 alleles], and

IgG1 to GLURP) in the whole study population were re-coded into

tertiles and values in the top tertile were considered a high response

for each specific antigen. Next, the number of high responses was

calculated per individual. Logistic regression was then performed

with group (UMA, ACHP and ACLP) as outcome and age and

number of antigens recognized at high titre as explanatory variables.

The non-parametric Kruskal Wallis and Mann-Whitney tests

were used to test for differences in levels of PGI and antibody

levels between the different groups. All analyses were carried out

in STATA version 8 (StataCorp, College Station, TX).

Results

Demographic and other characteristics of study
participants

Details of the study participants are presented in Table 1. Their

mean age was 11.8 years and the sex ratio (female:male) was

0.68. 178 were inhabitants of Diohine and the other 127 were

from Toucar. The mean age of those in whom one or more

uncomplicated malaria attacks (UMA group) were detected was

significantly lower than that of those in whom asymptomatic

carriage of parasites (AC group) was detected, while the gender

and village distribution of the two groups was similar (Table 1).

HBB AS carriers were significantly less frequent in the UMA

compared to the AC group. After exclusion of those with HBB AS,

the UMA group for analyses comprised 89 children among whom

64, 21 and 4, had had, respectively, 1, 2 and 3 malaria attacks

during the follow-up period. The AC group for analyses comprised

157 children (with sub-groups defined thus: 89 asymptomatic

carriage with low parasitemia [,2500/ul, ACLP] & 68 asymp-

tomatic carriage with high parasitemia [$2500/ul, ACHP]).

Antibody profiles
A high proportion of the study participants had IgG responses

to all recombinant proteins. Cytophilic IgG1 and IgG3 isotype-

specific responses were most frequent, with prevalences ranging

IgG and Malaria Protection
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from 64% (IgG3 to GLURP) up to 100% (IgG3 to MSP2

3D7)(Fig. 1). IgG1 and IgG3 responses segregated according to

study participants’ clinical/parasitological history are presented in

Figure 2. In general, regardless of the antigen or IgG isotype, the

lowest responses were observed in the UMA group. A number of

potentially confounding factors were assessed: (i) P. falciparum

parasitemia at the time of the blood draw in December 2003 (47%

were carrying infections, as determined by microscopical exam-

ination of blood smears) did not significantly influence the level of

IgG responses (data not shown); (ii) the proximity of malaria

episodes to blood draws in the UMA group (2 individuals had a

malaria episode in December, 13 in November) did not affect

antibody levels (data not shown). Age had an effect on the levels of

specific antibody responses, most of which increased with age.

Particularly notable was IgG1 with specificity for GLURP and

IgGt with specificity for MSP2 FC27 (Fig. 3). Given that it

was clearly related with antibody levels, we included age as a

continuous variable in all linear analyses.

Protection against malaria
The putative protection against uncomplicated P. falciparum

malaria conferred by carriage of HBB AS [26] was confirmed here

(Table 1), showing that our study had sufficient statistical power to

detect the effects of factors that have proven associations with anti-

malarial immunity. In order to investigate potential associations

between antibody responses and protection against malaria

attacks, we therefore first used a linear model (Analysis of

covariance (ANCOVA)) to compare the levels of specific IgG

between the UMA and unsegregated AC groups (Table 2). This

analysis revealed that the levels of IgG3 directed to either of the

MSP2 antigens (FC27 and 3D7 allelic forms) and the levels of

IgG1 directed to GLURP were significantly higher in the AC

compared to the UMA group (Table 2). Furthermore, a similar

trend, but of only borderline significance, was found for IgG3 with

specificity for GLURP. No such associations were observed for

IgG responses to either AMA1, MSP1 or MSP3.

The logistic regression model confirmed the apparent anti-

malarial protective effects of the IgG isotype responses identified

by ANCOVA. Thus, the levels of IgG3 with specificity for MSP2

3D7, and of IgG1 with specificity for GLURP were both shown to

be significantly higher in the AC versus UMA groups, while a

similar trend, but of borderline significance, was found for IgG3

directed to the FC27 allele of MSP2. Independently of the IgG

activity, age (p = 0.034, OR = 0.89) also differed significantly

between the groups. Possible interactions between the three antibody

responses were investigated to determine potential combination

effects. No interaction was observed in the logistic regression model,

indicating that the three responses act independently, and, possibly,

additively.

