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Abstract

Original Article

IntroductIon

Cancer is heterogenous, with genetic and functional differences 
lying not only within different tumor types (intertumor 
heterogeneity) but also within single tumors (intratumor 
heterogeneity).[1] Although all types of tumor heterogeneity 
may contribute to the complexity of treatment approaches 
taken, intratumor heterogeneity is particularly problematic 
as it can aid the development of various mechanisms of drug 
resistance.[2] Intratumor heterogeneity is also closely related 
with cancer progression and clinical outcome.[3]

Colorectal cancer (CRC) is one of the most common cancers 
worldwide[4] and is highly heterogenous.[5] Currently, CRC 
is staged according to the gold standard of the tumor, node, 

metastasis staging system to stratify patients into prognostic 
subgroups.[6] However, the variation in survival outcome within 
the same stage patients demonstrates the need for additional 
prognostic factors.[7] The presence of tumor buds (TB), defined 
as single cancer cells or cancer clusters of up to 4 cells, has 
been recognized as an important adverse prognostic factor in 
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CRC.[8] Lymphocytic infiltration is also a prognostic feature in 
CRC.[9,10] Previously, it was shown that the spatial relationship 
between these two features, TB and lymphocytes, confers great 
prognostic significance in Stage II CRC when analyzed at the 
entire invasive margin (IM).[11] 

Whereas quantification of TB or tumor‑infiltrating 
lymphocytes (TILs) at large regions of interest may represent 
well the processes occurring within the whole invasive front; 
it has the potential to miss any specific aggressive areas 
of the tumor that could promote invasion and metastasis. 
A number of studies have shown the role of spatial intratumor 
heterogeneity in the distribution of immune cells in breast 
cancer.[12,13] This spatial intratumor heterogeneity can be 
evaluated by applying the Getis‑Ord hotspot analysis.[14] 
This reports the areas where features of interest are spatially 
clustered and therefore can identify hotspots within the images 
of interest. Through the application of such methodology, 
Nawaz et al. have found that areas with both high numbers of 
TILs and cancer cells were significantly correlated with better 
disease‑specific survival (DSS) in estrogen receptor‑negative 
breast cancer.[12] Another way to identify areas where a higher 
density of objects of interest occurs is through the use of 
spatial heatmaps.[15] However, their significance in evaluating 
intratumor heterogeneity remains unclear.

The aims of our study were to (i) apply the Getis‑Ord 
hotspot analysis using data derived from automated image 
analysis on multiplexed immunofluorescence sections, (ii) 
develop a new methodology for studying the intratumor 
heterogeneity, and (iii) to assess how features derived from 
these methodologies may have an effect on predicting the 
survival outcome of Stage II CRC patients.

Methods

Patient samples
The study population included 232 Stage II CRC patients who 
had undergone surgical resection, with detailed follow‑up 
information of up to 11.5 years. Of these patients, 170 were 
treated at hospitals in Edinburgh, UK, from 2002 to 2004, and 
62 at the National Defense Medical College Hospital, Japan, 
from 2006 to 2011. Clinicopathological characteristics are 
summarized in Table 1. This study was approved by the East of 
Scotland Research Ethics Service (approval ref: 13/ES/0126) 
and by the Ethics Committee of the National Defense Medical 
College (approval ref: No. 2992).

Data acquisition
Tissue labeling and segmentation of all features of interest 
through the use of automated image analysis have previously 
been described in detail.[11]

In summary, multiplexed immunofluorescence was performed 
on 3 μm thick formalin‑fixed paraffin‑embedded tissues 
using a DAKO Link48 Autostainer (Dako, Glostrup, 
DK). Primary antibodies against pan‑T (CD3), cytotoxic 
T (CD8), and epithelial (Pan‑cytokeratin, PCK) cells were 

used. Visualization of antibodies was performed using TSA 
fluorescein, TSA Cy5, and Alexa Fluor 555, respectively. 
Cell nuclei were counterstained using Hoechst 33342. 
Whole slide fluorescence images were captured with a ×20 
objective using an Axioscan. Z1 (Zeiss, Oberkochen, DE). The 
captured images were uploaded into HALO® image analysis 
software (version 2.1.1637.18) (Indica Labs, Corrales, NM). 
The High‑Plex FL (version 2.0) algorithm was applied to 
automatically classify CD3 + and CD8 + cells across the whole 
slide images [Figure 1a]. The invasive front was identified 
using the flood tool. Two Random Forest classifiers (one for 
high PCK intensity and one for low PCK intensity images) 

