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Abstract

Noise in gene expression can be substantively affected by the presence of produc-
tion delay. Here we consider a mathematical model with bursty production of protein,
a one-step production delay (the passage of which activates the protein), and feed-
back in the frequency of bursts. We specifically focus on examining the steady-state
behaviour of the model in the slow-activation (i.e. large-delay) regime. Using a formal
asymptotic approach, we derive an autonomous ordinary differential equation for the
inactive protein that applies in the slow-activation regime. If the differential equation
is monostable, the steady-state distribution of the inactive (active) protein is approxi-
mated by a single Gaussian (Poisson) mode located at the globally stable fixed point
of the differential equation. If the differential equation is bistable (due to coopera-
tive positive feedback), the steady-state distribution of the inactive (active) protein is
approximated by a mixture of Gaussian (Poisson) modes located at the stable fixed
points; the weights of the modes are determined from a WKB approximation to the
stationary distribution. The asymptotic results are compared to numerical solutions of
the chemical master equation.
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1 Introduction

Gene expression in individual cells involves the interaction of molecules which are
present at low copy numbers (Eldar and Elowitz 2010; Munsky et al. 2012). The
intrinsic noise generated by the low-copy-number reactions is passed down to the
end product of gene expression, the protein, and results in temporal fluctuations and
cell-to-cell heterogeneity of the protein copy number (Taniguchi et al. 2010; Suter
et al. 2011). The production of proteins in bursts of multiple copies is one of the
most important sources of protein variability (Singh et al. 2010; Dar et al. 2012).
Specifically, bursty production accounts for super-Poissonian variability observed in
protein copy numbers (Thattai and van Oudenaarden 2001).

Mathematical modelling has been proved useful in understanding the mechanisms
of stochastic gene expression. The underlying probability distributions are typically
defined as solutions to a specific master equation (Paulsson 2005; Veerman et al. 2018;
Albert2019). Explicit solutions to the master equation, especially at steady state, can be
found for models with few components (Bokes et al. 2012; Zhou and Liu 2015) and/or
with special structural properties (Kumar et al. 2015; Anderson and Cotter 2016).
Generally, however, explicit solutions are unavailable or intractable and one resorts to
stochastic simulation or seeks a numerical solution to a finite truncation of the master
equation (Munsky and Khammash 2006; Borri et al. 2016; Gupta et al. 2017). An
alternative approach, which often provides useful qualitative insights into the model
behaviour, is based on reduction techniques such as quasi-steady-state (Srivastava
et al. 2011; Kim et al. 2014; Plesa et al. 2019) and adiabatic reductions (Bruna et al.
2014; Popovicetal. 2016), piecewise-deterministic framework (Lin and Doering 2016;
Lin and Buchler 2018), linear-noise approximation (Schnoerr et al. 2017; Modi et al.
2018), or moment closure (Singh and Hespanha 2007; Andreychenko et al. 2017; Gast
et al. 2019).

Production delay is an inevitable part of gene expression (Monk 2003; Zavala and
Marquez-Lago 2014; Bokes et al. 2018; Qiu et al. 2020). It can be caused by a number
of mechanisms, e.g. transcriptional/translational elongation (Roussel and Zhu 2006),
post-translational modification (Gedeon and Bokes 2012), or compartmental transport
(Mor et al. 2010; Sturrock et al. 2017). The delay specifies the amount of time that
needs to pass before a newly produced molecule can partake in its regulatory function
(specifically in feedback). Delay can be fixed or randomly chosen from a distribu-
tion (Barrio et al. 2006; Lafuerza and Toral 2011; Gupta et al. 2014). Exponentially
distributed delays are the simplest among distributed delays as they are realised by
the passage of a single memoryless step. Erlang and phase-type distributions provide
a wider family of distributed delays which can be generated by a finite network of
memoryless states (Soltani et al. 2016). Previous results indicate that large one-step
(exponential) and multi-step (Erlang/phase-type) delays reduce the super-Poissonian
noise in a bursty protein down to Poissonian levels (Singh and Bokes 2012; Stoeger
et al. 2016; Smith and Singh 2019). This effect is also seen experimentally with
buffered noise in cytoplasmic mRNA levels compared to nuclear mRNA levels due
to transport delays (Battich et al. 2015). Additional effects of the inclusion of a delay
are observed if the protein regulates, via transcriptional feedback, its burst frequency.
In case of negative feedback, delays of moderate size lead to an increase, rather than
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decrease in protein noise (Smith and Singh 2019). In case of non-cooperative posi-
tive feedback, noise-driven bimodal protein distributions, which are observed in the
absence of delay, turn unimodal upon the inclusion of a distributed delay, and eventu-
ally converge to the Poissonian statistics as the delay increases (Borri et al. 2019). In
case of cooperative positive feedback, the introduction of delay has been reported to
enhance the stability of the modes of the protein distribution (Gupta et al. 2013; Feng
et al. 2016; Kyrychko and Schwartz 2018).

In the paper we focus, for its relative simplicity, on the case of exponential delay.
We refer to the delay as activation and distinguish between the inactive and active
protein species. We will argue that in the limit of slow activation rates the model
behaviour becomes deterministic at the level of the inactive protein. Behaviour of
stochastic models near a deterministic limit can be interpreted using the large-deviation
theory (Tsimring and Pikovsky 2001; Heymann and Vanden-Eijnden 2008; Kumar
and Kulkarni 2019) and quantified by WKB asymptotic approximations (Schuss
2009; Bressloff 2014; Assaf and Meerson 2017). The WKB approach has been suc-
cessfully applied to stochastic reaction kinetics systems with large molecule copy
numbers (Hinch and Chapman 2005; Be’er and Assaf 2016; Yin and Wen 2019), fast
switching of internal states (Newby 2012; Lin and Galla 2016), or a combination of
both ( Newby and Chapman 2014, discussed at greater length in Sect. 7). Here we will
use the WKB approximation to obtain reliable estimates of the stationary distribution
of the active (and also the inactive) protein in the slow activation (large-delay) regime.

