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to efficiently optimize the battery

parameters. It allows parallel cyclers,

stops unpromising cycles, and

automatically yields new configurations

of parameters. The framework showed

excellent results in our demonstration.
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THEBIGGERPICTURE There aremany parameters to optimize for a battery, in both simulations and exper-
iments, from design to manufacturing. It is time consuming and costly to evaluate the lifetime performance
of batteries since it takes a long period to cycle them. We introduce a generic framework leveraging ma-
chine-learning algorithms. The framework is designed to optimize battery parameters to enhance cycling
performance in a systematic and efficient way, which allows parallel cyclers, stops unpromising cycles,
and automatically yields new configurations of parameters. The framework could reduce the average
cycling time per battery from years to months/weeks for cycling experiments or from weeks to days/hours
for cycling computations. This method is flexible to scale up for many applications, from fundamental
research to industrial development in batteries and other similar fields.

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Battery optimization is challenging due to the huge cost and time required to evaluate different configurations
in experiments or simulations. Optimizing the cycling performance is especially costly since battery cycling is
extremely time consuming. Here,we introduce an optimization framework building on recent advances inma-
chine learning, which optimizes battery parameters efficiently to significantly reduce the total cycling time. It
consists of a pruner and a sampler. The pruner, using the Asynchronous Successive Halving Algorithm and
Hyperband, stops unpromising cycling batteries to save thebudget for further exploration. The sampler, using
Tree of Parzen Estimators, predicts the next promising configurations based on query history. The framework
can deal with categorical, discrete, and continuous parameters and can run in an asynchronously parallel way
to allow multiple simultaneous cycling cells. We demonstrated the performance by a parameter-fitting prob-
lem for calendar aging. Our framework can foster both simulations and experiments in the battery field.
INTRODUCTION

Energy storage is widely used in many fields, for instance, elec-

trical grid, electric vehicles, portable devices, and so forth.

Rechargeable batteries such as lithium ion, lithium oxygen, so-

dium ion, lead acid, and, more broadly, supercapacitors are

highly needed to achieve high capacity and long duration while

maintaining low cost.1,2 An essential task of battery research

and development, and for both simulations and experiments, is

to optimize the parameters for best performance.
This is an open access article und
A huge challenge in battery optimization is the high cost to

evaluate battery performance. Batteries are expected to have

high capacity not only at the beginning but also after thousands

of cycles. It is costly and time consuming to wait for battery

cycling to collect the data of battery performance after thou-

sands of cycles to compare them and find the optimal battery

parameter. What is worse, the space of optimization parameters

is often large, and thus a great number of trial queries are neces-

sary to explore different parameter configurations. Imagine we

need to optimize 10 battery parameters to maximize the battery
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capacity after 1,000 cycles. Evaluating each combination of the

parameters may take a few months to cycle the battery, and we

need to try 1,024 combinations even if we merely choose two

values for each parameter. The total process would require hun-

dreds of years if not using parallel cyclers.

Many works have recently aimed to address such optimization

problems. A fast way is to approximate battery behavior by a

simple model that is fast to calculate, such as equivalent circuit

models3 and regression models,4 and then optimize the objec-

tive by regular optimization algorithms such as linear program-

ming. However, the accuracy of the results is limited by the

simplified models. For example, solid electrolyte interface (SEI)

growth has been approximated to be proportional to the square

root of time
ffiffi
t

p
, but this relation is found to be unjustified in many

cases.5 A more sophisticated method is to use physics-based

models, like the pseudo two-dimensional (P2D) model. For

example, Lin et al.6 used gradient descent to minimize capacity

fade with power and energy constraints. They simplified the con-

straints through calculating energy and power by only one-step

discharge before degradation, while in real applications, the con-

straints should be fulfilled for all cycles. Still, they spent 15 days

on a partial task. In an experiment, Attia et al.7 found the optimal

charging protocol by Bayesian optimization. They reduced the

time from a possible 500 days to 16 days by using a linear regres-

sion model8 to predict battery capacity at the 1,000th cycle

based on 100 cycles. Overall, more reliable methods are manda-

tory to ensure accuracy, especially when dealing with new

materials or techniques. However, despite multiple optimization

algorithms targeted at expensive objective functions (including

the aforementioned gradient descent and Bayesian optimization

and other model-based methods such as covariance matrix

adaptation evolution strategy9,10 and self-directed online

learning11), it becomes a highly costly task to find the optimal pa-

rameters even if simplifications and approximations are made

due to the complexity of batteries.