Protection against disease and/or parasitaemia
The sub-segregation of the AC group (ACHP and ACLP) was

designed to allow for assessments of possible associations between

specific IgG responses and different aspects of acquired immunity.

The comparison of IgG levels between the ACHP and UMA

groups, respectively resistant and susceptible to the clinical

symptoms associated with P. falciparum infection, thus aimed to

determine whether an ‘anti-disease’ type of immunity was

associated with any of the antibody activity measured here. By

ANCOVA, the levels of IgGt to both MSP2 (3D7 allelic form) and

to GLURP, of IgG1 to GLURP and of IgG3 to MSP2 (both allelic

forms) were found to be higher in the ACHP compared to the

UMA group (Table 3), but after multiple test adjustments none of

these associations remained statistically significant, and further

logistic regression analysis was therefore not performed.

Associations between antibody responses and protection against

higher-grade parasitemia were assessed through comparison of

IgG levels in the ACHP and ACLP. Here, the levels of IgGt

directed to GLURP, of IgG1 to MSP1 and of IgG3 to both MSP2

(FC27 allelic form) and MSP3 were higher in the ACLP compared

to the ACHP group (Table 3). Again, however, after multiple test

adjustments only the difference in IgG1 to MSP1 remained with

borderline statistical significance, and logistic regression was

therefore not conducted.

The association between specific antibodies and the combined

ability to protect against disease and high-grade parasitemia was

assessed through comparison of the IgG levels in the ACLP and

UMA groups. This analysis showed that the levels of IgGt directed

to MSP1, to MSP2 (both allelic forms) and to GLURP, as well as

of IgG1 to MSP1 and to GLURP and of IgG3 to both MSP2 (both

allelic forms) and to GLURP were all higher in the ACLP

compared with the UMA group. After multiple test adjustments,

the higher levels of IgGt and of IgG1 to GLURP and of IgG3 to

MSP2 (FC27 allelic form) remained statistically significantly

different between the groups (Table 3). In the logistic regression

model, the levels of IgG1 with specificity for GLURP (p = 0.035;

Table 1. Participants’ characteristics.

n Age* Gender** Villages*** RBC defect

(Range, IQRs) Female/Male Diohine/Toucar HBB AS carriers****

Whole population 305 11.8 (7–19, 9–14) 123/182 178/127 32

Groups{

UMA 94 10.9 (7–18, 9–12) 36/58 53/41 5

AC 178 12.0 (7–19, 10–14) 70/108 114/64 21

ACHP 74 11.5 (7–19, 9–14) 31/43 51/23 6

ACLP 104 12.4 (7–17, 11–14) 39/65 63/41 15

UMA = uncomplicated malaria group; AC = asymptomatic carrier group; ACHP = asymptomatic carrier subgroup with high parasitemia; ACLP = asymptomatic carrier
subgroup with low parasitemia; RBC = red blood cells.
*Significant age difference between UMA, AC and uninfected groups (Anova, p,0.0001).
**No significant gender difference in the groups (Chi2, p = 0.513).
***No significant difference between groups (Chi2, p = 0.25).
****The Hbb AS genotype was significantly less frequent in the UMA group than the group of individuals free of clinical malaria (Chi2, p = 0.049).
{Excludes the uninfected group (33 individuals).
doi:10.1371/journal.pone.0007590.t001
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Figure 1. IgG antibody levels in all participants. Total and cytophilic IgG subclass (IgG1 & IgG3) levels of 273 individuals (HBB AS carriers
excluded) with specificity for the panel of asexual blood stage antigens of P. falciparum. Box-whisker plots represent medians with 25th and 75th

percentiles (boxes), and with 10th and 90th percentiles (whiskers), outliers as discrete dots. The prevalence of positive responders to each recombinant
proteins is noticed between brackets. A positive responder was defined as an individual who had a level of specific IgG over the positivity thresholds.
These positivity thresholds were determined, for total IgG, IgG1 and IgG3 to each recombinant proteins, from the mean reactivities+2 SD of 30
plasma samples from Dutch non-immune volunteers.
doi:10.1371/journal.pone.0007590.g001