The paper is structured as follows. Section 2 introduces the stochastic model and
its chemical master equation (CME). Section 3 seeks a WKB approximation to the
stationary solution of the CME and formulates a specific algebraic problem that needs
to be solved to determine the approximation. Section 4 solves the algebraic problem
by analysing the phase plane of an associated dynamical system; a specific restriction
of the dynamical system is thereby interpreted in terms of the emergent deterministic
dynamics of the model in the slow-activation limit. Section 5 completes the calculation
of the terms required for the WKB approximation. Section 6 develops the WKB
approximation into tractable Gaussian/Poisson singleton/mixture approximations and
compares them to the numerical solution of the CME. Section 7 concludes the paper
with a discussion.

2 Master equation

The paper is concerned with a reaction system involving the inactive and active protein
species X and S which are subject to the production, activation, and decay reaction
channels (Table 1). Each reaction is specified by its rate and reset map. The reaction
rate, upon the multiplication by the length of an infinitesimally short time interval,
gives the probability that the reaction will occur within the interval. The reset map
is applied on the copy numbers of the two molecular species each time the reaction
occurs.

We are specifically interested in studying the model in the regime of slow activation.
Making activation slow is equivalent to making all the remaining reactions fast: indeed,
by Table 1, the activation rate is O (1), whereas the production and decay rates are
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Table 1 Reaction channels of the delayed feedback model with reaction species X (inactive protein) and S
(active protein)

Name Scheme Rate Reset map
Production #— BxX e*I.fS X—>X+B
Activation X —=S X X—->X-1,

s — min{s + 1, Smax}

Decay S—>0¢ e ls s—>s—1

The copy number of the active protein is denoted by s and that of the inactive protein by X (we reserve the
lower case for its concentration x = ¢X, which is of the same order as s). The production burst rate fy is
a function of s, which implements the feedback. The production burst size B is in general drawn from a
prescribed random distribution. The parameter ¢ < 1 determines the discrepancy between the O(1) long
timescale of slow activation and the O(¢) short timescale of fast turnover of the active protein. The reset
map of the activation channel ensures that s never exceeds an upper bound smax

O(1/¢e), where ¢ < 1 is a small dimensionless parameter. The aim of the paper is to
find asymptotic approximations, valid for ¢ < 1, of the stationary behaviour of the
model.

Let us talk through the specific forms of the reaction rates and reset maps of the
individual reactions in Table 1. The production rate depends on the number s of
active protein through a general (integer-valued) feedback response function f;. The
production reset map indicates that the number X of inactive proteins is increased by
the size B > 0 of a production burst. Bursts sizes are drawn (independently of each
other) from a distribution

The activation rate is proportional to the number of inactive proteins; the factor of
proportionality is set to one without loss of generality. The activation reset map turns
one inactive protein into an active protein if there is extra capacity for active protein
(s < smax); it removes an inactive protein without creating an active protein if there
is no capacity (s = Smax)- The motivation for including the upper bound is technical:
it allows for the use of finite-dimensional mathematical techniques. We will set syax
to a value at which the decay rate exceeds, by a factor of two, the maximal rate
of production; such a limit is reached rarely and its introduction affects the system
dynamics negligibly. The decay rate is proportional to the number of active proteins;
the decay reset map decreases the number of active proteins by one.

The probability P = P(X, s, t) of having X molecules of inactive protein and s
molecules of active protein (cf. Table 1) at time ¢ satisfies the chemical master equation
(CME)

P
t

) >
e = | Y bEy —1 P+8<EX]E;]—1)XP+(ES—1)SP, )
P o
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in which Ex and E; denote the van Kampen step operators (van Kampen 2006) in
variables X and s, and ]E;(1 and E;! are their formal inverses.

The master equation (2) applies in the unbounded case smax = 00; in order to
formulate one that is applicable to the smax < 00 case, it turns out to be helpful to use
modified versions of the van Kampen step operators. For a sequence v, indexed by an
integer 0 < s < spax, we define the left- and right-shift operators by

£0 0 ifs =0,
Us41 1 =<5 < Smax> .
Lvg = ) Rug = 1 vy if0 <s <smax, (3)
0 if § = Smax, )
Vs—1 + vy if s = Spax.

Away from the boundary s = spx, the left- and right-shift operators £ and R are equal
to the van Kampen step operator and its formal inverse, respectively. Let us discuss the
meaning of the modifications of the operators that are made on the boundary s = spax.-
The left-shift operator is used below to describe the transfer of probability mass due
to protein decay. The modification of the left-shift operator at the boundary s = syax
means there is no transfer of probability from the inadmissible state spax + 1. The
right-shift operator is used below to describe the transfer of probability mass due to
protein activation. The reset map of the activation reaction channel (Table 1) implies
that states with spmax — 1 as well as syax active protein molecules transfer into a state
with smax molecules. Correspondingly, the right-shift operator returns at the boundary
the sum of the ultimate and the penultimate terms of the original sequence.
In the bounded case spmax < 00, the CME can be written as

a o
eEP(X,s, 1) = fs E biP(X—j,s,) +e(X+DRP(X +1,s,1)
— 4)
Jj=0 (

+LsP(X,s,t) = (fs +eX +5)P(X,5,1),

in which we use the operator formalism (3) in the variable s, but the shifts in the variable
X are made explicit. We thereby tacitly understand, as is customary in analyses of
CME:s, that the probability of having a negative number of species X is equal to zero.

