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Abstract: Zirconium hydroxide, Zr(OH)4 is known to be highly effective for the degradation of
chemical nerve agents. Due to the strong interaction force between Zr(OH)4 and the adsorbed water,
however, Zr(OH)4 rapidly loses its activity for nerve agents under high-humidity environments,
limiting real-world applications. Here, we report a nanocomposite material of Zr(OH)4 and graphene
oxide (GO) which showed enhanced stability in humid environments. Zr(OH)4/GO nanocomposite
was prepared via a dropwise method, resulting in a well-dispersed and embedded GO in Zr(OH)4

nanocomposite. The nitrogen (N2) isotherm analysis showed that the pore structure of Zr(OH)4/GO
nanocomposite is heterogeneous, and its meso-porosity increased from 0.050 to 0.251 cm3/g, compared
with pristine Zr(OH)4 prepared. Notably, the composite material showed a better performance for
nerve agent soman (GD) degradation hydrolysis under high-humidity air conditions (80% relative
humidity) and even in aqueous solution. The soman (GD) degradation by the nanocomposite follows
the catalytic reaction with a first-order half-life of 60 min. Water adsorption isotherm analysis
and diffuse reflectance infrared Fourier transform (DRIFT) spectra provide direct evidence that the
interaction between Zr(OH)4 and the adsorbed water is reduced in Zr(OH)4/GO nanocomposite,
indicating that the active sites of Zr(OH)4 for the soman (GD) degradation, such as surface hydroxyl
groups are almost available even in high-humidity environments.

Keywords: Zr(OH)4/GO nanocomposite; graphene oxide; degradation; nerve agent; soman (GD);
humidity

1. Introduction

Chemical warfare nerve agents including soman (GD) (O-pinacolyl methylphosphonofluoridate)
are known to be the most lethal among chemical warfare agents (CWAs), have been often used in combat
zones as tactical weapons and for terrorism during recent decades [1]. In particular, nerve agents have
not only fatal effects in acute phase of poisoning but also considerable long-term complications due to
irreversible inhibition of acetylcholine esterase [2]. Although all CWAs are banned by the Chemical
Weapons Convention (CWC), several countries are still stockpiling chemical agents [3]. Therefore,
effective degradation methods must be prepared in order to protect any important equipment, facilities,
and environments from the toxic chemical agents [4,5].

Novel materials making nerve agents decompose into less or nontoxic molecules have been
going through noticeable evolutions in recent years [6–9]. Metal-organic frameworks (MOFs) [10],
metal oxides (hydroxides) [11,12], and composite materials [12] have attracted significant attention
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as potential materials [13–16]. Zirconium hydroxide (Zr(OH)4), which has various surface hydroxyl
species and defect sites, is considered as one of the most prominent materials because of its superior
sorptive property and wide range of reactivity toward nerve agents [17–22]. However, many existing
researches on Zr(OH)4 studied its effects on simulants, rather than real CWAs [17,20–24]. Furthermore,
it is not clearly known how real atmospheric conditions affect its CWAs degradation performance in
real-operational field. Many metal oxides and hydroxides are very sensitive to H2O and CO2 and
form byproducts that may block their reactive sites. It is already known that water molecules form
additional interfaces on the surface and significantly affect the surface reaction chemistry of metal
oxides and hydroxides [25].

Graphene oxide (GO), as a derivative of graphene, has a unique 2D lamellar structure and many
attractive properties [26]. There are abundant oxygenated functional groups including hydroxyl,
epoxy, carboxyl, and carbonyl groups on GO surface, which can bind with the metallic centers of the
metal oxides, metal hydroxides, or MOFs. These functional groups can be served as activation sites
for the crystal growth onto the surface of GO [27,28]. Moreover, it was previously reported that the
GO can improve the catalytic activity by inducing a synergistic effect between components in the
composites [29,30].