Figure 2. IgG antibody isotype responses in groups of children with and without malaria attacks. IgG1 (A) and IgG3 (B) responses to a
panel of recombinant proteins corresponding to 5 different P. falciparum asexual stage antigens in groups of children segregated according to their
status as either low (ACLP, ,2500 parasites/ul) or high (ACHP, $2500 parasites/ul) asymptomatic parasitemia carriers, or those with one or more
malaria attacks (UMA, parasitemia plus fever) during 12 months’ follow-up. Box-whisker plots represent medians with 25th and 75th percentiles
(boxes), and with 10th and 90th percentiles (whiskers), outliers as discrete dots.
doi:10.1371/journal.pone.0007590.g002

IgG and Malaria Protection
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OR = 0.90) and of IgG3 with specificity for MSP2 FC27

(p = 0.004; OR = 0.72) in the ACLP group were shown to be

statistically significantly higher than those in the UMA group.

Further analyses revealed no interaction between these two

putatively protective IgG responses in the logistic regression

model. Separately, and independently of the IgG associations

described above, age was also found to be significantly higher in

the ACLP group (p = 0.011; OR = 0.84).

Study participants’ cumulated antibody-mediated recognition of

multiple antigens at high levels was also found, independently of age,

to be associated with the outcome of infection with P. falciparum.

Here, logistic regression analyses revealed 3.6-fold greater odds

(p = 0.0003) of being in the ACLP group versus the UMA group

when responding strongly to 2 or more antigens, and 2.4-fold greater

odds (p = 0.019) of an individual being in the ACLP group versus the

ACHP group when responding strongly to 3 or more antigens.

Parasite growth inhibitory properties of IgG
The PGI of the matched (according to age, gender and area of

residence) samples selected from the UMA, ACHP and ACLP

groups did not differ significantly (Fig. 4), although the ACLP

group had the highest mean level of PGI (48.4%), the ACHP

group slightly lower (46.5%) and the UMA group the lowest

(39.0%). In addition, the level of PGI decreased significantly as a

function of increasing age (Fig. 5).

In further analyses, ELISA-detectable antibody levels in the

original plasma were compared in the same set of samples

segregated according to their PGI activity: a ‘high’ group (36

individuals) with PGI.50%, and a ‘low’ group (47 individuals) with

PGI#50%. The group with high PGI activity had, after correction

for multiple comparisons, significantly higher levels of IgGt directed

to MSP1 and to MSP2 (both allelic forms) than those with low PGI

activity. Among the cytophilic subclasses, elevated IgG1 responses

to MSP1 and IgG3 responses to MSP2 (both allelic forms) were

associated with a higher capacity to inhibit parasite growth (Table 4).

Anti-AMA1 IgG antibody responses were not associated with anti-

malarial protection in the analyses of sero-epidemiological data,

however significantly higher levels of total anti-AMA1 IgG, and

particularly of anti-AMA1 IgG1 antibodies, were found in those

with higher PGI capacity (Table 4).

Figure 3. Age-dependent changes in antibody responses. Graph was performed with the regression fit command of Stata software. The age
effect on IgGt to MSP2 FC27 and IgG1 to GLURP was significant (ANCOVA, table 3, ACLP vs UMA, p = 0,046 and p = 0,047 respectively).
doi:10.1371/journal.pone.0007590.g003

Table 2. Associations between IgG responses and protection against malaria attacks.