In the slow-activation regime (¢ <« 1), the inactive protein is present at o@EhH
large copy numbers. In order to measure the abundance of the species on an O(1)
scale, we define

X
X=—, PX,s,t)=p,s,t). 5)

£
We refer to the new variable x, which becomes in the limit of ¢ — 0 a continuous

quantity, as the concentration of the inactive protein. Inserting (5) into (4), we obtain

a o
e P08, D) = f ) bip(x —ej,s, 0+ (x +&Rp(x +e,5,1) ©
j=0

+ Lsp(x,s,t) — (fs +x +s)px,s, t).
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Equating the derivative in (6) to zero, we arrive at a bivariate difference equation

0=f ijp(x—ej, $)+(x+e)Rp(x+te, s)+Lsp(x, s)—(fs+x+s)plx,s) (7)
j=0

for the steady-state distribution p(x, s). Below we seek an asymptotic approximation
as ¢ — 0 to the (normalised) solution of (7).

3 Expansion

We seek a solution to (7) in the WKB form

D (x)

px,s;e) = (rso(x) + srsl (x) + 0(82)) e ¢ (8)

where r?(x) > 0 and rs1 (x) give the first two terms in the asymptotic expansion in
the powers of €. The variable s is placed in the subscript to emphasise its discreteness
(contrasting it with the continuous nature of x in the limit of ¢ — 0). The function
@ (x) in the exponent of (8) is referred to as the WKB potential.

Below we develop, by means of (8), the individual terms of the difference Eq. (7)
into asymptotic expansions of up to the second order. This is a mechanistic but labori-
ous exercise. Therefore we suggest that, on first reading, the reader focus their attention
on the leading-order terms in the expansions; these are sufficient for calculating the
potential @ (x), which plays the central role in the analysis.

For the first term in Eq. (7) we find

o0
> bipx—ej.sie)

Jj=0
m .
=D b; (VA?(X —ej)+erl(x —ej) + 0(52)) e Pa—je)/e
=0
S e j £j?0" (x)
=e ¢ ;)bjefg <r?(x) — Sjr?’(x) + Srb!(x) + 0(82)> [ — f n 0(52)

Ne_tpg) DM@ +8r1xM9—r0/xM’0—ldﬁ//erxM”Q
s ()M (©0) s OM©) —rg"(x)M () 5 (x)rg X)M™(©0) | ),

where

0=0'(x), M@©®) =) bje ©
=0

are the potential derivative and the moment generating function of the burst-size prob-
ability distribution (1), respectively.
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The second term in Eq. (7) is developed into
(x+e)Rpx +e,s58)
—(x+e) (Rr»?(x te) +eRrl(x+e) + 0(52)) e~ Plte)/e

—e "0 (x + o) (Rr?(x) +elRrY (x) + Rr! (0] + 0(52)) (1 - €¢2(x) + 0(52))
~e” 28— <er?(x) +e [(1 — il (zx)x) ’Rr?(x) +x (Rrg/(x) + ’Rr; (x))]) .

The remaining terms in (7) are easy to expand.
We insert the WKB ansatz (8) into (7), expand the individual terms of the equation
as done above, and collect terms of same order; at the leading order this yields

Arl(x) =0, (10)

where
Avy = e xRus + Lsvg — (fi(1 = M(0)) + x + 5)vy (11)

is a linear operator acting on sequences vy defined for 0 < s < spax. Such sequences
can be represented by (smax+-1)-dimensional column vectors v = (v, v1, ..., Vg, )7,
and the linear operator A as a square matrix A of order sp,x + 1. Here and below, we
will go back and forth between the operator—sequence and the matrix—vector notations,
using that which expresses a given formula more succinctly.

The matrix A is tridiagonal. On the main diagonal it has the sequence — f;(1 —
M(0))—x—s,where ) < s < smax, except for the last diagonal element, which is given
by — fon (1 —M()) —x(1 — e %) — smax. On the upper diagonal it has the sequence
1,2, ..., smax; the elements of the lower diagonal are all equal to e~ x. It looks like

—fo(1 =M(@©)) —x 1

A= A - 312

Smax

0 _6 — fomax (1 — M (0))
-1 - e—@)x — Smax

The matrix A = A(x, ) — just like the associated operator A = A(x, 8) — depends
on the protein concentration x and the (yet unknown) potential derivative = &’(x).
Equation (10) can be written in a matrix form as

A(x,0)r'(x) =0, (13)
where r0(x) = (rg(x), r?(x), R rsomax (x))T is required to be a positive vector (i.e. a

vector with only positive elements). Denote by
H(x,0) =11 (A(x,0)) (14)
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the eigenvalue with largest real part (Bressloff and Newby 2014), which we refer to
hereafter as the principal eigenvalue. The matrix A does not have any negative off-
diagonal elements; the Perron—Frobenius theorem implies that the principal eigenvalue
is real, and its right and left eigenvectors (referred to as principal eigenvectors) are real
and positive. The right eigenvectors of non-principal eigenvalues, being orthogonal
to the left principal eigenvector, cannot be positive. Therefore, Eq. (13) is solvable in
rO(x) > 0if and only if

H(x,0)=0 (15)

holds. In what follows, we show that the zero-level set (15) includes a graph of a
function 8 = 6(x), which forms the derivative (9) of the desired potential. In order to
characterise the level sets of the function H (x, 0), it is useful to consider the associated
Hamiltonian system of differential equations.

4 Hamiltonian system
Differentiating with respect to x Eq. (15) in which 8 = 6(x) yields

oH n 0H do 0
ax 90 dx
ie.
do 2 (x.0)
— =y (16)
dx 3 (y g)
The non-autonomous differential Eq. (16) is equivalent to the system of two
autonomous differential equations

X =

M oy, 6=—" 0 17
g 5 0). 0=—7"(x.0), a7)
in which the dot represents the time derivative. The system is Hamiltonian: its trajec-
tories form the level sets of (14). We are specifically interested in the zero set (15).
Borrowing terminology from the Hamiltonian formalism, we refer to the variable 6
as the conjugate momentum.

In order to solve system (17), we need to evaluate the right-hand sides. For this
purpose it is useful to express the Hamiltonian (14) as

H=uTAv, (18)

where # > 0 and v > 0 are the left and right eigenvectors corresponding to the
principal eigenvalue H, i.e.

uTA=Hu", Av=Hv, (19)
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which additionally satisfy

Smax

uTv =1, Zv‘yz 1. (20)
s=0

Conditions (20) can be met by a suitable choice of multiplicative constants.

