

CRYSTALLOGRAPHIC

OPEN a ACCESS

related structure of the parent derivative compound, see: Silva et al. (1997).

Badma N. Mankaev,^{a,b} Kirill V. Zaitsev,^{a,b} Sergey S. Karlov,^{a,b} Mikhail P. Egorov^a and Andrei V. Churakov^{a,c}*

^aN.D. Zelinsky Institute of Organic Chemistry, Leninsky prospekt 47, Moscow 119991, Russian Federation, ^bDepartment of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russian Federation, and ^cInstitute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation. *Correspondence e-mail: churakov@igic.ras.ru

Received 28 October 2015; accepted 11 November 2015

Edited by G. Smith, Queensland University of Technology, Australia

The asymmetric unit in the structure of the title compound, C₂₅H₂₂NO₂⁺·Br⁻·0.5CH₂Cl₂·0.5H₂O, comprises two pseudosymmetry-related cations, two bromide anions, a dichloromethane molecule and a water molecule of solvation. The two independent cations are conformationally similar with the comparative dihedral angles between the central pyridine ring and the three benzene substituent rings being 3.0(2), 36.4(1)and 24.2 (1)°, and 3.7 (2), 36.5 (1) and 24.8 (1)°, respectively. In the crystal, the cations, anions and water molecules are linked through $O-H \cdots O$ and $O-H \cdots Br$ hydrogen bonds, forming an insular unit. Within the cations there are also intramolecular N-H···O hydrogen bonds. Adjacent centrosymmetrically related aggregates are linked by π - π stacking interactions between the pyridine ring and a benzene ring in both cations [ring-centroid separations = 3.525(3) and 3.668 (3) Å], forming chains extending across the *ac* diagonal. Voids between these chains are filled by dichloromethane molecules.

Keywords: crystal structure; ONO-type ligands; pseudosymmetry; hydrogen bonding; π – π stacking.

CCDC reference: 1436252

1. Related literature

For general background to the chemistry affording 2,6-bis-(2hydroxyphenyl)pyridines, see: Huang et al. (2012, 2013); Kireenko et al. (2013); Klein et al. (2010); Li et al. (2000); Steinhauser et al. (2004); Zhang et al. (2006). For the closely

2. Experimental

2.1. Crystal data

 $2C_{25}H_{22}NO_2^+ \cdot 2Br^- \cdot CH_2Cl_2 \cdot H_2O$ $M_r = 999.63$ Monoclinic, $P2_1/c$ a = 14.7890 (12) Åb = 17.5387 (14) Å c = 19.0163 (15) Å $\beta = 112.577(1)^{\circ}$

V = 4554.4 (6) Å³ Z = 4Mo Ka radiation $\mu = 1.95 \text{ mm}^{-1}$ T = 150 K $0.25 \times 0.20 \times 0.10 \text{ mm}$

34435 measured reflections

 $R_{\rm int} = 0.050$

8482 independent reflections

6350 reflections with $I > 2\sigma(I)$

2.2. Data collection

Bruker SMART APEXII diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{\rm min} = 0.642, \ T_{\rm max} = 0.829$

2.3. Refinement $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.132$ S = 1.068482 reflections 585 parameters

15 restraints

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.99 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.92 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
N1-H1···O11	0.88	1.82	2.547 (4)	138
$N2 - H2 \cdot \cdot \cdot O21$	0.88	1.85	2.575 (4)	138
O11−H3···O1	0.79(2)	1.80(3)	2.578 (4)	167 (5)
O12−H4···Br1	0.79 (2)	2.43 (2)	3.219 (3)	175 (5)
$O21-H5\cdots Br1^{i}$	0.79(2)	2.41(2)	3.200 (3)	170 (5)
$O22 - H6 \cdot \cdot \cdot Br2$	0.79 (2)	2.35 (2)	3.131 (3)	170 (5)
$O1 - H7 \cdot \cdot \cdot Br2^{ii}$	0.80(2)	2.41(2)	3.206 (3)	173 (5)
$O1 - H8 \cdots Br1$	0.79 (2)	2.61 (3)	3.365 (3)	159 (5)

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Acknowledgements

This work was supported by a grant from the Russian Scientific Fund (grant No. 14-13-01456).

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZS2352).

References

- Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Huang, M., Kireenko, M. M., Lermontova, E. K., Churakov, A. V., Oprunenko, Y. F., Zaitsev, K. V., Sorokin, D., Harms, K., Sundermeyer, J., Zaitseva, G. S. & Karlov, S. S. (2013). Z. Anorg. Allg. Chem. 639, 502–511.