Linear model (ANCOVA)** Logistic regression{

IgG responses* Status IgG mean (AU) Coefficient P CI P OR

MSP2 3D7 IgGt UMA/AC 105.34/112.88 7.25 0.005 [2.19–12.31]

MSP2 3D7 IgG3 UMA/AC 95.13/100.25 5.14 ,0.0001*** [2.51–7.75] 0.049 0.70

MSP2 FC27 IgGt UMA/AC 79.88/93.61 12.56 0.002 [4.60–20.53]

MSP2 FC27 IgG3 UMA/AC 80.15/90.14 9.37 ,0.0001*** [4.78–13.95] 0.076 0.84

GLURP IgGt UMA/AC 72.44/91.44 16.99 ,0.0001*** [7.84–26.15]

GLURP IgG1 UMA/AC 80.45/100.54 17.64 ,0.0001*** [7.83–27.45] 0.024 0.91

GLURP IgG3 UMA/AC 59.47/77.73 16.28 0.003 [5.49–27.08]

*Presented are only those antibody responses, from the 20 tested, found to be significantly associated with malariometric status (P,0.05 before multiple test
correction); IgGt: total IgG.

**The effect of malariometric status on IgG responses, determined by ANCOVA, was adjusted for age.
***Significantly different after adjustment for multiple tests (Bonferroni correction, threshold of significance: P = 0.002).
{Logistic regression was used to assess associations with protection against malaria attacks, where status (UMA vs AC groups) was used as the dependent variable
against the explanatory variables (IgG subtype responses/age) shown to be significantly associated by ANCOVA. OR values were assessed for 10 AU increased.

Note: age was also independently associated with malaria protection in this analysis (P = 0.034, OR = 0.89).
doi:10.1371/journal.pone.0007590.t002
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Discussion

In this study we used retrospective analyses to assess the

associations between parasite-specific antibody activity and

protection from malaria and/or high grade parasitaemia.

Although therefore differing in design from more commonly-used

prospective studies, precluding direct comparison of results, our

findings do support the continued development of vaccines based

on specific P. falciparum asexual stage antigens. A distinguishing

feature of our study is that we combined quantification of IgG

subclass responses to a panel of P. falciparum vaccine candidate

antigens with determinations of functional antibody activity using

purified IgG in a standardized in vitro assay of P. falciparum asexual

stage growth inhibition. In addition, the continuous and close

active surveillance of study participants we conducted over 1 year

allowed for precise definitions of their clinical and parasitological

phenotypes. The study therefore had sufficient power, using

adjusted analyses where appropriate, to identify independent

associations between anti-malarial protection and defined anti-

body responses. Of equal importance, we feel, is the fact that our

findings emphasize the need to identify IgG subclass-specific

responses in sero-epidemiological studies of this kind rather than

simply total IgG.

Our data show that naturally-acquired clinical and parasitolog-

ical immunity in children living in an area characterized by stable,

highly seasonal transmission of P. falciparum malaria is associated

specifically with (i) cytophilic IgG1 and IgG3 responses (the latter

of borderline significance) to GLURP and (ii) IgG3 responses

to MSP2, measured after the transmission season. We found,

furthermore, an association of borderline significance between

anti-parasite immunity and higher levels of IgG1 directed to

MSP1. All of these associations, importantly, were independent

both of each other and of age. The possible functional attributes in

vivo of both the anti-MSP1 and -MSP2 responses were further

emphasized by their associations with enhanced inhibition of

parasite growth by purified IgG in vitro.

Despite their evident design differences, then, the results of our

retrospective study are nevertheless consistent with those of other

prospective sero-epidemiological studies that have shown associa-

tions between anti-malarial protection and IgG responses directed

to either the GLURP R0 domain [27,28,29,30,31,32] or to MSP2

[20,28,33,34,35,36,37,38], although two very recent studies could

not confirm all those findings [39,40]. The reasons for discordant

observations could be numerous, and most likely include specific

differences in either technical aspects or study design, but we favor

malaria transmission patterns, and thus primarily cumulative

variations in the degree of exposure to particular antigens, as

probably the strongest influence on outcomes [9]. One other recent

study is notable in this context, since it reports findings that are in

marked contrast to those of our own and others’ [40]. That study,

involving a Senegalese village population, reported that anti-MSP3

IgG3 responses alone - and none of the responses to any of the other

antigens tested, including those assessed in the study presented here

- were associated with anti-malarial protection. It should be stressed,

however, that malaria in the area of that particular study village is

both holoendemic and perennially transmitted, thus clearly

distinguishing it from most other studies [40]. A recent Kenyan

study also identified anti-MSP3 IgG responses as being strongly

Table 3. Associations between IgG responses and anti-disease/anti-parasite immunity.