Table 1: Univariate Cox regression analysis for 
clinicopathological data, Getis‑Ord‑based model, and 
heatmap‑based prognostic model

Features Frequency (%) HR (95%CI) P
Clinicopathological

Age
≤70 110 (47.4) 1.464 (0.999‑

2.147)
0.051

71‑79 64 (27.6)
≥80 58 (25.0)

Gender
Male 133 (57.3) 0.670 (0.344‑

1.304)
0.239

Female 99 (42.7)
pT stage

pT3 190 (81.9) 3.268 (1.695-
6.301)

<0.001
pT4 42 (18.1)

Tumor site
Left 69 (29.7) 1.102 (0.729‑

1.665)
0.646

Right 86 (37.1)
Rectal 77 (33.2)

Differentiation
Moderate 125 (53.9) 1.105 (0.783‑

1.558)
0.570

Poor 35 (15.1)
Well 71 (30.6)
N/A 1 (0.4)

EMLVI
Yes 21 (9.1) 0.812 (0.580‑

1.137)
0.226

No 130 (56.0)
N/A 81 (34.9)

Tumor type
Adenocarcinoma 206 (88.8) 1.020 (0.490‑

2.124)
0.958

Mucinous 18 (7.8)
Mixed 7 (3.0)
N/A 1 (0.4)

Prognostic models
Getis‑Ord based

Low‑risk 137 (59.1) 2.918 (1.909-
4.461)

<0.001
Mid‑risk 80 (34.5)
High‑risk 15 (6.5)

Spatial heatmap based
Low‑risk 130 (56.0) 4.922 (3.041-

7.966)
<0.001

Mid‑risk 92 (39.7)
High‑risk 10 (4.3)

Significant features (P<0.05) are shown in bold. CI: Confidence interval, 
HR: Hazard ratio, EMLVI: Extramural lymphovascular invasion
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were trained to segment tumor from nontumor areas. The 
High‑Plex FL (version 2.0) algorithm in combination with 
the specific classifier (either for the high PCK or the low PCK 
intensity images) was then used for the segmentation and 
quantification of TB. Specifically, TB were classed as tumor 
clusters containing up to 4 PCK + cells. The quantification 
of TB was performed within a region of 1000 μm from the 
invasive front.

Data analysis
All object data (CD3+, CD8+, and TB) were exported in .csv 
format from HALO® software. Object data and their spatial 
coordinates were inputted to Python[16] in the Jupyter Notebook 
environment,[17] for the Getis‑Ord hotspot and our spatial 
heatmap analyses. The Cartesian points defining the invasive 
front of each sample were also imported. These data were 
manipulated throughout using NumPy.[18] PySAL library[19] 
was used for the Getis‑Ord hotspot analysis. Visualizations 
were performed using the Matplotlib library.[20]

From the Cartesian points defining the invasive front, we 
created two regions of interest, being the IM and the tumor 
core (CT) [Figure 1a]. We classified objects as being within the 
IM if the distance between the object’s centroid and the tumor 
invasive front was ≤500 μm. Any object within the classified 
and segmented tumor area, but not in the IM, was considered 
in the CT. The union of these two regions was also considered 
as a distinct region (IMCT). Objects that were not located 
within the IM or CT areas were discarded. We considered 
lymphocytes and TB in isolation, as well as some measures 
of their juxtaposition. For the latter case, we evaluated the 
lymphocyte ratio (CD3+/CD8+) as well as evaluated all grids 
of lymphocytes within some Euclidean distance d of any TB. 
We considered d at 50 μm and 100 μm.