The principal eigenvectors u and v, just like A and the principal eigenvalue H,
depend on the protein concentration x and the conjugate momentum 6. Differentiating
(18) with respect to x yields

oH 0A ouT ov
[ _A TA_
0x “ ax v 0x vt 0x
T8A n ouTv
=ul—v
dax 0x
0A
=u’—uv, (21)
ax

where the first equality applies the product rule, the second follows by (19), while the
third is due to (20). Differentiating (18) with respect to € and simplifying as before
gives

oH 0A
— =uT—v. (22)
20 20
The derivatives of A in (21)—(22) are matrix representations of the derivatives
0A 0A
a—Us = efeRUs — Vg, Evs = M) fivs — efevas (23)
X

of the operator .4 (11). Before analysing the entire phase plane of system (17), we first
characterise its flow on the x-axis and interpret it in terms of the model dynamics.

4.1 Deterministic rate equation

The matrix A (x, 0) simplifies, owing to the relation M (0) = 1, to a Markovian transi-
tion matrix of a birth—death process with state space {0, 1, ..., smax}, @ constant birth
rate x (as long as s < smax), and a linear death rate s. In our context, births correspond
to activation (from a constant source of inactive protein), and deaths correspond to
decay of the active protein. In queueing theory, which identifies births and deaths with
customer arrivals and departures, such a process is referred to as the M /M /Smax /Smax
server with memoryless arrival and service times, smax servers, and no queue (Gross
2008).

The transition matrix A (x, 0) of the M /M /smax/Smax server has the principal eigen-
value and eigenvectors given by

H(x,0)=0, u(x,00=1, v(x,0)=px), (24)
inwhich1 = (1, 1,...,1)T is an (smax + 1)-dimensional vector of ones and p(x) =
(po(x), p1(X), ..., Pspay (X)) T is the process’s stationary distribution; this is given by
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the truncated Poisson distribution with location parameter x (Gross 2008),

xS
Ioé(x)='/\/'(x)§7 S=071""7smaX7 (25)

where

Smax g -1
Nx) = <Z %) (26)

s=0
is the normalisation constant. We remark that the probability of the server running at
full capacity, which is returned by (25) at s = spax, goes under the name of Erlang’s
loss formula (Gross 2008).
Inserting (24) and (23) into (21) yields

Smax

oH 0A A
— — 1T — —
™ (x,0)=1 ox (x,0)p(x) = SE:() ™ (x, 0) s (x)
= E Rps(x) — E ps(x) =0, 27

in which we used that the product of a row vector of ones and a column vector is
equal to the sum of the column vector’s elements and that the right-shift operator R
(3) preserves the sum of vector elements. Inserting (24) and (23) into (22) we find,
after similar simplifications, that

OH 9A o9 A
55 (60 0) = 1T (x, 0)p(x) = ;O 55 & 0P (x)
=M'©0) ) fips@) —x ) Rps(x)
s=0 s=0
= (B) f(x) —x, (28)
where
(B) = M'(0) = Z jb; (29)

is the mean burst size and

Smax

F) =" fips(x) (30)

is the expectation of f; with respect to the truncated Poisson distribution (25).

Inserting (27) into (17), we find that 6 = 0if & = 0: the x-axis is an invariant set
of the Hamiltonian system (17). Inserting (28) into (17), we find that on the invariant
set & = 0 the Hamiltonian system reduces to the rate equation

= (B)f(x) — x. 31)

@ Springer



Mixture distributions in a stochastic gene expression... 353

The Hamiltonian system (17) thus comprises, and extends by an additional dimension
in 6, the concentration dynamics given by (31). The rate equation (31) represents
a deterministic reduction of the delayed feedback model. This can be understood
intuitively by invoking a quasi-steady-state (QSS) approximation (Rao and Arkin
2003). On O (g)-short timescales, the inactive protein varies little and slowly, and its
concentration x is nearly constant; on the other hand, the active protein is noisy and
fast, and its copy number s evolves like an M /M /smax/Smax Server, equilibrating to
the QSS distribution (25). On O(1)-long timescales, the inactive protein is produced
with an effective burst rate (30) which is obtained by averaging the instantaneous
burst rate with respect to the QSS distribution. Multiplying the effective burst rate by
the expected burst size and subtracting the linear activation rate yields the emergent
deterministic dynamics (31).

Although the main contribution to f (x) comes from the values of f; whose argu-
ment s is close to x, the value of f (x) is determined by all values of f;. Due to the
contributions of neighbouring terms, any sharp features of f; are smoothed out, or
“mollified”, in the function f (x); for example, a step function (Gedeon et al. 2017;
Crawford-Kahrl et al. 2019)

ap if's < Sthresh,

fs = (32)

ar  if s > Sthresh

turns into a smooth sigmoid function by the application of (30); see Fig. 1, top panels.

By (24), the x-axis belongs to the zero-level set (15). However, since § = 0 cannot
serve as the derivative of an appropriate potential, we need to look for a different
branch 6 = ®’(x) of solutions to (15). The nontrivial branch is found by linearising
the Hamiltonian system around its steady states on the x-axis.