To shorten the computational time in simulation or to reduce

cost and enable robots12 in experiments, we require powerful

optimization algorithms specifically designed for batteries to

address the long-cycling challenge. A special property of bat-

tery-cycling optimization is that we evaluate the performance

by cycling the battery for a given number of times. Data of the

battery behavior, g (such as capacity), is collected during cycling

and can be written as a function of cycles, gðnÞ, where n is the

number of cycles. The score of the battery is defined on g and

can be expressed as FðgðnÞÞ. For example, F could be the

average capacity over the number of cycles or the difference be-

tween the model-predicted gðnÞ and the measured data (param-

eter fitting). Formally, the single-objective optimization problem

can be formulated as

min
x

fðxÞ = min
x

fðx; NÞ = min
x

Fðgðn; xÞÞ; (Equation 1)

where n = 1;2;.;N is the number of steps (steps can be cycles

or time), fðxÞ represents an objective function to be minimized,

min
x

fðx; NÞ emphasizes that the minimization is on a parameter

vector x and is related to the total step N, g is a function of n

parameterized by x, and F is a functional that calculates the

score of the function g. The objective is sometimes to maximize,
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which can be easily converted to minimize by considering the

negative of the original objective. The inequality constraints are

ICiðxÞ % 0; i = 1;2;.; (Equation 2)

and the equality constraints are

ECjðxÞ = 0; j = 1; 2;.: (Equation 3)

The constraints, in some cases, are expressed by functions of

cycles like Equation (1).

Current methods directly optimize fðx;NÞ without making use

of the intermediate information g. Intuitively, one can monitor

battery performance during cycling and stop unpromising batte-

ries to make room for new ones. This idea is simple and could

save a large amount of time, yet it introduces two fundamental

questions: (1) how to determine whether a battery is promising

or not. It is challenging even for an expert to make a decision,

and now we need a systematic approach to automate deci-

sion-making by a computer. (2) How to use the mixed battery

data. Some batteries are cycled until the end (n = N) so that we

know the objective value fðx; NÞ, and thus optimization tools

can use the values to search for the optimal x. However, many

others are early stopped (n < N) so that the objective values

fðx; NÞ (e.g., the capacity at N = 1,000 cycles) are unknown for

the early-stopped batteries. These incomplete data cannot sim-

ply mix with those whose cycling is completed.

In this article, we address the above questions and report a

battery-cycling optimization framework covering all of the

following highly capable features:

d Able to deal with different types of parameters. Not all pa-

rameters are continuous in some cases. Our framework

can optimize discrete (e.g., number of cells in a battery

pack) and categorical (e.g., electrolyte type) parameters.

d Stop unpromising configurations during cycling. We do not

need to cycle all batteries toward the end. Battery data g is

measured gradually with cycles. Many batteries, for

instance, with low capacity and severe degradation, can

be determined to be unpromising during cycling even at

the beginning. Thus, the algorithm automatically decides

to stop unpromising batteries to make room for new con-

figurations (e.g., new battery parameters) to cycle.

d Asynchronously parallel. Parallel algorithm allows multiple

workers (e.g., central processing unit [CPU] cores in simu-

lation or cycling channels in experiment) to cycle batteries

at the same time. Asynchrony means each worker will be

assigned a new job immediately after a job finishes, with

no need to wait for other workers.

d Automatically provide new configurations for cycling

based on a machine-learning model trained by all history

data. Traditional machine-learning algorithms, such as

regression, require parameter set x and objective fðx;NÞ
to train a model to learn the input-output relation. If we

stop cycling early, intermediate cycling performance

gðn; xÞ cannot be used by traditional machine learning.

Our framework enables using all data whether the batteries

finish cycling or not.

d Flexible to integrate prior knowledge. For example, we

know that the capacity of a battery is a monotonic



A B Figure 1. Schematics of the pruner and the

sampler

(A) The proposed ASHA promotion scheme. Nine

batteries are planned to cycle for up to 9 steps. At

each rung, the pruner decides to promote the

batteries to the next rung or discard them (stop

cycling). The figure shows that only one third of the

batteries are promoted at each rung. As a result,

only one battery is cycled until the end.

(B) The proposed TPE sampler. In the top plot, the

sampler sets a bar y� and categorizes the histori-

cal configurations into a good group (green circles)

consisting of points yi < y� and bad group (red plus

signs) consisting of points yi R y� or pruned ones.