This led to 25 features of interest which are shown in 
Supplementary Table 1. Spatial plots for each feature of interest 
were generated. The sets of segregated objects were divided 
into grids using a fixed tile length t of 886 μm, giving an area 
of 0.785 mm2 per tile following recommendations from the 
International Tumor Budding Consensus Conference.[7] This 
was our setup for both the Getis‑Ord hotspot and our heatmap 
analyses [Figure 1b].

Getis‑Ord hotspot analysis
The Getis and Ord’s local Gi* statistic was used in a similar 
manner to previous work by Nawaz et al.[12] This statistic can 
be defined as follows:

( )
, ,

1 1*

2
2
, ,1 1

  

 

1

n n

i j j i j
j j

i
n n

i j i jj j

w x X w
G

n w w
s

n

= =

= =

 
 

−
=

−

−


∑ ∑

∑ ∑

( )
2

21  
n

jj
x

s X
n
== −

∑

1

n

j
j

x
X

n
==
∑

Where i is the tile index in the flattened grid, wi, j the weight 
between tiles i and j, n the number of tiles, and χj being the 
count of feature of interest for tile j. This statistic (a Z‑score) 
is acquired by first setting binary weights defining the spatial 
relationships between the tiles of the grid. Given the size of the 
tiles, we restricted ourselves to first‑order neighbors, meaning 
that for each tile t, only those tiles that share an edge or vertex 
with the current tile are considered neighbors [Figure 1c]. Each 
tile was compared along with its neighbors against the entire 
image to establish whether the current tile is in an area with a 
high concentration of extreme values and correspondingly with 
a substantially higher or lower value than the alternative null 
hypothesis. The statistic then returns Z‑scores and P values per 
tile to indicate whether the tile is a statistically significant cold 
or hotspot [Figure 1d]. We used a Z‑score threshold of ±1.96 
to indicate a significantly high/low score and a corresponding 
P value threshold of 0.05 for determining statistical significance 
as per Getis and Ord.[14] The cold and hotspots of each feature of 
interest were then quantified for each patient. For each feature 
of interest, 2 candidate prognostic factors were formed (e.g., 
feature of interest: “CD3 + cells in the CT,” candidate prognostic 
factors: (1) number of CD3 + coldspots in CT and (2) number 
of CD3 + hotspots in CT). This resulted in the generation of 50 
candidate prognostic factors, 25 being the number of cold spots 
and 25 being the number of hotspots for each feature of interest.

Spatial heatmap analysis
We first constructed multiple spatial heatmaps of the different 
features of interest [lymphocyte densities and ratios, TB, and 
their spatial interrelationships; Figure 1e]. Each tile within each 
heatmap was automatically assigned a heat value based on the 
number of objects of interest per tile (e.g., tiles with higher 
CD3 + density were given a higher heat value than the tiles with 
lower CD3 + density). Average heat values from each heatmap per 
patient were exported. The optimal cutoff point for which a tile 
would be considered “hot” or “cold” (i.e., a tile with large or small 
numbers of the feature of interest respectively) was found using 
the maximally selected rank statistic from the R[21] surv_miner 
package[22] on the data of 114 Edinburgh cases from 2002 to 
3. The cutoff point was applied to the rest of the patients from 
Edinburgh (2004) and Japan. All tiles within each heatmap were 
then assigned to be either cold or hotspots [Figure 1f]. Similarly 
to the Getis‑Ord analysis, the number of cold and hotspots present 
within each heatmap of the feature of interest was quantified. 
This led to the generation of 50 candidate prognostic factors.
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For both Getis‑Ord and the spatial heatmap analyses, we 
excluded tiles devoid of TB or lymphocytes with a binary 
mask that classifies each tile based on the presence of the 
object of interest.