It is known that the GO addition can increase the surface area in the composites with Zr(OH)4

due to new pores at the interface of both components in Zr(OH)4/GO nanocomposite [20]. Here, we
supposed that GO would improve availability of the active sites for reactants to access. In order
to benefit from the advantages of both Zr(OH)4 and GO, we attempted to synthesize Zr(OH)4/GO
nanocomposite and pristine Zr(OH)4 and identify their degradation abilities toward soman (GD) after
exposure to high-humidity air conditions. Zr(OH)4/GO nanocomposite and pristine Zr(OH)4 were
prepared by a dropwise method which is useful to control the rate of precipitation. The degradation
of soman (GD) was investigated with the materials after exposure at 80% relative humidity (RH) for
various times. The time course of the reactions was studied by phosphorus-31 solid state-magic angle
spinning nuclear magnetic resonance (31P SS-MAS NMR). Water isotherms and DRIFT analysis were
additionally performed to identify the reason for the better ability of Zr(OH)4/GO nanocomposite to
degrade the soman (GD) agent in high-humidity environments.

2. Materials and Methods

2.1. Materials

Graphene oxide (GO), zirconium chloride (ZrCl4 ≥ 99.5%, powder), and sodium hydroxide
(NaOH—reagent grade ≥ 98.0 pellets anhydrous) were purchased from Sigma-Aldrich (Seoul, Korea)
and used without any pre-treatment. The soman (GD) agent was synthesized at the Organisation for
the Prohibition of Chemical Weapons (OPCW) designated laboratories. The purity of the agent was
determined by gas chromatography-mass spectrometry (GC-MS) and hydrogen-1 nuclear magnetic
resonance (1H NMR) and exceeded 99%.

2.2. Preparation of Zr(OH)4/GO Nanocomposite and Zr(OH)4

NaOH (0.05 M) and ZrCl4 (0.05 M) were added into separate containers filled with deionized (DI)
water and sonicated for 30 min. GO powder (5 wt % of the final mass of the composite) was dispersed
in 1 L of NaOH solution through ultra-sonication for 30 min. A stoichiometric amount of ZrCl4 (0.25 L,
0.05 M) solution was dropwise added into the solution at a constant rate (0.75 mL/min) as illustrated
in Scheme 1. The suspension was stirred vigorously for 5 h to obtain the precipitate of Zr(OH)4/GO
nanocomposite. The obtained precipitate was washed several times with deionized water by using a
centrifuge at 6000 rpm for 15 min until its pH became nearly neutral (pH 7–8). Finally, it was dried at
60 °C in vacuum oven for 48 h. Pristine Zr(OH)4 was synthesized in a manner similar to Zr(OH)4/GO
nanocomposite without the addition of GO.
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Scheme 1. Degradation of nerve agent soman (GD) by Zr(OH)4/GO nanocomposite in a high-
humidity environment. 

2.3. Characterization 

The structures and properties of Zr(OH)4 and Zr(OH)4/GO nanocomposite materials were 
characterized by various methods: scanning electron microscopy (SEM) with energy dispersive 
spectroscopy (EDS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), nitrogen 
adsorption-desorption isotherms, water vapor adsorption isotherms, and diffuse reflectance infrared 
Fourier transform spectroscopy (DRIFT). 

SEM and EDS were used to analyze the surface morphology and composition of the samples, 
respectively. The instrument used was a Quanta 650 SEM (FEI, Hillsboro, OR, USA) equipped with 
EDS detector (X1 Analyzer, EDAX, Berwyn, IL, USA). The materials were coated with gold using a 
Sputter Coater 108 (Cressington, Oxhey, UK) prior to the SEM observations. The measurements were 
performed with acceleration voltages ranging from 5 to 15 kV. EDS spectra directly revealed the 
presence of the atomic elements (Carbon, Oxygen, and Zirconium) in the sample. XRD patterns were 
obtained using a powder X-ray diffractometer (AXS GmbH, Bruker, Madison, WI, USA), which used 
CuƘɑ radiation (operated at 40 kV and 40 mA). The diffraction patterns were collected with a 2θ scan 
from 10° to 70°. TGA measurements were performed to study thermal stability using a 
thermogravimetric analyzer (TGA Q500, TA Instruments, New Castle, PA, USA). The heating rate 
was 5 ℃/min and the total N2 flow rate was 100 mL/min. The samples were heated up to 800 ℃, 
starting from 30 ℃. The nitrogen adsorption-desorption isotherms were obtained through an ASAP 
2020 system (Micromeritics Instrument Corp., Norcross, GA, USA) at 77 K. The samples were 
degassed at 393 K under 133 mbar before the measurements. The isotherms were used to calculate 
the surface area, SBET (BET method); the mesopore volume, Vmeso (calculated by Barrett–Joyner–
Halenda (BJH) method); and the total pore volume, Vt (calculated from the last point of the isotherm). 
To measure DRIFT, a Fourier-transform infrared (FTIR) spectrometer (Thermo Scientific, Nicolet i50, 
Swedesboro, NJ, USA) was used with the DiffusIR accessory (PIKE Technologies, Fitchburg, MA, 
USA). Before the measurement, the sample was purged with N2 gas to reduce background noise. The 
spectra were collected 128 times, and the resolution was 0.482 cm−1.  