Although the pruned one (blue cross) has a small objective based on intermediate results, it is classified as bad. In the bottom plot, two probability models quantify

the probability distribution of the two groups. The x value with high probability in the good group and low probability in the bad group serves as the new

query point.
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decreasing function (or plus some noise) with respect to

cycles, which can be encoded in the algorithm. Other spe-

cific knowledge, such as battery-life-prediction models,

can be incorporated in the algorithm easily. The algorithm

may still work independently without prediction models.

Our framework, which dramatically reduces the optimization

time or total cycling time, comprises two major components: a

pruner and a sampler.

We use a pruner to determine early stopping of cycling. We

adopt Asynchronous Successive Halving Algorithm13(ASHA),

which is a simple and practical hyperparameter tuning method

originally proposed for automated machine learning and is suit-

able for parallelism that exploits early stopping. The basic idea

is to only keep a percentage of top candidates. The algorithm de-

cides whether to stop cycling a battery every several cycles, i.e.,

at each rung (Figure 1A). In our algorithm, ASHA compares the

battery with the records of other batteries at the same cycle

number. If the performance of this battery is not among the

best in all recorded batteries, it will be stopped.

The vanilla ASHA assumes that the best configuration should

perform among the top ones after a small number of cycles;

otherwise, it would be discarded before cycling until the end.

Yet, this is not always the case. A counter example is optimizing

average power density with variable discharge current: higher

current always induces higher power at the beginning but may

cause faster degradation and thus lower power at later stages.

To avoid mistakes, decisions cannot be made too early. On the

other hand, we want to stop unpromising cycles earlier so we

havemore budgets for other configurations. Therefore, we incor-

poratedHyperband14 with ASHA as a trade-off. Among trials, our

approach uses different early-stopping rates, a parameter of

ASHA, to control aggressiveness in pruning to cover aggressive

pruning strategies and conservative ones (see experimental pro-

cedures for details).

We use a sampler to determine new query points based on ex-

isting observations. Since the objective function is expensive to

evaluate (i.e., needs long cycling), we need to automatically

determine the most promising new configurations (i.e., trial bat-

tery parameters) for cycling based on historical data. The

sampler outputs the configuration x, which is most likely to be

the best one. As mentioned earlier, the battery data are mixed,

i.e., some batteries are cycled to the end (objective values are
known) but others are pruned (with only intermediate results).

Therefore, instead of a regressor, which correlates configura-

tions with objective functions, we use a classifier, Tree of Parzen

Estimators (TPE)15,16 to model the training data. We choose TPE

because (1) it is able to handle categorical and discrete parame-

ters in addition to continuous parameters and (2) it can make use

of both finished cycles and pruned cycles. It categorizes

observed configurations into a ‘‘good’’ group and a ‘‘bad’’ group

by setting a performance threshold, as shown in Figure 1B. Then,

it calculates the distribution of two groups and tries to search for

configurations with high probability in the good group and low

probability in the bad group. Since it only uses ranks instead of

absolute-performance values, pruned (early stopped) batteries

can be fully utilized by grouping them as bad. Therefore, new

query points can be calculated from the historical data including

both finished and pruned cycles. Batteries with new configura-

tions are cycled until finished or are stopped by the pruner.

Such an iteration continues until the budget is exhausted.
RESULTS

We test the algorithm in parameter-fitting problems for a battery

calendar-aging model since we believe parameter fitting is a

good candidate to visualize the optimization performance. In

other words, the objective function in the optimization problem

measures the difference between the measured data and the

output of the battery model.

The experimental data, towards which we fit our calendar-ag-

ing model, were from lithium-ion pouch cells with graphite and

NMC622 electrodes stored at different temperatures and states

of charge (SOCs).17 Four combinations of temperature and

SOCs were included: 25�C 10%, 45�C 70%, 60�C 70%, and

25�C 70%. The capacity of fresh cells was measured before ag-

ing, and then the remaining capacity was measured every

30 days for a total of 480 days. In total, the experiment obtained

4 fresh-cell-capacity values and 64 degraded-capacity values.

The retention rate was obtained from the raw data, as shown

in Figure S1. A detailed description of this experimental dataset

is presented in the supplemental information.