ANCOVA* Logistic regression***

Status

IgG responses Status IgG mean (UA) Coefficient P CI P OR

IgGt to MSP2 3D7 UMA/ACHP 105.34/112.48 7.04 0.039 [0.34–13.74]

IgG3 to MSP2 3D7 95.13/100.03 4.93 0.008 [1.30–8.54]

IgG3 to MSP2 FC27 80.15/86.63 6.56 0.033 [0.52–12.60]

IgGt to GLURP 72.44/85.39 12.05 0.040 [0.53–23.57]

IgG1to GLURP 80.45/97.29 15.52 0.014 [3.17–27.87]

IgG1 to MSP1 ACHP/ACLP 73.67/85.30 10.36 0.007 [2.93–17.78]

IgG3 to MSP2 FC27 86.63/92.82 5.89 0.015 [1.14–10.64]

IgG3 to MSP3 65.92/75.31 8.70 0.037 [0.52–16.87]

IgGt to GLURP 85.39/96.07 8.70 0.037 [0.52–16.87]

IgGt to MSP1 UMA/ACLP 73.97/84.56 9.18 0.045 [0.20–18.15]

IgG1 to MSP1 74.48/85.30 9.84 0.014 [2.00–17.68]

IgGt to MSP2 3D7 105.34/113.19 7.61 0.017 [1.35–13.85]

IgG3 to MSP2 3D7 95.13/100.41 5.24 0.002 [1.89–8.59]

IgGt to MSP2 FC27 79.88/97.56 14.89 0.002 [5.69–24.08]

IgG3 to MSP2 FC27 80.15/92.82 11.07 ,0.0001** [5.76–16.39] 0.004 0.72

IgGt to GLURP 72.44/96.07 21.58 ,0.0001** [11.14–32.02]

IgG1 to GLURP 80.45/103.04 19.25 0.001** [8.09–30.39] 0.035 0.90

IgG3 to GLURP 59.47/82.20 20.43 0.002 [7.74–33.13]

*The effect of malariometric status on IgG responses (IgGt: total IgG), determined by ANCOVA, was adjusted for age.
**Significantly different after adjustment for multiple tests (Bonferroni correction, threshold of significance: P = 0.002).
***Logistic regression was applied for the analysis of associations with protection against malaria attacks, where status (UMA vs ACLP groups) was used as the

dependent variable against the explanatory variables (IgG subtype responses (IgG3 to MSP2 FC27 and IgG1 to GLURP) and age) shown to be significantly associated
by ANCOVA. OR values were assessed for 10 AU increased. Age was also associated with malaria protection in the analysis (p = 0.011, OR = 0.84).

doi:10.1371/journal.pone.0007590.t003
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Figure 4. Parasite growth inhibitory capacity of purified IgG in groups segregated according to malariometric status. Data from IgG
purified from a total of 75 plasma samples is illustrated for groups of children segregated according to their status as either low (ACLP,
,2500 parasites/ul) or high (ACHP, $2500 parasites/ul) asymptomatic parasitemia carriers, or those with one or more malaria attacks (UMA,
parasitemia plus fever) during 12 months’ follow-up. 15 samples (5 matched trios) were excluded due to large variations between triplicate samples
(coefficient of variation .30%). Box-whisker plots represent medians with 25th and 75th percentiles (boxes), and with 10th and 90th percentiles
(whiskers), outliers as discrete dots. Doted lines represent the arithmetic mean of parasite growth inhibition.
doi:10.1371/journal.pone.0007590.g004

Figure 5. The association between parasite growth inhibitory activity of purified IgG and age. Parasite growth inhibitory (PGI) capacity of
purified IgG plotted against age, with regression line fitted (using the regression fit command of STATA software). A significant difference in PGI
(p = 0.03, Kruskall-Wallis test) was observed between groups segregated according to age (8–9 years vs 10–11 years vs 12–14 years).
doi:10.1371/journal.pone.0007590.g005
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associated with protection, but this again concerned a population

with distinctly different exposure to malaria compared to our own

cohort [35]. We employed the same operating procedures (i.e.