- Huang, M., Kireenko, M. M., Zaitsev, K. V., Oprunenko, Y. F., Churakov, A. V., Howard, J. A. K., Lermontova, E. K., Sorokin, D., Linder, T., Sundermeyer, J., Karlov, S. S. & Zaitseva, G. S. (2012). *Eur. J. Inorg. Chem.* **2012**, 3712– 3724.
- Kireenko, M. M., Zaitsev, K. V., Oprunenko, Y. F., Churakov, A. V., Tafeenko, V. A., Karlov, S. S. & Zaitseva, G. S. (2013). *Dalton Trans.* 42, 7901–7912.
- Klein, A., Butsch, K. & Neudörfl, J. (2010). *Inorg. Chim. Acta*, **363**, 3282–3290.Li, Y., Liu, Y., Bu, W., Guo, J. & Wang, Y. (2000). *Chem. Commun.* pp. 1551–1552
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Silva, A. M. S., Almeida, L. M. P. M., Cavaleiro, J. S., Foces-Foces, C., Llamas-Saiz, A. L., Fontenas, C., Jagerovic, N. & Elguero, J. (1997). *Tetrahedron*, 53, 11645–11658.
- Steinhauser, S., Heinz, U., Sander, J. & Hegetschweiler, K. (2004). Z. Anorg. Allg. Chem. 630, 1829–1838.
- Zhang, H., Huo, C., Ye, K., Zhang, P., Tian, W. & Wang, Y. (2006). *Inorg. Chem.* **45**, 2788–2794.

supporting information

Acta Cryst. (2015). E71, o953-o954 [doi:10.1107/S2056989015021386]

Crystal structure of 2,6-bis(2-hydroxy-5-methylphenyl)-4-phenylpyridinium bromide dichloromethane hemisolvate hemihydrate

Badma N. Mankaev, Kirill V. Zaitsev, Sergey S. Karlov, Mikhail P. Egorov and Andrei V. Churakov

S1. Comment

Interest in dianionic tridentate *ONO*-type ligands has grown steadily over the past several decades due to their ability to stabilize unusual metal oxidation states and the coordination geometry around metal centers. As a part of our investigation on the synthesis of tridentate ligands (Kireenko *et al.*, 2013; Huang *et al.*, 2013, 2012) we obtained and studied the structure of the title compound, $2(C_{25}H_{22}NO_2^+) \cdot 2Br^- \cdot CH_2Cl_2 \cdot H_2O$, which may be regarded as a precursor of a promising ligand for the preparation of complexes of main group metal elements.

The asymmetric unit comprises two independent ligand cations, two bromide anions, a dichlormethane and a water molecule of solvation (Fig. 1). The cations are related by pseudotranslation (one half of the *ab* diagonal) and possess very similar geometrical parameters and conformations. The comparative dihedral angles between the central pyridine ring and the three benzene substituent rings are 3.0 (2), 36.4 (1), 24.2 (1)° and 3.7 (2), 36.5 (1), 24.8 (1)°, respectively for cations 1 and 2. Figure 2 represents the superposition of one independent cation with another shifted by x + 0.5, y + 0.5, z. However, the bromide anions and the solvent water molecules do not satisfy this pseudosymmetry law.

In the crystal, the two crystallographically independent organic cations, the two bromide anions, and the water molecules are associated through moderately strong inter-species O—H…O and O—H…Br hydrogen bonds (Table 1), forming an insular framework (Fig. 3). Within the unit there are also intramolecular N—H…O hydrogen bonds. Adjacent centrosymmetrically- related aggregates are linked by π – π stacking interactions between the pyridine ring (N1–C31 in cation 1 and N2–C61 in cation 2) and a benzene ring (C11–C16 in cation 1 and C41–C46 in cation 2), giving ring centroid separations of 3.525 (3) and 3.668 (3) Å, respectively. This results in the formation of chains extending across the *ac* diagonal (Fig. 4).

S2. Experimental

The precursor of the title salt, 2,6-bis(2'-hydroxy-5'-methylphenyl)-4- phenylpyridine, was obtained from 2-hydroxy-5methylacetophenone *via* two parallel reactions: (*a*), condensation of the above acetophenone with benzaldehyde in the presence of NaOH and (*b*), iodination of above acetophenone in the presence of pyridine. The reaction of an equimolar mixture of the above intermediates with ammonium acetate led to formation of the precursor, with moderate yield.

NMR spectra of 2,6-bis(2'-hydroxy-5'-methylphenyl)-4-phenylpyridine: ¹H NMR (CDCl₃): δ 9.83 (s, 2H, OH), 7.86 (s, 2H, aromatic H atoms), 7.74 (d, J = 7.6 Hz, 2H, aromatic H atoms), 7.48–7.57 (m, 5H, aromatic H atoms), 7.15 (d, J = 8.3 Hz, 2H, aromatic H atoms), 2.37 (s, 6H, Me) p.p.m.. ¹³C NMR (CDCl₃): δ 156.52, 154.43, 151.93, 138.15, 132.17, 129.53, 129.20, 129.02, 128.29, 127.20, 121.36, 117.88, 117.76 (aromatic carbons), 20.60 (Me) p.p.m.