As for the calendar-aging model, we built a P2D model2,18

considering three side reactions:19–21 SEI formation, solvent

oxidation, and transition-metal dissolution. The parameters
Patterns 3, 100531, July 8, 2022 3



Table 1. Fitting parameters and results

Parameter Description Parameter range Unit

Case 1 Case 1 Case 2

True Estimated Result

kSEI reaction coefficient of SEI formation [10�14, 10�12] m$s�1 5 3 10�13 5.18 3 10�13 1.14 3 10�13

lSEI limiting factor of SEI formation [105, 108] m�1 5 3 106 5.24 3 106 3.90 3 106

Ea;SEI activation energy of SEI formation [104, 105] J$mol�1 5 3 104 5.13 3 104 4.36 3 103

ksol reaction coefficient of SO [0, 1] A$m�3 0.2 0.23 0

Ea;sol activation energy of SO [2 3 104, 105] J$mol�1 53104 5.393104 N/A

kdiss reaction coefficient of TMD 0 or [10�9, 10�5] A$m�2 10�6 1.07 3 10�6 0

Ea;dis activation energy of TMD [5 3 103, 2 3 104] J$mol�1 83104 8.313104 N/A

SEE standard error of estimate on capacity N/A N/A N/A 7.95 3 10�4 5.30 3 10�3

We consider three side reactions: solid electrolyte interface (SEI) formation, solvent oxidation (SO), and transition-metal dissolution (TMD). SEI will al-

ways be included, thus the range of kSEI is positive. In contrast, SO and TMD are optional so their reaction coefficients can be zero (in which case the

activation energy is not useful).
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and their ranges are shown in Table 1. The details of the degra-

dation model are presented in the supplemental information.

Other physical parameters used in themodel are fixed, as shown

in Table S1.

In our setting, SEI formation will always be included, while the

other two reactions are optional and up to the algorithm. Our goal

is to find the optimal parameters for the model to match the 64

retention rates (the ratio of degraded capacity to fresh-cell ca-

pacity). The objective function penalizes the number of parame-

ters by using the standard error of estimate (SEE):22

fðxÞ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � k � 1

XN
n = 1

½gðn; xÞ � g0ðnÞ�2
vuut ; (Equation 4)

where k is the number of fitting parameters; the capacity of aged

cell is normalized by fresh-cell capacity, thus gðn; xÞ and g0ðnÞ
denote the retention rate from model output and experimental

results, respectively; and N = 64 is the total number of reten-

tion-rate data points measured by the experiment, which is

also the number of steps to fit the model. Roughly, SEE is the

average difference between the predicted retention rates and

the experimental data. Since the retention rate is in the range

of [0, 1] and typically close to 1, an SEE value less than 0.01

may be used to indicate that a reasonable fitting is achieved.

To calculate fðxÞ, the degradation at four combinations of tem-

perature and SOCs needs to be computed; each of the combina-

tions needs to calculate the capacity of the fresh-cell- and

another 16 degraded-capacity values to fit to experiment data.

There is a slight difference between calculating fresh-cell capac-

ity and degraded capacity because the latter also needs to simu-

late storage, but we ignore this difference when discussing the

computation time later since storage simulation takes much

less time than simulating capacity measurement. Overall, there

are 64 fitting steps or 68 calculation steps. Due to the complexity

of the P2D model, each evaluation of fðxÞ takes about 9 h on our

personal computer (CPU: AMD 5950X).
Case 1: Application on simulated data and validation
We first use preset parameters to generate capacity curves from

the degradation model and fit the degradation model to the arti-
4 Patterns 3, 100531, July 8, 2022
ficially generated data. The preset values (i.e., true parameter

values) are presented in Table 1. The fitting error should

approach zero when the optimization budget is unlimited. To

test whether a feasible solution can be obtained with limited

computation, we use a relatively aggressive pruner, ASHA,

with minimum step set as 1, namely, a trial battery may be

stopped after fitting 1 data point rather than all 64 points. To

initialize the algorithm, 20 trials are randomly sampled with 20

sets of parameters. A computation budget of 300 trials is set

for each optimization, namely, the algorithm can explore 300

configurations at maximum (although some trials are not com-

plete due to pruning). We use 5 workers and 2 CPU cores per

worker to perform asynchronously parallel computations. The

optimization is repeated 15 times to get the statistics of the opti-

mization process.

Figure 2 shows the results of the parameter fitting. The simu-

lation data, toward which we fit our model, are plotted as dots

in Figure 2A. The optimal fitting curves match perfectly with a

small fitting error (SEE = 0.08%). The parameters of the curves,

presented in Table 1, are close to our preset values. The query

points during this optimization process are plotted in Figure 2B.

