
1

Vol.:(0123456789)

Scientific Reports |         (2022) 12:6128  | https://doi.org/10.1038/s41598-022-09953-9

www.nature.com/scientificreports

Large‑scale forecasting 
of Heracleum sosnowskyi habitat 
suitability under the climate 
change on publicly available data
Diana Koldasbayeva1*, Polina Tregubova2, Dmitrii Shadrin2,3, Mikhail Gasanov2 & 
Maria Pukalchik4

This research aims to establish the possible habitat suitability of Heracleum sosnowskyi (HS), one of 
the most aggressive invasive plants, in current and future climate conditions across the territory of 
the European part of Russia. We utilised a species distribution modelling framework using publicly 
available data of plant occurrence collected in citizen science projects (CSP). Climatic variables and 
soil characteristics were considered to follow possible dependencies with environmental factors. We 
applied Random Forest to classify the study area. We addressed the problem of sampling bias in CSP 
data by optimising the sampling size and implementing a spatial cross-validation scheme. According 
to the Random Forest model built on the finally selected data shape, more than half of the studied 
territory in the current climate corresponds to a suitability prediction score higher than 0.25. The 
forecast of habitat suitability in future climate was highly similar for all climate models. Almost the 
whole studied territory showed the possibility for spread with an average suitability score of 0.4. 
The mean temperature of the wettest quarter and precipitation of wettest month demonstrated the 
highest influence on the HS distribution. Thus, currently, the whole study area, excluding the north, 
may be considered as s territory with a high risk of HS spreading, while in the future suitable locations 
for the HS habitat will include high latitudes. We showed that chosen geodata pre-processing, 
and cross-validation based on geospatial blocks reduced significantly the sampling bias. Obtained 
predictions could help to assess the risks accompanying the studied plant invasion capturing the 
patterns of the spread, and can be used for the conservation actions planning.

The relocation and introducing of alien species into new habitats are recognised as one of the major drivers of 
global biodiversity loss1–3. Invasive alien (non-indigenous) species IAS tend to spread rapidly and pose a seri-
ous threat to endemic species due to e.g. the competition in the resource use, allelopathy occurrence, toxicity 
of IAS4,5. Thus, the emergence of IAS can dramatically change the functioning of the natural communities and 
overall ecosystem structure6–8.

Such common occurrences as human living territory expansion, globalization of transport, and changing 
of the land-use types favor species invasion. With that, the estimated costs of the elimination of IAS are usually 
quite high. The specific of individual IAS limits the implementation of such practices. The other constraints are 
the territory’s size that needs to be treated, the possibility of negative side outcomes because of the use of chemi-
cal and biological control agents, and the development of the invasion process9–11. IAS disproportionally affect 
the most vulnerable communities in poor areas, at the locations of abandoned and disturbed lands. Thus, their 
spread is clearly pulling up the achievement of the Sustainable Development Goals12.

Heracleum sosnowskyi Manden (Hogweed, HS) is one of the examples of extremely dangerous invasive species. 
The natural habitat of HS is the central and eastern Caucasus area and adjacent regions, Transcaucasia region 
and Turkey13. Large biomass and the ability to live and develop in cold climates became HS a popular crop in 
agriculture in the middle of the 20th century14. However, soon the unpleasant odor of milk and meat of animals 
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that were fed with HS fodder and the phototoxic effect of above-ground parts of HS were revealed, and as a 
result, the cultivation was abandoned.

The need to forecast the potential extinction of different species in different spatial and temporal contexts, 
has led to the Species Distribution Modelling (SDM) development. SDM framework is based on the ecological 
concept assuming that the distribution of species is explained by the set of factors, such as environmental require-
ments and interactions with other living organisms, physiology characteristics, evolution history15,16. General 
workflow of correlative SDM consists of (1) obtaining the data about the species of study occurrences: presence-
only data, presence/absence data, abundance data; environmental characteristics data, sometimes considering 
biotic interactions as well, (2) search of the interconnections between these data, and (3) building the map of 
predicted distributions across the region of interest. SDM framework is implemented in a variety of packages 
and libraries in most common programming languages, such R or Python, and allows to use several different 
statistical or machine learning (ML) models, e.g., generalized linear models, classification and regression trees, 
random forest (RF), support vector machine, artificial neural networks, and others, and ensemble of them17–21. 
In terms of data availability these models mostly differ from each other by the requirements to occurrence 
records, i.e., should the occurrence data be represented by two classes—presence and absence, or it can be only 
presence data22. The choice of the appropriate modelling method significantly affects outcomes and depends 
on multiple factors: size of the territory of study, type of the environment considering its changing dynamics, 
characteristics of modelling species, data availability, while it has become more popular to use ensembles-across-
methods forecasting23. However, there are no strict directives on how to implement the ensemble, e.g. should 
one estimate an average prediction or weighted average prediction—thus, this solution is not so straightforward 
in comparison with basic modelling methods24. Some studies demonstrate higher performance of a particular 
model above others for specific cases. For example, it has been shown that RF approach is highly suitable for 
forecasting on large territories with a limited amount of data25, while for marine environments, ensemble models 
are recommended to use26.