4.2 Phase-plane analysis

A point (x4, 0), where x, is any of the fixed points of (31), is also a steady state of the
full Hamiltonian system (17). The linearisation matrix is given by

’H 09°H
— [ ax90 962
J 0 92H

T 9xd0

(33)

X=x4,0=0,

in which the second derivative of H with respect to x is immediately seen to be zero
because of (27).
It follows that (x,, 0) is a saddle of (17) with eigenvalues

o)) = =20 (34)
L2 = 5500
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Negative feedback Positive feedback
10 //’ 10 A ’
g 8] e 87
e g e
s °] s °]
© S
.§ al o (B)s .§ 4 o (B)fs
& — (BM(x) £ — (B)fix)
24 ----_Diagonal . 2 . ---- Diagonal
® Fixed pt ® Fixed pts
0+ T T T T T 0 T T T T T
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Species amount (s or x) Species amount (s or x)
0.10
o 041 @
g g 0.05
€ 0.2 € '
[ [
5 §
g 0.07 £ 0.00
1 [
© ©
o — - o
2702 2. —0.05 1
c c
(o] (o]
O _p.4-4 o
T T T T T -0.10
0 2 4 6 8 10 12 0
Concentration x
1.50
1.25 A
X 1.00 1 X
e ©
T 0.75 - ©
5 5
3 0.50 A 5
o o
0.25 -
0.00 -
0 2 4 6 8 10 12 0 2 4 6 8 10 12

Concentration x

Concentration x

Fig. 1 Top: The instantaneous production rate (B) fy (black dots) and the QSS-averaged production rate
(B)f(x) (red curve). Centre: Phase plane of the Hamiltonian system (17). The heteroclinic orbits (shown in
red) form the zero set (15). The nontrivial portion of the zero set (solid red curve) defines the derivative of
the WKB potential § = @’ (x). The trivial portion of the zero set (9 = 0; dashed red line) is the phase line
of the rate equation (31). Bottom: The WKB potential @ (x). Red circles in all panels: The fixed points of
the QSS-averaged production rate, the saddles of the Hamiltonian system, and the extrema of the potential
coincide. Parametric values: The upper bound on § is smax = 20. The feedback threshold is Sghresh = 6.
The burst size is fixed to B = 1 except for the dashed curve, bottom panels, where it is fixed to B = 4.
Negative feedback examples use ag = 10, a; = 2, except for the dashed curve, bottom left panel, which
uses ag = 2.5, a; = 0.5. Positive feedback examples use ap = 2, a; = 10, except for the dashed curve,

bottom right panel, which uses ag = 0.5, a; = 2.5 (color figure online)
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and eigenvectors

a2H\ ' 02H \T
Ker(J —21(J)) > (1,007, Ker(J —22(J)) > (1, -2 <W> 8x89) , (33)

in which the derivatives of the Hamiltonian are evaluated at (x,, 0). One can show that

3’H _

8x89(x*’ 0) = (B) f'(xs) — 1, (36)

9H (B?) A .

W(x*’ 0) = x4 (1 + W) + 211’%()6*, 0)v, (37)
where v is a solution to A (x,, 0)v = — % (x4, 0)p(x,). Equation (36) is an immediate

consequence of (28). Equation (37) is derived in the “Appendix”. The derivative of
the effective production rate (30) satisfies

Smax — 1

F =" (firr = [0 + (FX) = Fima) Psman @) (38)
s=0

Equations (36)—(38) provide a practical numerical recipe for calculating the nontrivial
eigenvector (35) of the Hamiltonian system linearisation.

The trajectories emanating from a saddle (x,, 0) along the direction of the eigen-
vector (1, 0)T form the trivial branch 6 = 0 of the zero set (15) (Fig. 1, central panels,
dashed red line). The trajectories emanating from the saddle along the nontrivial eigen-
vector (35) form the nontrivial branch of the zero set (15) (Fig. 1, central panels, solid
red curve). The nontrivial branch constitutes the sought-after WKB potential derivative
0 = @’ (x). Given that the potential derivative has the opposite sign to the deterministic
flow on the x-axis, we have

(%é(x(t)) =@ (x(1)x(t) <0 (39)

for non-stationary solutions to (31). Therefore, the potential @ (x) is a Lyapunov
function of the rate equation (31), possessing local minima (maxima) where (31) has
stable (unstable) fixed points (Fig. 1, bottom panels).

The potential carries additional information about the noise in the model that the rate
equation does not: specifically, the rate equation depends only on the product of burst
size and burst frequency, remaining the same if the burst size is multiplied by the same
factor as the burst frequency is divided by; the potential, on the other hand, becomes
flatter as the system becomes more bursty (Fig. 1, bottom panels, dashed curves). This
observation is consistent with an intuition that bursty production enhances noise and
the chance to escape potential wells.
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Fig.2 Left: The depths of potential troughs as functions of the Fano factor of binomially-distributed burst
sizes with mean (B) = 1. Right: The WKB prefactor in the non-bursty case (B = 1). Parameter values for
both panels: smax = 20; Sthresh = 6; ag = 2; a1 = 10

In order to investigate the impact of distributed burst sizes, we consider burst dis-
tributions with moment generating functions (MGFs)

(B)

M@©) = (F+ (1 - F)e’)™=F (40)

parametrised by the mean (B) > 0 and the Fano factor F > 0 (the variance-to-mean
ratio). For F = 0, definition (40) simplifies to M(0) = e, which is the MGF
of a fixed burst size B = (B) (assuming that (B) is an integer). For 0 < F < 1,
formula (40) gives the MGF of a binomial distribution. As F — 1, the right-hand
side of (40) tends to !B >(eg_1), which gives the MGF of the Poisson distribution. For
F > 1, expression (40) is the MGF of the negative binomial distribution; specifically,
for F = 14 (B), it reduces to the MGF M (0) = (1 + (B)(1 —e?))~! of the widely
used geometric distribution of burst sizes (McAdams and Arkin 1997). Fixing the burst
size mean (B) and varying the Fano factor F', the troughs of a double-well potential
become shallower (Fig. 2, left).

5 Prefactor

In order to complete the WKB approximation (8) at the leading order, we express the
solution to the linear Eq. (10) in terms of the / !_normalised nullvector (19) as

() = k(@)wy(x),  wy(x) = vs(x, @' (x)), (41)

where k(x) is an s-independent prefactor.