The size of the parameter space changes because the number of

side reactions is automatically selected by the algorithm. Here,

we only plot three parameters that appear in all trials, namely,

the parameters for SEI formation. These three parameters are

normalized by

kSEI)log½kSEI =minðkSEIÞ�=log½maxðkSEIÞ =minðkSEIÞ�;
(Equation 5)

lSEI)log½lSEI =minðlSEIÞ�=log½maxðlSEIÞ =minðlSEIÞ�; and
(Equation 6)

Ea; SEI)½Ea; SEI � minðEa; SEIÞ�
�½maxðEa; SEIÞ � minðEa; SEIÞ�;

(Equation 7)

so that they are all in the range of [0, 1]. The colors of the spheres

or circles reflect the side reactions included in the corresponding

trials. The size of the spheres or circles denotes the order of

appearance, i.e., large sizes mean that they are sampled at the

later stage of optimization. We can see that the sampled points



A

C D E

B Figure 2. Results of fitting the degradation

model to simulation data in case 1

(A) Artificially simulated data (dots) and optimal

fitting results (curves).

(B) Scattering of the three parameters during the

optimization process whose final degradation

curves are presented in (A). The three parameters

are rescaled to 0–1 in the plot. The left figure plots

the points in a three-dimensional space, and the

right figure projects the points onto planes. The

spheres and circles are resized according to the

order of appearance in optimization, with the

smallest one being the first trial and the largest one

being the last (300th) trial. The colors represent the

side reactions chosen by the algorithm.

(C) SEE (the objective value of optimization) versus

given number of trials. Mean and standard devia-

tion are calculated by 15 repeated optimizations,

and best denotes the one out of 15 optimizations

that produced the optimal parameter, i.e., with

minimum SEE after 300 trials, whose degradation

curves are presented in (A).

(D) The ratio of trials at three statuses versus the

number of fitting steps. Running means the jobs

are running, automatic means jobs have been

stopped by the algorithm, and failed means jobs

have reported errors when solving for degradation

curves of the corresponding parameter set. On

average, 11% of trials can be calculated until the end, and others are mostly stopped automatically by the algorithm.

(E) SEE (the objective value of optimization) versus number of calculation steps and accumulated hours. Each complete trial consists of 68 calculation steps (64

for fitting data points and 4 calculations to calculate fresh-cell capacity); each calculation step takes 8min. TPE +ASHA is our proposedmethod, TPE denotes the

method only using the sampler without early stopping, BO + EI indicates Bayesian optimization with expected improvement acquisition function. In BO + EI, the

algorithm uses all three side reactions listed in Table 1 instead of automatically selecting side reactions, namely, it solves a simpler problem than the other two.

TPE + ASHA was repeated 15 times, and TPE and BO + EI were repeated 3 times. The curves denote the mean, and the shadows denote the standard deviation.
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are scattered at first, with various colors representing different

choices of side reactions, but then become more concentrated

in a small region close to the ground truth, with the violet points

meaning that all side reactions are included (which is the same as

the ground truth).

Figure 2C shows the statistics of 15 optimizations. The mean

SSE is only about 0.3%. In Figure 2D, the average ratios of sta-

tuses are presented. Only 11% of trials can be calculated until

the end, and the others are mostly stopped automatically by

the algorithm. On average, each trial will fit 11.3 data points. In

other words, due to early stopping, each optimization is approx-

imately equivalent to 52.9 complete trials. We compare our pro-

posed method (TPE + ASHA) with two baseline methods, as

shown in Figure 2E. One method only uses TPE, namely, all trials

are calculated until the end without early stopping. We also

compare our method with a popular parameter optimization al-

gorithm, Bayesian optimization with expected improvement as

the acquisition function (BO + EI). All three algorithms use 5

workers in parallel. BO is implemented via BoTorch.23 Since it

does not support conditional parameters, BO always includes

all three side reactions, different from TPE + ASHA and TPE,

which choose side reactions automatically. This means that

BO solves a simper problem than the other two, which might

be the reason that BO performs better than TPE. Our proposed

TPE + ASHA method gives the best performance and shows

much faster optimization. The accumulated time is estimated

by the number of calculation steps times 8 min per step. (Note

that the accumulated time is the total amount of time for calcu-
lation. The real time is roughly 1/5 of the accumulated time due

to parallelization.) If we assume SEE = 0.015 to be the end of

optimization, the proposed scheme reduces the computation

time from over 12 days (TPE or BO + EI) to 3 days. Time savings

will be more prominent with stricter SEE requirements.