Correlative SDM has a conceptual limitation—it is assumed to capture realized ecological niche, which 
is confusing when IAS is the object of the study27. Another struggle is the quality of using data, precisely, the 
occurrence and absence of the species. It is stated that pseudoabsence data should be field corrected, otherwise 
it shows strong bias, decreasing the species prediction perfomance28. In reality, such correction is almost impos-
sible for large territories and requires significant collections of remote sensing data with appropriate resolution. 
It is much more controversial issue when the spread of IAS is the case. In case of a sufficient number of verified 
absence points of the studied IAS, a question that remains: is this location unsuitable indeed for the selected 
IAS, or the IAS has not reached it yet29. However, despite all the mentioned limitations, correlative SDM still is 
the primary tool for the IAS distribution modelling30. Another possibility is to use mechanistic SDM, which is 
developed on the process-based approach, e.g. phenology model31, but such models require calibration of many 
internal parameters.

While it is extremely difficult to eliminate all growing populations of the invasive species, HS including, the 
information from the modelling of habitat suitability can aid in prioritizing the management of invaded areas. 
Precisely, it can help to mark out the territories where the possibility of development of rapidly growing popula-
tions poses the largest threat to native species, agriculture, and populated areas. Considering this context use of 
data from CSP is of particular interest, however, it may have its limitations. In this work large-scale HS distribu-
tion modelling is performed. We estimated habitat suitability for the current climate as average from 2000 to 2018 
and possible future climate from 2040 to 2060 according to three climate models—BCC-CSM2-MR, CanESM5, 
and CNRM-CM6-1—in two scenarios, the worst and the best in terms of greenhouse gas emissions (Fig. 1).

The general workflow of the presented research included the following steps: (i) collection of the required 
data from public sources, (ii) data pre-processing, (iii) feature selection, (iv) model training and validation, (v) 
receiving of the outputs of the best model, (vi) building the maps, showing the spatial distribution of the occur-
rence probability (habitat suitability) across the territory of the study, expressed in the range from 0 to 1, for 
current and possible future climate conditions. Presented methodology and results of HS spread modelling can 
be used for invasion risk assessment.

Results
Optimisation of the occurrence data distribution based on  the thinning procedure.  Ideally, 
thinning removes the optimal number of records to substantially reduce the effects of sampling bias, as in our 
case when most of the locations are concentrated in a few places—while simultaneously retaining most of the 
valuable information. Figure 2 demonstrates the results of model prediction for (1) initial dataset with data col-
lected from all available sources; (2) dataset with thinning distance 4 km, (3) dataset with thinning distance 7 
km, (4) dataset with thinning distance 10 km. It is also important to know how the predictors’ distribution would 
change at the different thinning intervals. In our case, there were no significant differences between distribu-
tions’ shapes of environmental features that corresponded to the different thinned data (Fig. S1).