Survival analysis
Candidate prognostic factors derived from each type of 
analysis (Getis‑Ord hotspot or spatial heatmap) were 
studied separately. However, the methodology for the 
survival analysis was kept consistent for both datasets. 
Image candidate prognostic factors together with the 
corresponding clinicopathological data from the original 
pathology report were imported into R studio 1.1.419[23] 
running R 3.4.3.[21] The least absolute shrinkage and 
selection operator (LASSO) penalized Cox proportional 

hazard regression with 10 fold cross‑validation was used 
to identify significant prognostic features using the glmnet 
package.[24] Random Forest decision tree model from the 
random Forest package[25] using out‑of‑bag validation was 
then employed to rank the significant features according 
to the corresponding decrease in the Gini coefficient. The 
least significant features were then removed in an iterative 
process, and the most prognostically significant model for 
each dataset was selected. Univariate Cox regression using 
the bootstrap resampling technique as well as Kaplan–
Meier (KM) curve analysis was applied to evaluate the 
prognostic significance of the models. Using the Benjamini–
Hochberg procedure,[26] P values from the KM analyses 
were corrected for false discovery rate. Univariate Cox 
regression was also applied to the data from the original 
clinicopathological report [Table 1].

results

Intratumor heterogeneity assessed using Getis‑Ord 
Hotspot analysis
Using the spatial coordinates of each CD3 + or CD8 + T cell 
as well as those of the TB, we evaluated the intratumor 
heterogeneity using two different methods. In the first 
approach, we applied the Getis‑Ord hotspot analysis to 
identify any statistically significant cold or hotspots of our 
objects of interest, in this case, the CD3+, CD8 + T cells, TB 
and their spatial inter‑relationships within different tumor 
regions (IM, CT, IMCT). Each tile of area 0.785 mm2 was 
compared to their first‑order neighboring tiles and a Z‑score 
with a P value was computed for each tile. We then quantified 
the number of statistically significant (P < 0.05) cold or 
hotspots [Figure 1d].

Intratumor heterogeneity assessed using spatial heatmap 
analysis
In the second approach, the spatial heatmaps of each 
object of interest were constructed. The average heat per 
heatmap of each patient was exported and the optimal cutoff 
point for which a tile was considered “hot” or “cold” was 
calculated [Supplementary Table 1]. The cold or hotspots 
within each patient for each object of interest were quantified.

Survival analysis
Cox regression with LASSO regularization was performed 
on each dataset in order to identify the most significant 
prognostic factors. Eight and 12 features were found to be 
significantly prognostic from the Getis‑Ord and the spatial 
heatmap analysis, respectively [Table 2]. The significant 
features were further analyzed using the Random Forest 
decision tree model in order to rank the prognostic features 
according to their mean decrease Gini coefficient [Table 2]. 
The most prognostically significant model for each 
analysis was then selected. The Getis‑Ord based prognostic 
model (GOPM) combined the number of TB hotspots and 
the number of the CD3 + coldspots within the IMCT. The 
spatial heatmap based prognostic model (SHPM) included the 

Figure 1: Methods for the assessment of intratumor heterogeneity. (a) 
Feature plot, tumor bud; green, CD3+; blue, CD8+; red, tumor core; 
yellow and invasive margin; teal. (b) Tiled Whole Slide Image (WSI). (c) 
Getis‑Ord analysis: Tiles of interest overlaid in red and neighboring tiles 
overlaid in yellow. (d) Getis‑Ord analysis: Detection of CD3 + cell 
hotspots in the invasive margin and tumor core, CD3+; blue and hotspot 
tile; red. (e) Heatmap analysis: Heatmap generation for CD3 + cells in the 
invasive margin and tumor core shows a spectrum through yellow (high 
CD3+) to black (low CD3+). (f) Heatmap analysis: Categorization of 
cold and hotspots within the WSI, hot tiles in red and cold tiles in blue
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number of TB hotspots and the number of CD3 + cells within 
100 μm proximity of TB hotspots. Cutoff point values for 
the 4 selected features are shown in Supplementary Table 2. 
Concerning the GOPM, patients with low number of TB 
hotspots and high number of CD3 + coldspots were grouped 
into the low‑risk category; patients with both features either 
low or high were grouped into the mid‑risk category, and 
patients with high number of TB hotspots and low number of 
CD3 + coldspots were grouped into the high‑risk category. In 
regard to the SHPM, patients with low number of TB hotspots 
and high number of CD3 + cells within 100 μm proximity of 
TB hotspots were grouped into the low‑risk category, whereas 
patients with both features either low or high were grouped 
into the mid‑risk category. Finally, patients with high number 
of TB hotspots and low number of CD3 + cells within 100 
μm proximity of TB hotspots were grouped into the high‑risk 
group. Univariate Cox regression showed both GOPM and 
SHPM to be highly significant in predicting DSS (P < 0.001, 
hazard ratio [HR] = 2.92; 95% confidence interval [CI]: 
1.91–4.46, Bootstrap P = 0.001 and P < 0.001, HR = 4.92; 
95% CI: 3.04–7.97, Bootstrap P = 0.001, respectively). 
Results from KM survival analysis further confirmed the 
prognostic significance of these models [Figure 2].