Case 2: Application on experiment data
In the previous example, we used artificially generated data to

show that the algorithm can find the optimum efficiently. In this

example, we demonstrate a real application by leveraging our al-

gorithm to fit the parameters of the degradation model to the

experimental data. Different from the previous case, the

minimum of the fitting error is unknown. Hyperband is used to

allow the algorithm to be less aggressive. Since we expect a

reasonably low fitting error, we set a manual rule to prune a

trial if the absolute difference between the predicted

retention rate and the data is greater than 0.1 at any point. Other

settings are the same as the previous case, i.e., 20 initialization

trials, 300 maximum trial budget, 5 workers, and 15 repeated

optimizations.

Figure 3 shows the results. The experimental data are plotted

as dots in Figure 3A. The optimal fitting curves have a good fit

with the experiment (SEE = 0.53%). The parameters outputted

by the algorithm are shown in Table 1. It can be observed that

the algorithm only chooses SEI formation as the side reaction

to account for degradation. Figure 3B shows the statistics of

15 optimizations. The mean SSE is only about 0.65%. In Fig-

ure 3C, the average ratios of statuses are presented. Only
Patterns 3, 100531, July 8, 2022 5



A B C Figure 3. Results of fitting the degradation

model to experiment data in case 2

(A) Experiment data (dots) and optimal fitting results

(curves).

(B) SEE (the objective value of optimization) versus

given number of trials. Mean and standard deviation

are calculated by 15 repeated optimizations, and

best denotes the one out of 15 optimizations that

produced the optimal parameter, i.e., with minimum

SEE after 300 trials, whose degradation curves are

presented in (A).

(C) The ratio of trials at four statuses versus the

number of fitting steps. Running means the jobs are

running, automatic means jobs have been stopped

by the algorithm, failed means jobs have reported error when solving for degradation curves of the corresponding parameter set, and out of bounds means the

difference between the predicted retention rate and the data is greater than 0.1 at any point. On average, 8.1% of trials can be calculated until the end, and the

others are mostly stopped automatically by the algorithm.
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8.3% of trials are calculated until the end, and the others are

mostly stopped automatically by the algorithm. On average,

each trial will fit 10.2 data points. In other words, due to early

stopping, each optimization process is approximately equivalent

to 47.8 complete trials. Compared with case 1, less computation

is used, although a more conservative strategy (Hyperband) is

implemented, and this may be caused by the nature of the prob-

lems. Comparing Figure 2B with Figure 3B, the SEE in the exper-

imental case is flatter than in the simulation case at the later

stage since the minimal SEE in experiment is higher than the

simulation. As a result, the algorithm is more likely to observe a

potentially better solution when fitting to the simulation data

and is less likely to be pruned.

DISCUSSION

It is challenging to optimize the parameters of battery cycling in

experiments or physics-based simulations. In this article, we

introduced a generic framework suitable for battery-cycling opti-

mization. It consists of a pruner and a sampler. We developed

the approach of using ASHA (pseudocode in Figure 4) with Hy-

perband as the pruner and TPE as the sampler. In our demon-

stration of the calendar-aging parameter-fitting problems, the

framework shows excellent performance. It should be noted

that while calendar aging is used as an example, the approach

can address various complicated cycling problems. This frame-

work can be used for optimization in both simulations and

experiments.

There is a trade-off between exploration (conservative prun-

ing) and exploitation (aggressive pruning). Aggressive pruning

may be used, for instance, when there is a strong correlation be-

tween early and late performance or when we want to obtain a

solution quickly without the need of a precise global optimum.

On the other hand, if we deal with a problemwhere initial cell per-

formance reveals little about the final objective performance, a

conservative strategy with less or no pruning is necessary. The

detailed settings of the framework, such as the hyperpara-

meters, can be adjusted for trade-off between exploration and

exploitation based on the problems. For the pruner, we used Hy-

perband to loop over early-stopping rates to reduce possible

pruning mistakes, yet a fixed early-stopping rate will certainly

be faster if our domain knowledge gives us confidence in an

aggressive strategy. In contrast, if we know that the relation be-
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tween early-stage performance and final performance is weak,

we can force the algorithm to make decisions after more simula-

tion or experimental steps to be conservative. For the sampler,

we used TPE, which is versatile and capable to deal with high-

dimensional design space, but it may be too aggressive to reach

the global optimum. Other sampler algorithms, such as covari-

ancematrix adaptation evolution strategy,9,10 BO, and reinforce-

ment learning can be attempted as well.