The outputs of models vary significantly depending on the number of points at different input datasets. The 
ROC-AUC scores of the models built on the complete data, datasets at 10, 7, and 4 km thinning distances are 
0.877, 0.83, 0.85, and 0.82 correspondingly (Fig. S4). Modelling results obtained from the complete dataset 
represent the territory of the study as mostly unsuitable for HS spread, 84% of the territory is characterised by 
the prediction value of less than 0.25. On the most contrast variant of the model built on the data at 10 km thin-
ning distance, the suitability rose considerably: the percent of territory where the prediction value is above 0.5 
increased to 22% compared to 3% in the case of full data, the area of territory under less than 0.25 prediction 
values is decreased to 31% and 44% at thinning distances of 10 and 7 km respectively. We further need to choose 
which model to use for the next step of future prediction by finding a reasonable output.
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From the results visualised as maps, we can notice, that the model built on the full dataset is overfitted, does 
not cover northern latitudes, and poorly represent the original habitat located in the Caucasus area. It mostly 
repeats the points of observation thus the possible distribution of habitat suitability of HS obtained from the 
full dataset is built in a learn-by-heart manner. On the contrary, the model built on the dataset obtained due to 
thinning at the distance of 7 km seems to be the most suitable in terms of both prediction results and keeping as 
much information as possible. Additionally, while we cannot lean on the evaluation scores to support this con-
clusion, we estimated the variability of prediction values across the territory of the study. It was the highest for 
the datasets obtained at 10 and 7 km thinning distances. The outputs of the model built on 7 km distance data 
were more diverse at the 100 km blocks, as was used for spatial cross-validation (Figs. S2, S3).

Features selected for modelling.  To avoid over-fitting because of using redundant variables, an impor-
tant part of the SDM procedure was choosing the most meaningful set of them, corresponding to the observed 
HS occurrence. To do this several approaches were combined: search of highly correlated features and estima-
tion of the importance of features by the Mean Decrease Gini (MDG) and the Mean Decrease Accuracy (MDA) 
scores. Thus, the general workflow consisted of 3 general steps: (1) generation of correlation matrix; (2) estima-
tion of MDG and MDA scores; (3) picking up highly important non-correlated features and choosing the fea-
tures that have correlates but demonstrate higher importance according to both MDG and MDA scores. The first 
step of selection includes a search of highly correlated features and the formation of sets of mutually exclusive 
covariates according to the absolute value of Pearson correlation coefficient greater than 0.8. The correlations are 
demonstrated in Fig. S5. From the group of bioclimatic variables, the following subset of features demonstrated 
a high correlations’ coefficients between each other:

•	 BIO1, BIO6, BIO9, BIO11;
•	 BIO6, BIO4, BIO7;
•	 BIO4, BIO7, BIO16;
•	 BIO5, BIO10;
•	 BIO16, BIO13;
•	 BIO13, BIO14, BIO18, BIO17, BIO12.

Then, based on the variable importance results obtained by MDA and MDG, the most important features were 
selected and included in the core list for the predictions: BIO8, BIO10, BIO13, BIO15, BIO19. Additionally, 
BIO1 and BIO9 features demonstrated approximately equal importance in corresponding forecastings. Thus, 
we built different RF models with the core list of features including only BIO9 for the first variant and only BIO1 
for the second one. By comparing the results from modelling, BIO1 demonstrated higher importance, so it was 
included in the final list of features.

Using the same approach, described above, the selection of soil properties was performed. According to the 
correlation matrix (Fig. S5), soil properties do not have correlation coefficients equal to 0.8 or more in absolute 

Figure 1.   Flowchart of the approach.
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values with bioclimatic variables. However, SOC and Sand content demonstrated a high enough correlation. CF, 
Silt and Sand did not show high importance in the corresponding analyses. Thus, from the soil features, the final 
list included only CEC and SOC. Therefore, the following list of features was used to train the algorithm: SOC, 
CEC, BIO1, BIO8, BIO10, BIO13, BIO15 and BIO19 (Fig. S6).

According to Fig. S6, BIO13 and BIO8 demonstrated the highest importance in predicting HS distribution. 
Based on MDA, soil properties are considered to be more important compared to MDG. BIO1 and BIO10 
demonstrated less importance related to MDA, whereas CEC and BIO19 had the same pattern related to MDG.

Possible habitat suitability in the future.  Using the set of environmental predictors obtained in at the 
feature selection stage, we modelled the possible future spread of HS across the territory of the study. To do this, 
we estimated the distribution of bioclimatic variables according to the available global climate models. From 
obtained results, we see that CNRM-CM6-1 and BCC-CSM2-MR show almost identical results in general, as 
well as between chosen SSP (Fig. 3, Fig. S7). According to them, only 6–8 % of the study territory in the future 
are characterised by prediction values less than 0.25. The CanESM5 results show a slightly different picture: the 
percent of the likely unsuitable territory is down even more to 3% at the better SSP126, and to 0.7% at the worst 
CO2 atmosphere concentration scenario—SSP585.