dIscussIon

In this study, we assessed the spatial intratumor heterogeneity 

of TB and lymphocytes as well as its prognostic significance 
on 232 Stage II CRC specimens labeled with multiplexed 
immunofluorescence. By plotting the spatial coordinates of 
lymphocytes and TB identified by automated image analysis, 
we first applied the Getis‑Ord hotspot method to quantify 
the tiles with statistically significant low or high numbers 
of lymphocytes, TB, or their associations (cold or hotspots, 
respectively). Second, we developed a new methodology for 
the classification and quantification of these cold or hotspots. 
Our results show that the evaluation and quantification of 
these features improve prognostic accuracy in Stage II CRC.

A number of studies have shown the prognostic significance 
of lymphocytic cell infiltration within distinct regions of the 
tumor microenvironment (TME) such as the IM and the CT 
in CRC.[27,28] In a meta‑analysis by Zhao et al., CD3 + cell 
infiltration was associated with disease‑free survival only 
when assessed at the IM, whereas CD8 + cell infiltration was 
associated with disease‑free survival when quantified at the 
CT.[28] Similarly, the prognostic significance of tumor budding 
has mainly been reported when evaluated at the invasive 
front,[29‑31] although intratumoral budding has been suggested as 
a potential prognostic marker.[32] Quantification of such features 
across large regions of interest such as the IM or the CT may 
represent better the phenotypes found across the whole slide 
image. However, through averaging out the object densities 
within these large areas, it omits any specific areas where cells 

Table 2: Least absolute shrinkage and selection operator penalized cox regression and random forest Gini coefficients 
for the significant features of each analysis

Features Coefficients

LASSO Mean decrease Gini
Getis‑Ord

Number of TB hotspots 0.0048 12.6588
Number of CD3+/CD8+ hotspots in CT 0.0025 11.3644
Number of CD3+ coldspots in IMCT −0.0017 10.8637
Number of CD8+ coldspots in IMCT −0.0003 7.8905
Number of TB coldspots 0.0230 6.8170
Number of CD3+ and CD8+ within 100 μm of TB coldspots −0.0022 6.6115
pT 0.2185 3.7512
Age 0.3702 3.6080

Spatial heatmap
Number of TB hotspots 0.0080 9.2594
Number of CD3+ within 100 μm of TB hotspots −0.0009 7.1527
Number of CD3+ and CD8+ coldspots in IMCT 0.0003 6.9191
Number of CD3+ and CD8+ coldspots in CT 0.0003 6.8273
Number of CD3+ and CD8+ within 50 μm of TB coldspots −0.0043 6.1868
Number of CD8+ within 100 μm of TB hotspots −0.0033 6.0353
Number of CD3+/CD8+ hotspots in IMCT 0.0009 5.9058
Number of CD3+ within 50 μm of TB coldspots −0.0009 5.6958
Number of CD3+ hotspots in CT −0.0003 5.5083
pT 0.6508 2.1479
Site of tumor 0.0903 1.8549
Age 0.6082 1.3227

Features included in the final prognostic models are shown in bold. LASSO: Least absolute shrinkage and selection operator, TB: Tumor buds, CT: Tumor 
core, IMCT: Invasive margin and tumor core
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are highly clustered which in turn might be sufficient to lead 
to metastasis and poor outcome.