Further work includes embedding battery-specific information

into the framework. For example, the current pruner only con-

siders the objective values without trends. Prediction models

can be incorporated into the framework.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and reagents should be

directed to and will be fulfilled by the lead contact, Wei Lu (weilu@umich.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

Optimization algorithms are implemented by Python with Optuna24 and Bo-

Torch23 packages. The P2D model was solved by COMSOL Multiphysics

automated by MATLAB. All data and code used in this paper are deposited

at Zenodo (http://doi.org/10.5281/zenodo.6549835) and GitHub (https://

github.com/deng-cy/cycle_opt).
ASHA

ASHA13 is an extension of Successive Halving Algorithm (SHA).25,26 Their prin-

ciples are the same: keep a percentage of top candidates surviving. The pseu-

docode of ASHA is shown in Figure 4.

Inputs of ASHA are battery parameter vector x, maximum number of steps

N, and some hyperparameters of the algorithm. Generally speaking, consid-

ering the cost of communication between cycler and the computer operating

the optimization framework, we run each step n for every one or more cycles.

In our two cases, each step corresponds to the prediction of a retention rate,

which requires the simulation of a 30-day storage and measurement proced-

ure. The algorithm will not decide early stopping at every step; instead, only

certain steps are decisive and called rung. At each rung, a portion (top 1=h)

of the batteries are promoted to next rung, i.e., allowed to continue cycling.

From our experience, much of the battery information will be revealed at initial

stages, thus the intervals between rungs are distributed exponentially, as

shown in Figure 1. While the number of steps increases between rungs, the

number of cycling batteries decreases, so the total budget roughly remains

the same.

mailto:weilu@umich.edu
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https://github.com/deng-cy/cycle_opt
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Figure 4. Pseudocode of pruner (ASHA) im-

plemented in this paper
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In our demonstration, the algorithm is implemented asynchronously, i.e., a

decision will be made based on existing records, even when some configura-

tions are not finished. Therefore, there will be some incorrect promotions to

cause actual promotion rates slightly higher than 1=h. We also want to note

that it is possible that some previously stopped configurations fall within top

ranks later. Then, we can opt to resume cycling these batteries. A drawback

of this option is the hassle to store all data, thus such repechage was not im-

plemented in our examples for the sake of memory.

Hyperband

Hyperband14 tries to resolve the issue about how early we can stop cycling by

exploring the early-stopping rate s in ASHA. The hyperparameter s indicates

the average amount of budget we spend per configuration. Intuitively, we

want to allocate more resources to distinguish two configurations if they

have either high uncertainty or close objective functions. If we have the

knowledge about the cycling curves, we can manually choose the optimal s.

However, the characteristic of curves is up to the task, which makes things

challenging and complicated.27 Unfortunately, in most cases, including our

examples, we do not have the available information a priori, thus we have to

try different early-stopping rates s = fsmax ; smax � 1; .; 0g, where

smax = bloghNc and P,R denotes the floor function that returns the greatest

integer less than or equal to the input. It starts from the most aggressive

scheme to maximize exploration and ends with all configurations fully cycled.

TPE

The job of a sampler is to point out a new potential optimum according to the

query history fðxð1Þ; yð1ÞÞ;ðxð2Þ; yð2ÞÞ;.;ðxðiÞ; yðiÞÞ;.;ðxðmÞ; yðmÞÞg, where yðiÞ =

fðxðiÞÞ. This type of problem is often solved by sequential model-based optimi-

zation (SMBO)28 when the objective function is expensive to evaluate. BO is a

subfield of SMBO where the models describe the probability distribution of an

objective in unknown space. A strategy in BO is to evaluation points with their

EI. For a minimization problem, EI is defined as

EIy�ðxÞ =

Zy�

�N

ðy� � yÞpðyjxÞdy; (Equation 8)

where y� is a benchmark value, for instance, the current optimum min
j

yðjÞ.

Note that many BO algorithms choose to model pðyjxÞ, yet TPE models

pðxjyÞ by defining
pðxjyÞ =

�
lðxÞ; if y < y�

kðxÞ; if yR y�
; (Equation 9)

where y� is set to be some quantile g of the observed y values, namely,

pðy < y�Þ = g. lðxÞ is the density formed by fitting observations fxðjÞg whose

objective functions are lower than y* to Gaussian mixture models,10 and kðxÞ
is the density formed by the rest of the observations.