Figure 2.   Maps of prediction of possible distribution of HS in current climate conditions using different 
thinning distances and, consequently, amounts of input points. The quality of prediction varies significantly, 
while the model built on the full dataset is obviously overfitted.
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Discussion
Sampling bias is a frequent problem in SDM because presence-only data is collected predominantly in more 
accessible locations32. The spatial sampling bias also leads to environmental bias in the data set33. Ignoring the 
problem leads to inaccurate forecasting and can be followed by an inappropriate risk assessment of invasive 
species and mistakes in conservation planning. The number of methods to tackle the problem of sampling bias 
is limited. For rare records, a new Poisson point process model is proposed34, where environmental effect and 
sampling bias are explicitly modelled in separate clusters in a framework of quasi-linear modelling. Another 
example of solving this problem is the incorporation of background (pseudo-absence) points with the same 
sampling bias as the distribution of occurrence points33. If the number of records is enough, spatial filtering is 
commonly used when some part of occurrence points is discarded. We combined two methods to overcome the 
sampling bias of HS occurrence points: spatial filtering and the creation of the same effect of sampling bias 
among pseudo-absence points.

The main limitation of the data thinning method is that we should assume the particular level of sampling 
bias to proceed to the following modelling, while in reality, it is actually unknown. This is why the search for 
the most appropriate amount of discarded records for occurrence points is not straightforward. Therefore we 
used three distances: 4 km, 7 km and 10 km to compare with the initial dataset. The estimates for the current 
climate (Fig. 2) demonstrate significant differences in predicted habitat suitability that are highly dependent on 
the thinning process. At the same time, using the initial dataset in forecasting leads to inaccurate results, which 
demonstrates over-fitting. Extensive results carried out show that spatial filtering improves forecasting, the higher 
number of discarded points—the higher number of locations that are more suitable for HS. Nevertheless, the 
big distance of 10 km excludes the largest amount of points which leads to an increase in the uncertainty of the 
model. Therefore, the distance of 7 km was considered as optimum in our study. However, it must not be forgot-
ten that the suspense of the level of sampling bias is one limitation of our implementation.

Figure 3.   Maps of prediction for possible distribution in future climate conditions on the example of selected 
global climate models CNRM-CM6-1, CanESM5, BCC-CSM2-MR, in two scenarios of Shared Socioeconomic 
Pathways—SSP126 and SSP585.
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The characterization of the possible future expansion of invasive species might be a powerful tool for the 
highlighting of the importance of conservation management. Research results allow considering possible shifts 
in the ecosystem components on different levels without actions to be taken.

According to the modelling results the main change between current and possible future distributions is in 
the noticeable increase of the average possible suitability across the territory from 0.28 in current climate condi-
tions to 0.37–0.4 at SSP126 and to 0.37–0.43 at SSP585 in future climate considering the results of the selected 
models (Table S1). Moreover, in the future conditions, the territory of study is covered more or less uniformly 
by the prediction values higher than 0.25—on average 89% is potentially suitable for HS spread, which is two 
times more, compared to the current climate predictions based on the selected data shape. At the same time, 
the maximum prediction value in future climate is decreased from 1 to 0.7. The territory covered by prediction 
values more than 0.25 includes the high latitudes above 60◦ , especially in the SSP585 scenario according to the 
CanESM5 model.

According to established knowledge, the light availability in combination with disturbed upper soil coverage is 
necessary for the development of HS plants at the early stages35. Thus, the conditions of long daylight in northern 
latitudes during the period of active vegetation might especially favour the plants’ growth in the lighted cover 
locations with suitable wetness regime. Therefore, HS in future climate might impose a serious danger to the 
territories  that are currently characterised by low biodiversity and productivity. It can be additionally considered, 
that the active spread of HS can influence the carbon cycle by reducing biodiversity and changing the structure 
of soil profile. HS is reported not to form litter36, so the structure of microorganisms’ community should shift, 
while soil properties are expected to degrade due to a decrease of carbon stock37.

Methods
From the popular algorithms, we chose the Random forest model as the most suitable for our case. The data 
required for predictions can be divided into plant occurrence records and environmental features. Bioclimatic 
variables and soil properties were selected as the main environmental features. All of the data were obtained 
from open sources.