2.4. Degradation of Nerve Agent Soman (GD) 

Scheme 1. Degradation of nerve agent soman (GD) by Zr(OH)4/GO nanocomposite in a
high-humidity environment.

2.3. Characterization

The structures and properties of Zr(OH)4 and Zr(OH)4/GO nanocomposite materials
were characterized by various methods: scanning electron microscopy (SEM) with energy
dispersive spectroscopy (EDS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), nitrogen
adsorption-desorption isotherms, water vapor adsorption isotherms, and diffuse reflectance infrared
Fourier transform spectroscopy (DRIFT).

SEM and EDS were used to analyze the surface morphology and composition of the samples,
respectively. The instrument used was a Quanta 650 SEM (FEI, Hillsboro, OR, USA) equipped with
EDS detector (X1 Analyzer, EDAX, Berwyn, IL, USA). The materials were coated with gold using
a Sputter Coater 108 (Cressington, Oxhey, UK) prior to the SEM observations. The measurements
were performed with acceleration voltages ranging from 5 to 15 kV. EDS spectra directly revealed
the presence of the atomic elements (Carbon, Oxygen, and Zirconium) in the sample. XRD patterns
were obtained using a powder X-ray diffractometer (AXS GmbH, Bruker, Madison, WI, USA), which
used
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radiation (operated at 40 kV and 40 mA). The diffraction patterns were collected with
a 2θ scan from 10◦ to 70◦. TGA measurements were performed to study thermal stability using a
thermogravimetric analyzer (TGA Q500, TA Instruments, New Castle, PA, USA). The heating rate
was 5 °C/min and the total N2 flow rate was 100 mL/min. The samples were heated up to 800 °C,
starting from 30 °C. The nitrogen adsorption-desorption isotherms were obtained through an ASAP
2020 system (Micromeritics Instrument Corp., Norcross, GA, USA) at 77 K. The samples were degassed
at 393 K under 133 mbar before the measurements. The isotherms were used to calculate the surface
area, SBET (BET method); the mesopore volume, Vmeso (calculated by Barrett–Joyner–Halenda (BJH)
method); and the total pore volume, Vt (calculated from the last point of the isotherm). To measure
DRIFT, a Fourier-transform infrared (FTIR) spectrometer (Thermo Scientific, Nicolet i50, Swedesboro,
NJ, USA) was used with the DiffusIR accessory (PIKE Technologies, Fitchburg, MA, USA). Before the
measurement, the sample was purged with N2 gas to reduce background noise. The spectra were
collected 128 times, and the resolution was 0.482 cm−1.



Materials 2020, 13, 2954 4 of 13

2.4. Degradation of Nerve Agent Soman (GD)

Disclaimer: Small doses of the nerve agent soman (GD) are known to be lethal if in contact with
the skin or inhaled through the nose or mouth. Experiments should be performed only by trained
personnel in adequate facilities.

Zr(OH)4/GO nanocomposite and Zr(OH)4 (10 mg, each) in a 2 mL vial were investigated with
exposure to 80% relative humidity (80% RH) condition at 25 °C for various hours (72, 168, and
324 h). Subsequently, 0.4 µL of soman (GD) was added with 20 µL of pentane in each vial containing
materials [14]. The vials were agitated vigorously on a vortex mixer for 10 min. The residual GD was
extracted with 1.5 mL of ethyl acetate (DAEJUNG, Daejeon, South Korea, Guaranteed Reagent ≥ 99.5%)
for 2 h, and the solution was analyzed through GC-MS (MSD 5977A, Agilent Technology, Madison, WI,
USA). The column mounted on the GC-MS system was 30 m in length and 250 µm in internal diameter,
with a liquid-film thickness of 0.25 µm. The analysis was operated by increasing the temperature from
45 to 230 °C at a rate of 10 °C/min. The carrier gas was helium. The injection volume and total flow
were 1 µL and 3 mL/min, respectively. There was no split during the measurement.