Crystals of the title compound suitable for X-ray analysis were precipitated from the reaction of 2,6-bis(2'-hydroxy-5'-methylphenyl)-4-phenylpyridine with silicon tetrabromide in dichloromethane.

S3. Refinement

All hydrogen atoms on aromatic atoms (both C and N) and methyl groups were placed in calculated positions and refined using a riding model, with C—H = 0.95–0.98 Å, with N—H = 0.88 Å, and with $U_{iso}(H) = 1.2 U_{eq}(C,N)$ or 1.5 $U_{eq}(C)$ for methyl H atoms. A rotating model was applied to the methyl groups. All hydroxy and water hydrogen atoms were found from difference Fourier syntheses and refined with $U_{iso}(H) = 1.5 U_{eq}(O)$ and restrained O—H distances (SADI). Three outliers (-1 1 1, 0 1 1, 1 1 0) were omitted from the data set in the last cycles of refinement.

Figure 1

The asymmetric unit in the structure of the title compound, with displacement ellipsoids shown at the 50% probability level. Hydrogen bonds are shown as dashed lines.

The result of superposition of one independent cation with another shifted by an x + 1/2, y + 1/2, z operation.

Figure 3

Insular hydrogen bonded aggregates in the structure. Hydrogen bonds are shown as dashed lines. Suffix *A* indicates the symmetry operator -x + 1, y - 1/2, -z + 1/2.

Chains formed by π - π stacking interactions between aromatic ring systems in adjacent H-bonded frameworks.

2,6-Bis(2-hydroxy-5-methylphenyl)-4-phenylpyridinium bromide dichloromethane hemisolvate hemihydrate

Crystal data

$2C_{25}H_{22}NO_2^{+}{\cdot}2Br^{-}{\cdot}CH_2Cl_2{\cdot}H_2O$
$M_r = 999.63$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
a = 14.7890 (12) Å
<i>b</i> = 17.5387 (14) Å
c = 19.0163 (15) Å
$\beta = 112.577 (1)^{\circ}$
V = 4554.4 (6) Å ³
Z = 4

Data collection

Bruker SMART APEXII 34435 measured reflections diffractometer 8482 independent reflections Radiation source: fine-focus sealed tube 6350 reflections with $I > 2\sigma(I)$ Graphite monochromator $R_{\rm int} = 0.050$ $\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 1.5^{\circ}$ ω scans $h = -17 \rightarrow 17$ Absorption correction: multi-scan (SADABS; Bruker, 2008) $k = -21 \rightarrow 21$ $l = -23 \rightarrow 23$ $T_{\rm min} = 0.642, \ T_{\rm max} = 0.829$

F(000) = 2048 $D_{\rm x} = 1.458 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 6112 reflections $\theta = 2.2 - 23.3^{\circ}$ $\mu = 1.95 \text{ mm}^{-1}$ T = 150 KPrism, orange $0.25\times0.20\times0.10~mm$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.051$	Hydrogen site location: mixed
$wR(F^2) = 0.132$	H atoms treated by a mixture of independent
S = 1.06	and constrained refinement
8482 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0499P)^2 + 10.5059P]$
585 parameters	where $P = (F_o^2 + 2F_c^2)/3$
15 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.99 \ {\rm e} \ {\rm \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.92 \ { m e} \ { m \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Br1	0.37349 (4)	0.71568 (2)	0.20516 (2)	0.03429 (13)
Br2	0.99858 (4)	1.19630 (3)	0.23428 (3)	0.04276 (15)
01	0.2325 (2)	0.71111 (18)	0.30809 (18)	0.0353 (7)
H7	0.1742 (17)	0.711 (3)	0.295 (3)	0.053*
H8	0.253 (4)	0.719 (3)	0.276 (2)	0.053*
C1	0.2288 (7)	0.1114 (6)	0.2630 (6)	0.132 (4)
H1A	0.2072	0.0637	0.2334	0.159*
H1B	0.1698	0.1427	0.2546	0.159*
Cl1	0.28379 (17)	0.08839 (13)	0.35994 (17)	0.1249 (9)
Cl2	0.3025 (3)	0.15925 (15)	0.2295 (2)	0.1806 (16)
N1	0.3903 (2)	0.45926 (17)	0.38647 (17)	0.0214 (7)
H1	0.3658	0.5022	0.3628	0.026*
O11	0.3172 (2)	0.59130 (16)	0.38313 (16)	0.0282 (6)
Н3	0.284 (3)	0.625 (2)	0.359 (3)	0.049 (16)*
O12	0.4366 (2)	0.55415 (17)	0.29039 (16)	0.0326 (7)
H4	0.418 (3)	0.5929 (18)	0.268 (2)	0.034 (14)*
C11	0.3174 (3)	0.5801 (2)	0.4537 (2)	0.0233 (8)
C12	0.2787 (3)	0.6347 (2)	0.4869 (2)	0.0288 (9)
H12	0.2498	0.6795	0.4592	0.035*
C13	0.2816 (3)	0.6247 (2)	0.5598 (2)	0.0306 (10)
H13	0.2542	0.6625	0.5815	0.037*
C14	0.3240 (3)	0.5603 (2)	0.6016 (2)	0.0281 (9)
C15	0.3605 (3)	0.5048 (2)	0.5675 (2)	0.0259 (9)
H15	0.3882	0.4599	0.5954	0.031*
C16	0.3582 (3)	0.5126 (2)	0.4933 (2)	0.0218 (8)