Heracleum Sosnowskiy plant description.  Heracleum sosnowskyi is a monocarpic perennial plant of 
the Apiaceae family. The height is up to 3–5 m with a straight stem up to 12 cm in diameter. HS compound steam 
leaves can reach 150 cm, both long and wide38. The blooming period starts in July and continues until the end of 
September. Plant reproduction is performed by seeds only. The seeds’ depth of germination is reported as mainly 
in the upper 5 cm down to 15 cm of soil. One plant can produce 10–20,000 seeds39,40. Seeds germinate in the early 
spring, while some have reported that a period of cold stratification for the dormancy break is obligatory for ger-
mination development. Suitable conditions for HS include a temperate climate with warm humid summers and 
cold winters, while it is probably not drought resistant. Plants of HS tend to neutral soils with a pH range from 6 
to 7, rich in nutrients, and being reported as nitrophilous, so the eutrophication of the environment favours HS 
development. HS plants do not tolerate shade conditions in the first growing period.

HS is mostly spread in artificial and semi-natural habitats, including grasslands, pastures, parks, roadsides, 
agricultural fields, riverbanks or canal sides, and other distributed habitats. Currently, the main pathways of 
spread include an involuntary entry with soil on vehicles, machinery, footwear or the use of soil as a commodity 
(as the growing medium rich in organic matter)39.

Study area.  The area for modelling extends from approximately 41◦ to 70◦ N and from 27◦ to 60◦ E, and 
Kaliningrad region, it equals to approximately 4 mln km2 (Fig. 4).

The European part of Russia is the most inhabited part of the country, and it is the home of approximately 
80% of the total population of Russia. It includes the East European Plain, Caucasus mountains and Ural moun-
tains, with the predominance of the East European Plain. Environmental characteristics across the territory of 
study vary significantly. The climate is changing from semi-arid in the south to subarctic in the north, including 
humid continental climate conditions. Natural vegetation is represented by almost all types of biomes with the 
prevalence of different types of forests: broadleaf and mixed forests, coniferous forests, and boreal forests (taiga), 
while the area of arable lands is reported to be approximately 650,000 km241,42. The territory is subjected to the 
constant land-use types and cover changes due to the urbanization and switch of the status of arable lands—i.e. 
reduction of croplands and development of fallows and forests, and, vice versa, returning of some of them into 
the cultivation process43. The soil cover is represented by the contrast by their physicochemical properties groups, 
in the northern part of Luvisols, Podzols, Histosols, while of the southern part—by Chernozems, Kastanozems, 
Solonetz44.

Collection of the input data.  Plant occurrence data.  Plant occurrence coordinates were collected from 
several publicly available sources related to citizen science projects: the Global Biodiversity Information Facility 
database45, iNaturalist database46, and the database of the “Antiborschevik” community47. Records were docu-
mented by human observation and collected from 2000 to 2021. The overall number of initial occurrence points 
from combined sources is 7637.

Environmental predictors.  Climate data Modelling was performed for current and future climate conditions at 
its two scenarios, selected year ranges were 2000–2018 and 2040–2060 respectively.

Climatic variables were collected from the Worldclim database48, containing the average seasonal information 
relevant to the physiological characteristics of species and available at different resolutions. We chose 10 arc-
minutes spatial resolution taking into account the size of the studied area. Table 1 provides a short description 
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of the used bioclimatic features, and we refer the reader to the Worldclim project for detailed information on 
the variables’ calculation.

For the future climate scenarios, we used two Shared Socioeconomic Pathways (SSPs)49—1-2.6 and 5-8.5, 
corresponding to the lowest (keeping global mean temperature increase below 2 ◦ C) and the highest (at the 
increase of population without technological change) predicted future greenhouse gases emission scenarios. 
For these data, we took the same resolution (10 arc-minutes) as discussed above.

Figure 4.   Map of the study area: white colour represents the territory used for prediction, red points 
correspond to the dataset of HS occurrence, collected from the available sources.

Table 1.   Description of used bioclimatic variables.