2.5. Reaction Products Analysis

The degradation product, O-pinacolyl-methylphosphonic acid (PMPA) was confirmed by GC-MS
(MSD 5977A, Agilent Technology). A portion of the supernatant solution in the glass vial were
sampled 10 min after the reaction start, and the sample was sufficiently evaporated at 60 °C by N2

blowing for 30 min. Prior to analysis, PMPA was derivatized with bis(trimethylsilyl)trifluoroacetamide
(Sigma-aldrich, Seoul, Korea, for GC derivatization ≥ 99.0%) at 70 °C for 2 h [31,32]. GC-MS analysis
showed the trimethylsilyl (TMS) derivative, PMPA-TMS.

2.6. 31P SS-MAS NMR Analysis

31P SS-MAS NMR spectra were obtained using an Oxford NMR instrument (AS600, Agilent
Technologies, Santa Clara, CA, USA) equipped with a 4 mm probe using direct polarization, spinning
rate of approximately 3000 Hz and a 90◦ pulse width of 4 µs. Zr(OH)4/GO nanocomposite and was
packed in the zirconium oxide rotor (46 µL pore volume, Revolution NMR, LLC, Fort Collins, CO,
USA) and spiked with 5 µL of soman (GD). The rotor was sealed with Kellogg and Fluoropolymer
(Kel-F) caps (Revolution NMR, Fort Collins, CO, USA). The delay time between the pulses was 5 s.
The 31P SS-MAS NMR spectra were referenced to external phosphoric acid at 0 ppm.

3. Results and Discussion

3.1. Characterization of Zr(OH)4/GO Nanocomposite and Pristine

Morphological features and chemical composition of as-synthesized Zr(OH)4/GO nanocomposite
and pristine Zr(OH)4 by dropwise method were characterized by using SEM images and EDS
spectra. SEM images of Zr(OH)4/GO nanocomposite were taken in the backscatter mode in order to
distinguish easily inorganic (Zr(OH)4, bright) and organic materials (GO, dark) through the brightness.
As presented in Figure 1, many GO flakes were well-dispersed and embedded in Zr(OH)4/GO
nanocomposite, while small Zr(OH)4 particles agglomerated into large particles in pristine Zr(OH)4.
This uniformity might be attributed to vigorous stirring during the precipitation and the excellent
dispensability of GO in aqueous solution. The EDS spectra of Zr(OH)4/GO nanocomposite indicates
not only that the product consists of C, O, and Zr (Figure S1) but also that GO flakes were successfully
introduced on the surface of Zr(OH)4, not just physically mixed. The XRD patterns of Zr(OH)4/GO
nanocomposite are similar to those of pristine Zr(OH)4, which suggests that there was no change in
Zr(OH)4 structure by forming nanocomposite with GO (Figure S2). Furthermore, both of materials
have broad peaks because of their lack of crystallinity.
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Figure 1. SEM images of Zr(OH)4 (a) in low and (b) in high magnification and Zr(OH)4/GO
nanocomposite (c) in low and (d) in high magnification. Images of Zr(OH)4/GO nanocomposite
were taken in the backscatter mode to distinguish GO from Zr(OH)4.

The nitrogen adsorption-desorption isotherms at 77 K and pore size distribution for Zr(OH)4/GO
nanocomposite and pristine Zr(OH)4 are presented in Figure 2. The Brunauer–Emmett–Teller (BET)
surface areas (SBET), total pore volumes (Vt), and mesopore volumes (Vmeso) for Zr(OH)4/GO
nanocomposite and Zr(OH)4 are summarized in Table 1. The nitrogen adsorption–desorption
isotherms (Figure 2a) of Zr(OH)4/GO nanocomposite showed the higher amount of nitrogen adsorbed
and discordance between the nitrogen adsorption and desorption, while pristine Zr(OH)4 exhibited
typical type I isotherms, as reported in the literature [33]. Indeed, Zr(OH)4/GO nanocomposite exhibits
a type E hysteresis loop, which is typical characteristic of “ink-bottle” pores [34], corresponding to type
IV. The hysteresis loop of Zr(OH)4/GO nanocomposite at the relative pressure (p/p0) ranging from 0.45 to
0.75 indicates the possible presence of mesoporous structure [35]. The pore size distribution (Figure 2b)
demonstrated that most of pores in Zr(OH)4/GO nanocomposite were mesopores (2–50 nm in size).
The BET surface area increased from 216 to 274 m2/g, respectively, in Zr(OH)4/GO nanocomposite. It is
noted that Zr(OH)4/GO nanocomposite has a relatively larger surface area, higher pore volume, and
looser structure than that of Zr(OH)4. The average pore size also increased from 2–3.2 nm to 3.7 nm
after addition of GO particles. These results demonstrate that uniformly embedded GO between
Zr(OH)4 enhance the structural heterogeneity and porosity of the composite [20], which may improve
the adsorption capability of Zr(OH)4 [36–38].
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Figure 2. (a) N2 gas adsorption-desorption isotherms at 77 K and (b) pore size distribution for
Zr(OH)4/GO nanocomposite and pristine Zr(OH)4. All samples were degassed at 393 K under 133 mbar
before measurement to eliminate impurities in pores. Pore size distribution was analyzed by using the
Barrett–Joyner–Halenda (BJH) method based on Kelvin equation.