In order to overcome this, we performed two spatial analysis 
methods, the Getis‑Ord hotspot and the spatial heatmap 
analysis. Getis‑Ord hotspot analysis has mainly been used in 
ecological studies, however in a study by Nawaz et al., this 
type of analysis was shown to be promising when assessing the 
intratumoral heterogeneity in pathological images from breast 
cancer.[12] The Getis‑Ord hotspot analysis offers the opportunity 
not only to identify any dense or sparse tiles within an image 
but also to identify statistically significant cold and hotspots. 
In addition, it has the strength of comparing the statistical 
significance of the different tiles in order to identify specific 
regions with cell clustering which can be further explored.[12] 
Our newly developed spatial heatmap analysis differs in 
methodology from the Getis‑Ord hotspot analysis, whereas in 
Getis‑Ord hotspot analysis, each tile of interest is compared to 
its first‑order neighbors, the spatial heatmap analysis involves 
calculating the mean heat value across the whole tissue slide 
for each feature of interest. The cutoff point splitting the hot 
and cold heat values for each feature is calculated based on the 
data from all patients of interest therefore taking into account 
both intra‑ and interpatient heterogeneity. This cutoff point is 
then applied across the whole patient cohort, therefore ensuring 
consistency when considering the regions as cold or hotspots. 
Although the two methodologies for the establishment of the 
cold and hotspots within the images differ, the local regions 
within the image where clustering occurs were found to 
be similar, which strengthens our confidence in using such 
methodologies interchangeably.

While we present this method using CD3+, CD8 + cells, 
and TB as features of interest in CRC, such methodology 
could be applied to other types of tumor and other TME 
compartments including macrophage infiltration, vascular 
invasion, and immune checkpoint expression. Indeed, the 
distribution pattern of tumor‑associated macrophages within 
the gastric cancer microenvironment was previously shown 
to be an independent prognostic factor.[33] Moreover, the ratio 
of CD68+/CD163+, specifically in the CT, has previously been 
shown to be highly prognostic in Stage II CRC.[34] Finally, a 
recent study by Tsakiroglou et al. has shown how evaluation 
of the spatial interaction of T + and PD‑L1 + cells can serve 
as a prognostic biomarker in oropharyngeal squamous cell 
carcinoma.[35] Therefore, by applying spatial analysis methods, 
such as the Getis‑Ord hotspot or the spatial heatmap, may lead 
to the discovery of new prognostic factors as well as to the 
identification of specific regions of interest within the TME, 
which can be further analyzed for the potential discovery of 
targets for treatment.

When assessing the prognostic significance of the features 
derived from each spatial analysis type, many of them were 
shown to be promising prognostic factors. However, by 
applying a Cox regression with LASSO regularization and a 
Random Forest decision tree model, the most prognostically 
significant features were identified and combined into two 
prognostic models. The prognostic model derived from the 
results of the Getis‑Ord hotspot analysis included the number 
of TB hotspots and the number of the CD3 + coldspots within 
the IMCT. The prognostic model derived from the results of the 
spatial heatmap analysis included the number of TB hotspots 

Figure 2: Kaplan–Meier survival analysis for Getis‑Ord and spatial heatmap‑based prognostic models. (a) Getis‑Ord‑based prognostic model. Blue 
line represents the “low‑risk” patients, yellow line represents the “mid‑risk” patients, and the red line represents the “high‑risk” patients. (b) Spatial 
heatmap‑based prognostic model. Blue line represents the “low‑risk” patients, yellow line represents the “mid‑risk” patients, and the red line represents 
the “high‑risk” patients