standardized protocols developed by the AfroImmunoAssay

consortium) with a panel of antigens similar to that used by Nebié

and colleagues in their study of Burkinabe children [31]. Malaria

transmission in their study area is very similar to that in ours, and

the studies were conducted in the same year (2003). Their findings

may thus plausibly be compared directly with our own. They

reported significant associations with anti-malarial protection for

anti-GLURP (IgG3) and anti-AMA1 (IgG1) responses, but no such

associations for either anti-MSP1 or -MSP3 IgG, while anti-MSP2

IgG responses were not assessed [31]. Although clearly not identical

the broad similarities of the findings of the two studies are

nevertheless striking, and indeed lend credence to GLURP’s

vaccine candidacy. The different outcome for anti-AMA1 IgG

may reflect the inclusion of Burkinabe below 4 years of age, since

seroconversion to AMA1 occurs substantially earlier in life than for

other antigens, and responses to the latter may mask any effects of

anti-AMA1 IgG in older individuals. On the other hand, another

recent study that included children of a similar age-range to ours did

identify associations between anti-malarial protection and anti-

AMA1 IgG3, albeit in Papua New Guineans [41]. No plausible

explanation is immediately obvious for the difference between the

findings of the latter study and our own. Transmission-related

differences may be important, possibly including the unknown

effects of exposure to both P. falciparum and P. vivax.

The accurate phenotypic segregation of our study participants

allowed us to identify IgG responses with putatively varying

functional attributes. Anti-parasite activity appeared to be partic-

ularly associated with IgG1 directed to MSP1, since the magnitude

of this response distinguished those (the ACLP group) able to

control parasitemia above a defined threshold from those (the

ACHP group) that could not. This finding is consistent with the

results of other sero-epidemiological studies of this molecule, some

of which also identified an association of anti-MSP1 IgG with

control of high-grade parasitaemia [39,42,43,44,45,46]. As men-

tioned above, our observation of stronger parasite growth inhibitory

activity in vitro in samples containing the highest levels of anti-MSP1

IgG1 lend strong support to the notion that such antibodies indeed

have a functional role in vivo. Although displaying only non-

significant trends, differences in the levels of anti-MSP2 IgG3

suggested some degree of association with clinical immunity (UMA

vs ACHP groups, Table 3), but, more plausibly, when assessing the

sero-epidemiological together with the functional in vitro findings,

these antibodies appear to confer substantial protection against

high parasitaemia. A logical conclusion would therefore be that

cytophilic anti-MSP1 and anti-MSP2 IgG function in an additive or

even synergistic way to prevent parasite multiplication.

We observed markedly contrasting associations for IgG respons-

es directed to GLURP compared with those directed to AMA1. On

the one hand, the sero-epidemiological analyses revealed that

cytophilic anti-GLURP IgG activity was strongly associated with

anti-malarial protection (Tables 2 & 3), but this was not the case for

anti-AMA1 IgG, while higher levels of the latter antibodies were

associated with functional activity in vitro but no such association

was detectable for anti-GLURP IgG (Table 4). It is known that IgG

responses to AMA1 are acquired rapidly in early life, as mentioned

above, and most sero-epidemiological studies that have revealed

anti-malarial protective associations for anti-AMA1 IgG have

included children below the age range of those in our study,

possibly, therefore, offering an explanation for the different

outcomes [28,31,35,38,41]. For GLURP, pre-existing knowledge

suggests an explanation for the apparent lack of anti-GLURP IgG

activity in the functional assay. This explanation rests on the

proposed mechanism of cooperation between monocytes and

cytophilic IgG in mediating parasite growth inhibition [2,7], and

the evidence for a functional role of anti-GLURP antibodies in such

a process [47,48]. Our own preliminary data show appreciable (up

to 52%) monocyte-mediated parasite growth inhibition by affinity-

purified anti-GLURP R0 antibodies derived from a pool of six

plasma samples with high IgG responses against GLURP R0

randomly selected from children in the study described here (D.