Table 1. Characteristics of the porous structure of and Zr(OH)4/GO nanocomposite and pristine Zr(OH)4.

Sample SBET
(m2/g)

VT
(cm3/g)

Vmeso
(cm3/g) Vmeso/VT

Zr(OH)4 216 0.139 0.050 0.640

Zr(OH)4/GO Nanocomposite 274 0.262 0.251 0.958

The thermal and structural characteristics of Zr(OH)4/GO nanocomposite and pristine Zr(OH)4

were determined by thermal characterization techniques with elevating temperature. The TGA curves
of the materials are presented in Figure 3. Samples were pre-conditioned in the desiccator at ambient
temperature for 24 h before TGA analysis. Both of materials showed gradual weight losses in the
broad temperature range of 30–500 °C. The final weight loss at 800 °C of Zr(OH)4/GO nanocomposite
and pristine Zr(OH)4 were 14 and 26%, respectively, which were mainly attributed to removal of the
physisorbed water and dehydroxylation [20,39]. It should be noted that the weight loss was obviously
larger in pristine Zr(OH)4, indicating that more water was adsorbed. These results could be attributed
to variation of porosity of Zr(OH)4 due to the formation of nanocomposite of GO.
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Figure 3. Profiles of thermogravimetric analysis (TGA) of Zr(OH)4/GO nanocomposite and pristine
Zr(OH)4. The loss percentages of Zr(OH)4/GO nanocomposite and Zr(OH)4 are 17% and 24%,
respectively. All samples were heated at 30 to 800 °C with a heating rate of 5 °C/min under N2 gas.

3.2. Hydrolytic Degradation of Soman (GD) by Zr(OH)4/GO Nanocomposite and Pristine in High Humidity

To investigate the effect of atmosphere moisture on the degradation of soman (GD) by Zr(OH)4/GO
nanocomposite and pristine Zr(OH)4, the degradation experiments were carried out in the neat state
at room temperature. The samples were pretreated for various times (72, 168, and 324 h) at 80% RH
in a 25 °C convection oven. Figure 4 shows the degradation rate of soman (GD) on Zr(OH)4/GO
nanocomposite and pristine Zr(OH)4 during 10 min reaction time. It is worthy to note that Zr(OH)4/GO
nanocomposite exhibited better performance for degrading soman (GD) even after 324 h exposure to
high-humidity conditions. That is, Zr(OH)4/GO nanocomposite maintains a good degradation ability
in neat condition whereas Zr(OH)4 lost activity for soman (GD) when exposed to 80% RH condition
for prolonged time (Figure S3).
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To more clearly confirm the effect of water on the performance of Zr(OH)4/GO nanocomposite
reactive particles in the degradation reaction of soman (GD), the degradation experiments were
performed in aqueous solution. The results, presented in Figure S4, show that the degradation
rate of soman (GD) by Zr(OH)4/GO nanocomposite in the aqueous solution seems to follow the
catalytic reaction, similar to those obtained in previous study [14]. It is noted that the pH of the water
containing Zr(OH)4/GO nanocomposite is 8.57, which is the same as of pristine Zr(OH)4 solution.
After reaction with soman (GD), however, the pH of Zr(OH)4/GO nanocomposite solution decreased to
5.45, confirming the formation of acidic products, PMPA along with hydrogen fluoride (HF). Although
some OH− present by reaction of Zr(OH)4/GO nanocomposite with the water may be the hydrolyzing
agent for soman (GD), the results, presented in Figure 4 (along with Figure 5 discussed later) show
that the hydrolysis is more directly due to Zr(OH)4/GO nanocomposite rather than the pH itself of the
aqueous solution.
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Figure 5. (a) 31P SS-MAS NMR spectra for the reaction mixture of Zr(OH)4/GO nanocomposite and
soman (GD), showing the presence of soman (GD) (27.3, 31.6 ppm) and PMPA (24.4 ppm), (b) reaction
profile of catalytic degradation of soman (GD) upon exposure to Zr(OH)4/GO nanocomposite in neat at
25 °C soman (GD): 5 µL (0.028 mmol), sample weight: 93.8 mg, and (c) the plot of the soman (GD) agent
loss in Zr(OH)4/GO nanocomposite, showing linearity of the curve with following pseudo-first-order
and an estimated half-life of 60 min.