ba
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and the number of CD3 + cells within 100 μm proximity of TB 
hotspots. These results concur well with previous findings,[11,34] 
where CD3 + density in the IMCT, the number of TB, and 
the spatial association between CD3 + and CD8 + cells with 
TB have been found to be highly prognostic. Unlike these 
studies,[11,34] although features which included CD8 + cells 
appeared to be significant, they were not selected to be included 
in the final prognostic model. These different results might 
be attributed to the methodology used in this study which 
differs significantly from the other two studies. Previously, the 
average numbers and densities of the lymphocytes, TB, and 
their spatial associations across large regions of interest such 
as the IM or the CT were quantified.[11,34] In this study, these 
large regions, namely IM and CT, are subdivided into smaller 
tiles which are then compared to each other in order to identify 
any specific aggressive areas with feature clustering that can 
potentially have an effect on tumor progression and patient 
prognosis. The two prognostic models developed in this study 
were shown to have high prognostic significance and were able 
to significantly stratify the Stage II CRC patients into low‑, 
medium‑ and high risk of disease‑specific death. Application 
of such models could aid clinical decision‑making on adjuvant 
therapy and follow‑up, and hence improve patient outcomes by 
identifying the high‑risk patients who may benefit from further 
treatment, the low‑risk Stage II subpopulation who may not 
need any further toxic treatment, and the mid‑risk patients who 
may benefit from a more detailed follow‑up.

conclusIons

This research highlights the importance of spatial statistics 
in investigating the heterogeneous TME. We first applied 
a known method for the investigation of the intratumor 
heterogeneity in Stage II CRC patient samples. We, secondly, 
proposed an alternative methodology which takes into 
account interpatient heterogeneity in addition to intratumor 
heterogeneity. Moreover, we have shown that quantification 
of tumor and lymphocyte hotspots within the TME using 
both methods was significantly associated with patient 
outcome and we hope that such studies will serve as a base 
for further research in the prognostic impact of the intra‑tumor 
heterogeneity.
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Supplementary Table 1: Cutoff values for each feature of 
the spatial heatmap analysis used to categorize the tiles 
into cold or hotspots

Feature Cutoff value
CD3+cells in the IM 21.7013333
CD8+ cells in the IM 13.7399103
CD3+ and CD8+cells in the IM 30.2813067
CD3+cells in the CT 30.0809727
CD8+cells in the CT 10.6572454
CD3+ and CD8+ cells in the CT 47.1046484
CD3+ cells in the IMCT 26.4211475
CD8+ cells in the IMCT 15.6260472
CD3+ and CD8+ cells in the IMCT 39.5460152
TB density 3.15805471
CD3+/CD8+ in the IM 43.8087855
CD3+/CD8+ in the CT 17.4055556
CD3+/CD8+ in the IMCT 17.1737661
TB number within 50 μm of CD3+ cells 2.02352941
TB number within 100 μm of CD3+ cells 4.00617284
TB number within 50 μm of CD8+ cells 2.32098765
TB number within 100 μm of CD8+ cells 2.64423077
TB number within 50 μm of CD3+ and CD8+ cells 2.71794872
TB number within 100 μm of CD3+ and CD8+ cells 6.08
Mean TB number within 50 μm of CD3+ cells 0.2323185
Mean TB number within 100 μm of CD3+ cells 1.54760868
Mean TB number within 50 μm of CD8+ cells 0.16349674
Mean TB number within 100 μm of CD8+ cells 0.57304754
Mean TB number within 50 μm of CD3+ and CD8vcells 0.28206629
Mean TB number within 100 μm of CD3+ and CD8+ cells 1.14422595
IM: Invasive margin, CT: Tumor core, IMCT: Invasive margin and tumor 
core, TB: Tumor buds

Supplementary Table 2: Cutoff values for the Getis‑Ord 
and the spatial heatmap prognostic model components

Feature Cutoff value
Getis‑Ord prognostic model

Number of TB hotspots 35
Number of CD3+ coldspots in IMCT 20

Spatial heatmap prognostic model
Number of TB hotspots 120
Number of CD3+ within 100μm of TB hotspots 56

TB: Tumor bud, IMCT: Invasive margin and tumor core