Parameter Full name

BIO1 Annual mean temperature

BIO2 Mean diurnal range

BIO3 Isothermality

BIO4 Temperature seasonality

BIO5 Max temperature of warmest month

BIO6 Min temperature of coldest month

BIO7 Temperature annual range

BIO8 Mean temperature of wettest quarter

BIO9 Mean temperature of driest quarter

BIO10 Mean temperature of warmest quarter

BIO11 Mean temperature of coldest quarter

BIO12 Annual precipitation

BIO13 Precipitation of wettest month

BIO14 Precipitation of driest month

BIO15 Precipitation seasonality

BIO16 Precipitation of wettest quarter

BIO17 Precipitation of driest quarter

BIO18 Precipitation of warmest quarter

BIO19 Precipitation of coldest quarter
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We used the Equilibrium Climate Sensitivity to select the climate model to model future HS distribution. 
Equilibrium climate sensitivity (ECS) is defined as the global mean surface air temperature change due to a rapid 
doubling of carbon dioxide concentrations as soon as the associated ocean-atmosphere-sea ice system reaches 
equilibrium. As the ECS value increases, the model’s sensitivity to the CO2 concentration in the atmosphere 
increases. We have chosen CanESM5 model (ECS—5.6), CNRM-CM6-1 model (ECS—4.3) and BCC-CSM2-
MR model (ECS—3.0)50.

For the future climate scenarios we selected three climate models:

•	 BCC-CSM2-MR Beijing Climate Center climate system model developed in Beijing Climate Center, China 
Meteorological Administration51. Model has horizontal resolution 1.125◦ by 1.125◦.

•	 CanESM5 Canadian Earth System Model version 5 developed in Canadian Center for Climate Modelling 
and Analysis, Canada52. Horizontal resolution 2.81◦ by 2.81◦.

•	 CNRM-CM6-1 Climate model developed in National Center of Meteorological Research, France53. Horizontal 
resolution 1.4◦ by 1.4◦.

Authors of the WorldClim project prepared historical and future climate data to a uniform spatial (10 arc-
minutes) and temporal resolution.

Soil data Soil data were downloaded from the SoilGrids database54—a system for global digital soil map-
ping. SoilGrids provides continuous data at several depths of the spatial distribution of soil properties across 
the globe with selected resolution. It uses a machine learning approach to reconstruct continuous data from 
230,000 soil profile observations from the WoSIS (The World Soil Information Service) database and a series of 
environmental covariates.

From the whole set of the data provided by SoilGrids several properties were chosen for the forecasting: rela-
tive percentage of silt (Silt, %), sand (Sand, %), a volumetric fraction of coarse fragments (CF, %), cation exchange 
capacity (CEC, cmolc/kg ) and soil organic carbon (SOC, g/kg) at the depth 5–15 cm, where the HS seeds are 
assumed to be located. These variables are expected to be more stable over time than bioclimatic predictors; thus, 
chosen soil properties could be implemented for the future time the same as in the present.

Data pre‑processing.  All the data were transformed to the ASCII format by R script and using software 
DIVA-GIS following the tutorial for the preparation of WorldClim files for use in SDM (http://​www.​lep-​net.​org/​
wp-​conte​nt/​uploa​ds/​2016/​08/​World​Clim_​to_​MaxEnt_​Tutor​ial.​pdf) with unified selected resolution 340 sq.km.

Optimization of the occurrence points amount.  The general problem in using the available data collected from 
the databases of the citizen science projects is that the points of observation are distributed non-uniformly. For 
instance, the frequency of the records depends on the density of the population directly. The spatial filtering of 
the data (reducing the number of points) can be performed to reduce the sampling bias55. We prepared three 
datasets with a distance between points of 4, 7 and 10 km with 2402, 1846 and 1504 occurrence points cor-
respondingly filtering the initial dataset. For the thinning step thin() function was used within the R package 
spThin with 100 iterations for each of chosen thinning distances. To understand how much data we could lose, 
we used the analysis of feature distribution and evaluated the general fairness of the model performance.

Pseudo‑absence generation.  Due to the availability only of the presence points, it is important to generate 
the absence points for further implementation of the selected algorithm. Although the generation of pseudo-
absence points in SDM research is a widespread solution, a closer look at the literature reveals several gaps and 
shortcomings. Since the raw dataset of the HS distribution demonstrates strong sampling bias, the generation 
of pseudo-absence points using the usual ‘random’ strategy can aggravate the sampling bias problem. Thus, the 
combination of the ‘disk’ and ‘random’ strategies was applied for the generation of the pseudo-absence points 
using the biomod R package17.