Additionally, 31P SS-MAS NMR was used to determine the resulting reaction rates of soman (GD)
on Zr(OH)4/GO nanocomposite. As shown in Figure 5, over time, the sharp, twin peaks for soman
(GD) at 27.3 and 31.6 ppm are replaced by a broad, single peak for PMPA near 24.4 ppm with its
attendant spinning sidebands. The reaction profile shown in Figure 5b clearly shows the hydrolysis
of soman (GD) by Zr(OH)4/GO nanocomposite follows the catalytic reaction as shown in aqueous
solution. That is, after a fast, initial reaction, and a steady state is achieved, exhibiting a first-order
half-life of 60 min. By comparison, the half-lives observed for the soman (GD) reaction have been
reported as 8.7 min by Zr(OH)4, 28 min by MgO, and 270 min by CaO, each [18,40]. Catalytic turnover
frequency (TOF) of Zr(OH)4/GO nanocomposite in the solid state environment was estimated as
0.0005 min−1 by dividing the initial rate (in mmole·min−1) by the catalyst loading (in mmoles) [41].
Overall, the reaction of soman (GD) with Zr(OH)4/GO nanocomposite is consistent with that previously
reported for Zr(OH)4 and other solid hydrolysis catalysts [18,19]. From the above results in neat and
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aqueous solutions, it can be seen that Zr(OH)4/GO nanocomposite, unlike Zr(OH)4 itself, is suitable for
decomposing nerve agents regardless of the air humidity conditions and even in the aqueous solution.

The degradation of soman (GD) is reportedly known to generate a nontoxic product, PMPA
which has been shown to reside as surface-bound complexes [18,42,43]. The soman (GD) agent mainly
degraded to PMPA upon reaction with Zr(OH)4/GO nanocomposite as well (Scheme 1, Figure 5
and S5). No further hydrolysis of PMPA to methylphosphonic acid (MPA) was observed during the
24 h observation period. Although soman (GD) can be hydrolyzed by surface hydroxyl groups and/or
physisorbed water on the nanocomposite, we believe, the active hydroxyl sites are probably more
available in Zr(OH)4/GO nanocomposite for the soman (GD) degradation.

3.3. Discussion of Water Adsorption Isotherms and DRIFT Spectra of Zr(OH)4/GO Nanocomposite and
Pristine Zr(OH)4

To investigate the reason for the differences in the soman (GD) agent hydrolysis of the materials
in wet atmosphere conditions, water adsorption isotherms and DRIFT spectra were obtained for both
Zr(OH)4/GO nanocomposite and pristine Zr(OH)4. First of all, water adsorption isotherms were
obtained to examine the interaction between the materials and water. As shown in Figure 6, Zr(OH)4/GO
nanocomposite exhibits type IV water isotherm, whereas Zr(OH)4 shows type I water isotherm,
as defined by International Union of Pure and Applied Chemistry (IUPAC) classification [16,44].
The type I water adsorption isotherm is characteristic of a hydrophilic material [14,45]. On the other
hand, the type IV isotherm showing a sigmoidal course of an adsorption isotherm is usually observed
the adsorption of water on hydrophobic porous materials such as aluminum phosphate, zeolite,
metal–organic frameworks, and activated carbon [46]. Therefore, it could be speculated that the active
sites of Zr(OH)4/GO nanocomposite are more available than those of Zr(OH)4, and, as a result, the
soman (GD) interacts with more active sites, such that the soman (GD) hydrolysis ability of Zr(OH)4

could be enhanced even under atmosphere water present at 80% RH.
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Figure 6. Water adsorption isotherms of Zr(OH)4/GO nanocomposite and pristine Zr(OH)4 at 25 °C.