Courtin & M. Theisen, unpublished observations). Anti-GLURP

antibodies thus seem not to exhibit the type of direct anti-parasite

effects that the growth inhibition assay used here aims to quantify,

but rather act indirectly through opsonic interactions with

merozoites and monocytes.

Finally, some aspects of the growth inhibition assay employed

here are worthy of mention. Despite using purified IgG -

effectively precluding any influence of anti-malarial metabolites

or other potentially parasitistatic molecules in the in vitro assay - we

did not find significant differences in functional activity between

the groups segregated on the basis of clinical and parasitological

phenotypes. This is in line with the results of studies that used

either dialysed or whole serum rather than purified IgG, but that

nevertheless found no association between the amounts of growth-

inhibitory antibodies detectable in vitro and reduced risk of malaria

[49,50,51], but contrasts with those of another recent study from

Kenya [52]. Whether the outcome in this context was affected by

our use of a standard concentration (10 mg/ml) of IgG - well

Table 4. Comparison of IgG levels in groups of samples with
high or low parasite growth inhibition (PGI).

PGI#50%*(n = 47) PGI.50% (n = 36) P**

IgG
responses

Median of Ab responses in arbitrary units
(5–95 percentile)

MSP1

IgGt 64.74 (3.72–110.13) 96.34 (29.41–112.93) 0.0005***

IgG1 65.65 (8.71–101.60) 97.73 (42.48–103.93) 0.0005***

MSP2 FC27

IgGt 66.18 (12.90–114.07) 95.08 (38.04–136.91) 0.0015***

IgG3 72.11 (37.76–101.99) 90.46 (50.83–105.28) 0.0043

MSP2 3D7

IgGt 108.56 (65.98–124.65) 118.92 (67.33–131.88) 0.0005***

IgG3 99.43 (64.40–105.12) 102.77 (79.83–108.13) 0.0086

MSP3

IgGt 44.58 (0–100.31) 44.47 (0–99.94) 0.33

IgG3 66.51 (21.25–101.73) 64.64 (26.08–101.33) 0.77

GLURP

IgGt 70.42 (4.91–135.36) 78.09 (23.27–135.14) 0.03

IgG1 76.79 (3.81–141.86) 97.97 (29.54–145.74) 0.04

IgG3 51.55 (0–131.74) 81.50 (0–132.37) 0.07

AMA1

IgGt 89.86 (33.77–109.02) 104.50 (93.87–110.44) 0.0001***

IgG1 88.23 (13.67–103.28) 100.51 (89.25–104.91) 0.002***

*No significant difference in age was observed between the groups of samples
showing high and low level of PGI (p = 0.33, Mann-Whitney).

**Non parametric Mann-Whitney test was used to compare IgG levels in the
groups.

***Significant p value after multiple test adjustment (Bonferroni correction).
doi:10.1371/journal.pone.0007590.t004
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below the normal level to be found in African children’s blood - in

the assay procedure we adopted is not known. One consistent

finding in this and the other recently published studies that have

used a broadly comparable in vitro assay concerns the age-related

decline in growth inhibitory activity [50,52]. The explanation for

this inverse association remains obscure, but one implication is

that the naturally-acquired protection enjoyed by older age-groups

relies on alternative parasite growth inhibitory mechanisms. In any

case these findings serve to reiterate the need for development and

standardization of adequate and appropriate in vitro assays that

faithfully reflect in vivo antibody function.

In summary, the results of this study clearly highlight the role of

IgG antibody subclass responses in acquired anti-malarial

immunity. On the basis of the data presented, we conclude that

naturally-acquired immunity to malaria, in the setting described,

relies on the presence of a constellation of cytophilic IgG

antibodies, displaying differing specificities and probably having

disparate functional attributes, but that may operate in concert in

vivo to suppress parasitaemia to levels below those causing disease.

We interpret the results as providing strong support for the

development of a vaccine designed to elicit antibody responses

simultaneously to multiple asexual stage antigens of P. falciparum.
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