•	 The ‘disk’ strategy is established on the geographic distance works as separation from truth presence and pos-
sible absence points. The optimal geographic distance for HS was chosen as 25 km. This distance was chosen 
empirically by trial-and-error. We started with 18 km (because the size of the cell is   9–18 km depending on 
location) and finished with 50 km. Using distances such as 30–50 km lead to a positive spatial autocorrela-
tion. Thus, we decided to set 25 km which finally provided both optimal model performance and reduced 
spatial autocorrelation.

•	 The second part of the generation was based on the ‘random’ strategy with filtration: according to the differ-
ent range of climate conditions on the territory of Russia, there are several places where HS is not detected, 
thus not growing. The selection of unsuitable places for HS related to the north of Russia, where it is might 
be too cold for plant species. From all amount of randomly generated generated points we selected points 
with condition latitude > 64◦ , according to tundra board line.

Features selection procedure.  To avoid over-fitting and to choose the most conscientious set of parameters 
for final modelling, two approaches were combined. We searched features that are not correlated with others 
by a selected threshold is equal to 0.8 in absolute values56 and estimated variable importance using the Mean 
Decrease Gini (MDG) and the Mean Decrease Accuracy (MDA) as the result of modelling on enumerated 
parameters’ combinations. MDG score is related to the homogeneity of the nodes and leaves coefficient. With the 
rise of the MDG score the importance of the corresponding feature is also increasing. MDA describes how much 

http://www.lep-net.org/wp-content/uploads/2016/08/WorldClim_to_MaxEnt_Tutorial.pdf
http://www.lep-net.org/wp-content/uploads/2016/08/WorldClim_to_MaxEnt_Tutorial.pdf
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accuracy decrease by removing the feature. We selected the most important features according to the MDG and 
MDA scores by the highest values of both metrics using a sequential search from an initial set of variables.

Modelling approach.  Random forest.  Choosing the appropriate method for creating the tool for accurate 
SDM is crucial because the overall performance could vary dramatically, depending on the selected model and 
particular use case. There is a limited amount of acceptable machine learning methods that can be used in SDM. 
Several popular methods demonstrated high performance in modelling on large areas: GBM, RF, and GLM. 
In particular, for modelling and prediction of the potential distribution of invasive species, GLM and RF were 
used57. We decided to use RF because this model was successfully implemented for solving a variety of tasks such 
as predictions of animal and plant distributions, and also was used for making predictions on a large territory58. 
The other important advantage that should be noticed is the straightforward interpretability of RF, which means 
that it is possible to evaluate the impact of each environmental parameter on the occurrence of the invasive spe-
cies.

Approach to the cross‑validation of the model.  A unique approach for the model calibration is needed to reduce 
spatial autocorrelation caused by the absence of a strict sampling design. In our case, the data was split into 
training and testing folds using the spatial blocks technique in a scheme of 13-fold cross-validation. Random 
spatial splitting was performed 20 times to calibrate the model, with a distance between blocks set as 100 km. To 
calibrate the model we used a spatial blocks approach with random type from R package blockCV.

Evaluation of the model performance.  To evaluate the performance of the model a classic approach for ecology 
was used—Area Under Curve (AUC​) or Receiver operating characteristic (ROC), related to the independent 
threshold techniques16. The principle of methods lies in the standard confusion matrix, where rows and columns 
represent actual and predicted classes. The construction of ROC curves uses all possible thresholds to obtain 
different confusion matrices which leads to the reproduction of the curve with two-dimensional space: (1) on 
y-axis is True Positive Rate (sensitivity, recall); (2) on x-axis is False Positive Rate (equal to 1 − specificity). In our 
case true positive (TP, sensitivity) rate means that predicted places where HS grows correspond to actual. Simi-
larly, true negative rate (TN, specificity) indicates correctly classified locations as absence points. In contrast, the 
missteps when the model predicted places as presence points for plants that are incorrect are False Positive, FP, 
and places where HS is absent, according to the model, while this is not true are recognised as False Negative, FN.

Code availability
For the data, preprocessing and modelling details to reproduce the calculations, we refer the reader to the reposi-
tory of the project https://​github.​com/​herac​leums​osnow​skyi/​Herac​leum_​Sosno​wskyi.
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