DRIFT spectra were obtained to more directly confirm the interaction between the materials
and the adsorbed water. Both Zr(OH)4/GO nanocomposite and pristine, Zr(OH)4 were pretreated
at 25 °C and 80% RH in a convection oven overnight before the DRIFT measurements. The DRIFT
spectra presented in Figure 7 show how the water adsorbed on the surface of the materials changes
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with increasing temperature (from 50 to 200 °C). For both materials, the broad peaks from 2800
to 3600 cm−1, corresponding to the hydrogen-bonded water (adsorbed) stretching, decrease with
increasing temperature by being desorbed. However, it is worth noting that the decrease of this band
was considerably greater for pristine Zr(OH)4 than for the Zr(OH)4/GO nanocomposite, indicating that
the interaction between the material and the adsorbed water is weaker in Zr(OH)4/GO nanocomposite
than that of Zr(OH)4. These results confirm that the more active sites such as the surface hydroxyl
group are available for the degradation of soman (GD) in the case of Zr(OH)4/GO nanocomposite
exposed to a humidity environment of 80% RH.
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It is worthy to note that GO in the composite with Zr(OH)4 can make the pores less hydrophilic,
and thus prevent water from blocking the free hydroxyl groups of the surface. We believe that in
the case of Zr(OH)4/GO nanocomposite, the increase in mesoporous spaces and in hydrophobicity
generated certain synergy, resulting in the better hydrolytic performance of soman (GD) after the
long-term exposure to the high-humidity environment, such as 80% RH.

4. Conclusions

Zr(OH)4/GO nanocomposite and pristine Zr(OH)4 were prepared by a simple dropwise method.
In particular, Zr(OH)4/GO nanocomposite demonstrated enhanced performance for the degradation of
the soman (GD) agent after a long exposure under high-humidity air conditions. The characterization
studies showed that GO are well-embedded in Zr(OH)4/GO nanocomposite, displaying a more porous
structure and larger specific surface areas than pristine Zr(OH)4. Reaction profiles of Zr(OH)4/GO
nanocomposite with soman (GD) show that after a fast initial reaction, a steady state is achieved
exhibiting a first-order half-life of 60 min and TOF of 0.0005 min−1. The water adsorption and
DRIFT data of Zr(OH)4/GO nanocomposite showed that the interaction between the materials and the
adsorbed water was weaker in Zr(OH)4/GO nanocomposite, indicating that soman (GD) will have more
access to the active sites in the high-humidity condition. With further optimization, the Zr(OH)4/GO
nanocomposite has the potential to be used in the real world for decontamination application due to
superior properties.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/13/13/2954/s1,
Figure S1: (a) SEM images and EDS spectral results of the elements C, O, Zr of Zr(OH)4/GO nanocomposite (b)
Spot 1, (c) Spot 2, Figure S2: XRD patterns for pristine Zr(OH)4 and Zr(OH)4/GO nanocomposite. XRD patterns
were obtained from 10◦ to 70◦, indicating that there is no change in Zr(OH)4 structure by forming nanocomposite
with GO, Figure S3: (a) GC of remaining soman (GD) after reaction with Zr(OH)4/GO nanocomposite and Zr(OH)4,
each under 80% RH pretreatment for 324 h. GC spectrum of soman (GD) itself was inserted for comparison,
(b) enlarged spectra of GC in (a) for clarity, Figure S4: Comparison of hydrolytic degradation of the nerve agent,
soman (GD) by exposure to Zr(OH)4/GO nanocomposite and pristine Zr(OH)4 in the water at ambient temperature,
Figure S5: (a) GC spectra of soman (GD) standard (Rt = 11.7, 11.8 min) and PMPA-TMS (Rt = 15.9 min). Mass
spectra of (b) soman (GD) and (c) PMPA-TMS. Note the characteristic fragment ion peaks were seen: m/z = 99.0,
126.1 for GD and m/z = 153.0, 169.1 for PMPA-TMS.
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