The calculation of the prefactor requires to consult the second-order terms in the
WKB expansion of the master equation. Recall that in Sect. 3 we inserted the WKB
ansatz (8) into the master equation (7), expanded (the individual terms of the equation)
up to the second order, and collected the first-order terms. Collecting the second-order
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terms yields

Ard(x) = f (M’(9>r2’<x> + %@”(x)M”(e)r?(w)
—0 1 " 0 0r
+e [(1 — qu (x)x) Rrg(x) + xRrg (x):| =0.
Inserting the factorisation (41) into the above equation yields
Arl(x) = K (X)ay (x) + k(x) s (x). (42)
where
as(x) = M'(0) fswy (x) — e xR (x),
1
Bs(x) = M'(0) fyw; (x) + §¢//(X)M”(9)fsws(X)

—e? [(1 — %GY/(x)x) Rws (x) +x7€w;(x)i| .

In order that Eq. (42) be solvable in rs1 (x), its right-hand side must be orthogonal to
the left nullvector I, (x) = uy(x, @'(x)) of A = A(x, @' (x)), i.e.

Smax Smax

K (0) ) L@ () + k(@) Y 1 (0B (x) = 0.

s=0 s=0
Integrating the above linear homogeneous first-order equation in k(x) yields
Smax 1 (x by
k) — ex (_/ X2 LA )dx) |
Do s (x)erg (x)
The dependence of the prefactor k(x) on the protein concentration x is exemplified in
Fig. 2, right.
6 Mixture approximations
Combining (8) and (41), we express the WKB approximation to the joint distribution
p(x, s; €) of the inactive protein concentration x and the active protein copy number

s in the form of o0
plx,s;8) ~k(xws(x)e” ¢, e<Kl, (43)

where k(x), ws(x) and @ (x) are independent of ¢ and satisfy k(x) > 0, ws(x) > O,
and )™ wy(x) = 1.

@ Springer



358 P.Bokes et al.

Expressing the marginal distribution of x and the conditional distribution of s as

Smax

_2w) (x,s;¢€)

plse) = pleisie) ~k(e i, plslre) = 2wy (o),
= p(x,-;¢€)

we refer to wg (x) as the WKB conditional distribution of s, and note that the potential
@ (x) and the prefactor k(x) constitute the WKB marginal distribution of x.

Dominant contributions to the protein distribution (43) come from the neighbour-
hoods of the minima of the potential @ (x), where the potential can be approximated
by parabolas. In the monostable regime of the rate equation (31), when the potential
has a global minimum at xo, doing so leads to

P(xg) D" (xp)(x —x0)*
p(x, ;) ~ k(xo)w(xo)exp (— - ; (44)
e 2¢e
whereas in the bistable regime with two minima x_ and x4 we obtain
D (x_ D" (x_ — x_ 2
. 51 £) ~ k(x_)ws(x_)exp <_ (o) P'(x )éx x_) )
€ e
Play) P —xp)’ )
+ k() ws (xp)exp (— e ) :

Combining (41) and (24), we find that at critical points of the WKB potential the WKB
conditional distribution of s satisfies

Wy (X)) = V5 (X%, 0) = ps(x4), 0 =<5 < Smax,  Xx € {x_, X0, X1}, (46)

where p; (x) is the QSS Poisson distribution defined by (25)—(26). Interestingly, condi-
tioning on non-critical points of the potential leads to WKB conditional distributions
of s that differ from the QSS ones. Arguably, this disagreement arises because the
simplifying QSS assumption of a fixed inactive protein concentration is invalidated by
making a large and improbable deviation from a fixed point. Nevertheless, the contri-
bution of non-QSS conditional distributions towards the total distribution of s is seen
to be negligible by the application of the parabolic approximations (44)—(45).

Inserting (46) into (44) and replacing (x, s)-independent factors by an appropriate
normalisation constant yields

(47)

) @ (x0) @ (x0) (x — x0)*
p(x,s5€) ~ psxo) X exp | — )

2me 2¢e

Integrating (47) over x implies that s follows a truncated Poisson distribution with
location parameter xq (Fig. 3, right panels); summing (47) over s implies that x follows
a Gaussian distribution with mean x¢ and variance ¢/®" (xo). Linearly transforming
concentration into copy number by means of X = x/e, we find that the latter also
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Fig. 3 Steady-state distributions for negative feedback and fixed burst size B = 4 obtained by numerical
solution (red) and asymptotic approximation (blue). Panel columns refer to the two protein species; panel
rows refer to distinct values of e. The dashed lines indicate the locations of the stable fixed points (in
units of molecules in the left column, and units of concentration in the right column) of the deterministic
equation (31). The step function (32) parameters are sgyresh = 6, ag = 2.5, a; = 0.5 (color figure online)

follows a Gaussian distribution with mean xo/¢ and variance 1/e®" (x¢) (Fig. 3, left
panels).
Inserting (46) into (45) leads to

p(x,5;8) ~ w_ X ps(x-) X

D7 (x_) V() —xo)? N
2me P 2¢e

[®"(x4) ( D" (x4)(x — X+)2)
w4 X ps(xy) X/ —exp| —
2me 2¢e

with weights given by

(48)

oo = Ck(xx) exp (_CD(Xi)) ’ 49)

NCem e

in which the constant C is determined from the normalisation condition w_ +w4+ = 1.
Integrating (48) over x implies that the marginal distribution of s is a mixture, with
weights w_ and w4, of two truncated Poisson distributions with location parameters
x_ and x4 (Fig. 4, right panels). Summing (48) over s implies that the marginal
distribution of x is a mixture, with the same weights, of two Gaussians with means
x+ and variances &/®" (x+), which transform to x4 /¢ and 1/e¢®”(x+) in units of
molecules X = x/e (Fig. 4, left panels).