Using Bayes’ rule, Equation (8) becomes

EIy�ðxÞ =

Zy�

�N

ðy� � yÞpðxjyÞpðyÞ
pðxÞ dy: (Equation 10)

Considering

pðxÞ =

ZN

�N

pðxjyÞpðyÞdy = glðxÞ+ ð1 � gÞkðxÞ (Equation 11)

and

Zy�

�N

ðy� � yÞpðxjyÞpðyÞdy = lðxÞ
Zy�

�N

ðy� � yÞpðyÞdy; (Equation 12)

we have

EIy� ðxÞ =
lðxÞ R y�

�N
ðy� � yÞpðyÞdy

glðxÞ+ ð1 � gÞkðxÞ f

�
g+

kðxÞ
lðxÞ ð1 � gÞ

�� 1

: (Equation 13)

To maximize EI over x, we minimize kðxÞ=lðxÞ, i.e., choosing points x with

high probability under lðxÞ and low probability under kðxÞ.
We could see from previous derivations that the relative rank of yðiÞ from

query history matters rather than the absolute value. This property provides

us with an advantage to deal with pruned (early stopped) batteries. Note

that it is not correct to simply add information of pruned configurations to query

history like those completed ones. Pruned batteries, anticipated to perform

poorly at the end, may outperform completed ones since the former are only

cycled for a small number of times. One way is to ignore all pruned configura-

tions, but this wastes cycling information. Thus, we choose to force pruned

configurations within kðxÞ when categorizing in Equation (9).
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ll
OPEN ACCESS Article
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2022.100531.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support by LG Energy Solution.

AUTHOR CONTRIBUTIONS

Conceptualization, C.D. and W.L.; methodology, C.D.; software, C.D. and

A.K.; formal analysis, C.D., visualization, C.D.; writing – original draft, C.D.

and A.K.; writing – review & editing, C.D. and W.L.; supervision, W.L.; funding

acquisition, W.L.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: March 9, 2022

Revised: April 28, 2022

Accepted: May 18, 2022

Published: June 20, 2022

REFERENCES

1. Deng, C., and Lu, W. (2021). A facile process to fabricate phosphorus/car-

bon xerogel composite as anode for sodium ion batteries. J. Electrochem.

Soc. 168, 080529. https://doi.org/10.1149/1945-7111/ac18e0.

2. Deng, C., and Lu, W. (2020). Consistent diffusivity measurement between

galvanostatic intermittent titration technique and electrochemical imped-

ance spectroscopy. J. Power Sources 473, 228613. https://doi.org/10.

1016/j.jpowsour.2020.228613.

3. Bordin, C., Anuta, H.O., Crossland, A., Gutierrez, I.L., Dent, C.J., and Vigo,

D. (2017). A linear programming approach for battery degradation analysis

and optimization in offgrid power systems with solar energy integration.

Renew Energ 101, 417–430. https://doi.org/10.1016/j.renene.2016.

08.066.

4. Maheshwari, A., Paterakis, N.G., Santarelli, M., and Gibescu, M. (2020).

Optimizing the operation of energy storage using a non-linear lithium-ion

battery degradation model. Appl Energ 261, 114360. https://doi.org/10.

1016/j.apenergy.2019.114360.

5. Attia, P.M., Chueh, W.C., and Harris, S.J. (2020). Revisiting the t0.5 depen-

dence of SEI growth. J. Electrochem. Soc. 167, 090535. https://doi.org/

10.1149/1945-7111/ab8ce4.

6. Lin, X., and Lu, W. (2018). A framework for optimization on battery cycle

life. J. Electrochem. Soc. 165, A3380–A3388. https://doi.org/10.1149/2.

0741814jes.

7. Attia, P.M., Grover, A., Jin, N., Severson, K.A., Markov, T.M., Liao, Y.-H.,

Chen, M.H., Cheong, B., Perkins, N., Yang, Z., et al. (2020). Closed-loop

optimization of fast-charging protocols for batteries with machine

learning. Nature 578, 397–402. https://doi.org/10.1038/s41586-020-

1994-5.

8. Severson, K.A., Attia, P.M., Jin, N., Perkins, N., Jiang, B., Yang, Z., Chen,

M.H., Aykol, M., Herring, P.K., Fraggedakis, D., et al. (2019). Data-driven

prediction of battery cycle life before capacity degradation. Nat. Energy

4, 383–391. https://doi.org/10.1038/s41560-019-0356-8.

9. Hansen, N. (2006). Towards a new evolutionary computation. In Advances

in the Estimation of Distribution Algorithms, J.A. Lozano, P. Larrañaga, I.
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