The second derivative of @ (x), i.e. the first derivative of § = ®'(x), is equal at
the fixed points to the second component of the nontrivial eigenvector (35) of the
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Fig. 4 Steady-state distributions for the case of positive feedback and fixed burst size B = 4 obtained
by numerical solution (red) and asymptotic approximation (blue). Panel columns refer to the two protein
species; panel rows refer to distinct values of ¢. The dashed lines indicate the locations of the stable fixed
points (in units of molecules in the left column, and units of concentration in the right column) of the
deterministic equation (31). The step function (32) parameters are Sghresh = 6, ag = 0.5, a; = 2.5 (color
figure online)

Hamiltonian system linearisation (cf. Fig. 1, central panels). Away from the fixed
points, the derivative of & = &’(x) can be evaluated by substituting into the right-
hand side of (16).

In the chosen example @ (x_) > @ (x4), i.e. the right well of the double-well
potential is deeper than the left well. Equation (49) then implies that (w—, w4+) —
(0,1) as ¢ — 0. However, the two potential wells are finely balanced, so that the
weights are comparable for a range of ¢ < 1, and the two Poissons/Gaussians that
constitute the steady-state distribution (48) both contribute.

Figures 3 and 4 demonstrate that the WKB-based Gaussian/Poisson singleton
and mixture approximations are in a close agreement with numerical solutions to
the chemical master equation; the latter are calculated as follows. First, the CME
(4) is truncated to a finite number of equations. Following the approach illus-
trated e.g. by Borri et al. (2016), we truncate the master equation to a finite lattice
{0, 1, ..., smax} X {0, 1, ..., Xmax}, and calculate the (unique) normalised steady-state
solution; this amounts to finding a nullvector of a sparse square matrix of large order
(Smax + 1)(Xmax + 1). The upper bound for the active protein is set to smax = 20,
while the upper bound Xn,x for the inactive protein is set to Xmax = 4[x4+ /€], where
x4+ is the uppermost steady state of the rate equation (31). The truncated solution is
expected to be a close approximation to the original one because sample trials pro-
duced by the stochastic simulation algorithm (Gillespie 1976) (almost) never exceed
the upper bound.
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7 Discussion

We formulated and investigated a stochastic model for the production of a protein with
delayed positive feedback. In the model, the protein is produced in bursts of multiple
molecule copies. Newly produced protein molecules are inactive, and become acti-
vated by passing through a single activation step; biologically, the step can represent
chemical modification, compartmental transport, or other scenarios. Active protein
molecules regulate the frequency of bursty production of inactive protein. Such feed-
back can biologically be realised through transcriptional regulation.

The model incorporates an upper bound spax on the number of active protein. If
Smax active protein are already present, a new activation is allowed to occur, but is
immediately followed by the removal of the activated molecule; consequently, the
number of active protein molecules never exceeds smax. Thanks to the introduction of
the upper bound, a number of crucial steps in the mathematical analysis involve finite,
rather than infinite, calculation (e.g. the averaging (30) or the matrix (12)). Without
an explicit upper bound in the model, each of these calculations would require a
numerical truncation; the explicit inclusion of the upper bound in the model guarantees
aconsistent use of truncation throughout the entire analysis. In the presented numerical
examples, we choose smax large enough in order that the results be close to those
expected without an upper bound.

We focused on examining the model behaviour in the ¢ < 1 regime of slow acti-
vation. The regime is characterised by an O(1)-slow activation rate and O (1/¢)-fast
production and decay rates. Consequently, the inactive protein is present at O (1/¢)-
large copy numbers and fluctuates slowly on O(1)-long timescales, whereas the
active protein is present at O (1)-low copy numbers and fluctuates fast on O (¢)-short
timescales. Neglecting the slow fluctuations in the inactive protein, we found that the
active protein obeys a one-dimensional birth—death process which equilibrates to a
(truncated) Poisson quasi-steady-state (QSS) distribution. On the slow timescale, the
inactive protein is produced with a self-dependent rate that is obtained by averaging
the instantaneous production rate with respect to the QSS distribution of the active
protein. Depending on whether this effective feedback response function has a single
or multiple fixed points, the limiting deterministic dynamics of the inactive protein is
monostable or bistable.

Bistability occurs if the effective feedback response function is sufficiently sigmoid.
As a result of averaging by the noisy active protein, the effective response function
smooths out, or “mollifies”, any sharp features of the instantaneous response func-
tion. The requirement that the mollified function be sigmoid implies that the original
function must be yet steeper. For simplicity, we used an (infinitely steep) step func-
tion in the examples of this paper. Biologically, highly sigmoid feedback responses
can be maintained through cooperative binding of the protein to the regulatory DNA
sequences.

If the model operates in the slow-activation regime, and the limiting deterministic
rate equation is monostable, then the steady-state distribution of the inactive (active)
protein is nearly Gaussian (Poisson); the location of the Gaussian/Poisson mode is
dictated by the unique fixed point of the rate equation. If the rate equation is bistable,
the distribution of the inactive protein is approximated by a mixture of two small-noise
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Gaussians, and that of the active protein by a mixture of two (moderate-noise) Poissons;
the locations of the Gaussian/Poissonian modes are dictated by the fixed points of the
rate equation. In order to obtain asymptotic approximations of the weights of the two
modes, one needs to consult (and calculate) a WKB solution to the master equation;
doing so was the concern of the bulk of the mathematical analysis presented in this
paper. The approximate solution closely agrees with a numerical solution to the master
equation.

The principal step in the calculation of the asymptotic WKB solution is the determi-
nation of the WKB potential. The derivative of the potential is formed by the nontrivial
heteroclinic connections between the steady states of a Hamiltonian system (Fig. 1,
central panels, solid red curve). The trivial heteroclinic connections that lie on the
x-axis satisfy the limiting deterministic rate equation (Fig. 1, central panels, dashed
red line). The potential derivative and the deterministic rate have opposite signs: the
potential has local minima/maxima where the rate equations has stable/unstable fixed
points; in other words, the WKB potential is the deterministic rate equation’s Lyapunov
function.

Our asymptotic analysis stands on the shoulders of previous analyses (see Introduc-
tion for a limited review), and one in particular: Newby and Chapman (2014) study a
stochastic gene expression model which is based on different biological assumptions
than ours; the commonality is that it features two components with a similar pattern
of time and abundance scales. The model of Newby and Chapman (2014) consists of
an “internal” finite-state Markov chain (representing promoter states) coupled with
an “external” birth and death process (representing protein). The coupling of the two
components is in the dependence of transition rates for either component on the cur-
rent state of both. The deterministic limit in protein dynamics is obtained by reducing
both the internal and the external noise. The internal noise is reduced by speeding up
the promoter transitions; the external noise is reduced by increasing the protein abun-
dance. If both noise sources are reduced proportionally to each other (and to a small
parameter ¢), the same configuration of time and abundance scales is achieved as in
our model in the slow-activation regime: the promoter state fluctuates at O (1) num-
bers on an O (¢) timescale and the protein at O (1/¢) numbers on an O(1) timescale.
Like we did here for our model, Newby and Chapman (2014) used the WKB method
to describe the large-time behaviour of their model in the ¢ < 1 regime. There are
some similarities, as well as differences, between the two models as well as in the
methodologies of this paper and those of Newby and Chapman (2014). Our model
features bursting and a stoichiometric connection between the two species that the
model of Newby and Chapman (2014) does not. The WKB potential is determined,
in both studies, from the condition that a matrix, here (12), be singular. Our matrix is
large and sparse, whereas that of Newby and Chapman (2014) is dense and typically
small (few gene states). Methodologically, we define the Hamiltonian as the principal
eigenvalue (one with the largest real part), where Newby and Chapman (2014) use the
determinant, of the matrix. The method of determining the prefactor (Sect. 5) from the
higher-order terms of the master equation is the same as used by Newby and Chapman
(2014).

In future work, it will be interesting to look beyond the steady state and quan-
tify the transition rates between the modes x_ and x; of the mixture distributions
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identified in the present paper. It is expected that these rates are proportional to
exp(—(@(xg) — @(x+))/¢), i.e. exponentially small as ¢ — 0. The proportional-
ity constant will be determined by matching the WKB solution to a solution of a
Fokker—Planck equation in the neighbourhood of the unstable fixed point xo (Hinch
and Chapman 2005; Bressloff 2014). We also expect that the current framework can be
extended to more general distributed delays. Any non-negative distribution can be arbi-
trarily closely approximated by a phase-type distribution (Lagershausen 2012). Large
deviations driven by a phase-type delay composed of m slow memoryless steps will be
characterised by a Hamiltonian system with m degrees of freedom. On the other hand,
a fixed delay does not buffer bursts and is conjectured to generate super-Poissonian
distributions at the active protein stage. We expect that the current framework can
also be extended to account for multiple protein species. Specifically, in case of a
co-repressive toggle switch, we imagine that the relative stabilities of its fixed points
can be modulated by the relative lengths of the two delays.

In summary, we performed a detailed analysis of the steady-state distribution for an
autoregulating protein with a large one-step production delay. While both monostable
and bistable feedbacks can exhibit bimodality at the single-cell level without time delay
(Singh 2012; Bokes and Singh 2019), the current results imply that with the inclusion
of large delays they will generate qualitatively different distributions. Our analysis thus
provides a novel method to probe the structure of positive genetic feedback circuits.
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Appendix: Linearisation of Hamiltonian system

Here we derive expression (37) for the second 6-derivative of the Hamiltonian (18).
By doing so, we complete the linearisation analysis of the Hamiltonian system (14).
Differentiating Av = Hv with respect to 6 twice yields

3%A +28A 8v+A82v 3H +28H 8v+H82v

— —_— — = —.

962 20 00 962 8«92 00 90 962
At a saddle with coordinates x = x, € {x_, x9, x4} and 6 = 0, we have H (x4, 0) =
%(x*, 0) = 0 and v(x4, 0) = p(x,), so that

92H 92A A
507 (x5, 0)p(xs) = ez(x*,O)p(x*)+2 (x*,O) (x*,O)

@ Springer


http://creativecommons.org/licenses/by/4.0/

364 P.Bokes et al.

82
+A(x*’ 0) 2(x*70)

We multiply the above equationby uT (x,, 0) = 1T from the left; noting that 1T p(x) =
1 and 1T A(x4, 0) = 0T, we obtain

82 2

0°A JA
W(X*’ 0) = 1T 892 (x*9 O)p(x*) + 21T (x*’ 0) (x*v O) (50)

The second derivative of A(x, 6) is the matrix representation of the second derivative

3%A 0 Y
W(x, vy = e xRy + M"(0) fsvg

of the operator A(x, 0) (11). Therefore, the first term on the right-hand side of (50)
satisfies

2 Smax o2
v T e 00 = ;O =57 (% 05 ()
= x ) Ros(e) + M"(0) Y frps ()
s=0 s=0
=X+ (BY) f(xe) = x <1+@> (51)
* * * (B) )

in which we utilised the fact that x, is a fixed point of (B) f(x).

The second term on the right-hand side of (50) involves the derivative of the prin-
cipal eigenvector with respect to 6. Differentiating Av = Hv with respect to 6 and
inserting x = x, and 6 = 0 yields

A(xy, 0) (x*, 0) = 29 (x*, 0)p(xs). (52)
Solving the inhomogeneous linear algebraic system (52) yields
ov -
@(x*, 0) = v+ cp(xs),
where cp(x,) is a representant of the (right) kernel of A (x,, 0) and
- L0A
v = —[A(xy, 0)] a—e(x*, 0)p(xx)

is a least-squares solution to (52), with A™ denoting the pseudo-inverse of A.
The second term in (50) therefore satisfies

8—( *,0) ( x 0) = 1T—(x*,0)v +61T—(x*,0)/)(x*)
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= —(x*,O)v+c (x*,o)
a
. I 2
=1 o (x4, 0). (53)

Inserting (51) and (53) into (50) recovers (37).
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