C17	0.3961 (3)	0.4507 (2)	0.4591 (2)	0.0217 (8)
C18	0.4351 (3)	0.3826 (2)	0.4955 (2)	0.0223 (8)
H18	0.4397	0.3743	0.5461	0.027*
C19	0.3313 (4)	0.5514 (3)	0.6828 (3)	0.0428 (12)
H19A	0.2658	0.5551	0.6841	0.064*
H19B	0.3732	0.5917	0.7145	0.064*
H19C	0.3597	0.5015	0.7025	0.064*
C21	0.4112 (3)	0.4948 (2)	0.2400(2)	0.0276 (9)
C22	0.3957(3)	0.5043(3)	0.1632(2)	0.0314(10)
н22	0.4036	0.5531	0 1448	0.038*
C23	0.3689(3)	0.3331 0.4430(3)	0.1142(2)	0.036(10)
Н23	0.3575	0.4506	0.0620	0.0330 (10)
C24	0.3583 (3)	0.4500	0.0020 0.1302 (2)	0.040
C24	0.3768(3)	0.3703(3)	0.1392(2) 0.2163(2)	0.0333(10)
U25	0.3708 (3)	0.3003 (2)	0.2105 (2)	0.0295 (9)
П23 С26	0.3/1/	0.3110 0.4217(2)	0.2343	0.035°
C20	0.4027(3)	0.4217(2) 0.4062(2)	0.2074(2)	0.0230(9)
C27	0.4198(3)	0.4003(2)	0.3481(2)	0.0238(8)
C28	0.460/(3)	0.3400 (2)	0.3845 (2)	0.0251 (9)
H28	0.4844	0.3033	0.3590	0.030*
C29	0.3259 (4)	0.3031 (3)	0.0851 (3)	0.0436 (12)
H29A	0.3653	0.2582	0.1089	0.065*
H29B	0.3347	0.3152	0.0379	0.065*
H29C	0.2566	0.2923	0.0736	0.065*
C31	0.4678 (3)	0.3259 (2)	0.4590 (2)	0.0237 (8)
C32	0.5077 (3)	0.2525 (2)	0.4977 (2)	0.0255 (9)
C33	0.5463 (3)	0.2452 (2)	0.5764 (2)	0.0280 (9)
H33	0.5508	0.2891	0.6069	0.034*
C34	0.5781 (3)	0.1763 (2)	0.6115 (3)	0.0330 (10)
H34	0.6042	0.1730	0.6655	0.040*
C35	0.5721 (3)	0.1118 (2)	0.5680 (3)	0.0365 (11)
H35	0.5939	0.0640	0.5920	0.044*
C36	0.5345 (4)	0.1173 (2)	0.4896 (3)	0.0394 (11)
H36	0.5302	0.0731	0.4597	0.047*
C37	0.5029 (3)	0.1869 (2)	0.4544 (3)	0.0344 (10)
H37	0.4778	0.1902	0.4004	0.041*
N2	0.8706 (2)	0.96667 (17)	0.38890 (17)	0.0207 (7)
H2	0.8481	1.0100	0.3653	0.025*
O21	0.8014 (2)	1.10189 (16)	0.38610 (16)	0.0292 (7)
Н5	0.763 (3)	1.134 (2)	0.365 (2)	0.040 (15)*
O22	0.9207 (2)	1.05281 (16)	0.29143 (16)	0.0323 (7)
H6	0.934 (3)	1.0917 (18)	0.277 (3)	0.040 (14)*
C41	0.8155 (3)	1.0944 (2)	0.4612 (2)	0.0234 (8)
C42	0.7898 (3)	1.1537 (2)	0.4984 (2)	0.0309 (10)
H42	0.7609	1.1987	0.4712	0.037*
C43	0.8060 (3)	1.1474 (2)	0.5745 (2)	0.0314 (10)
H43	0.7870	1.1880	0.5990	0.038*
C44	0.8495(3)	1.0829 (2)	0.6162 (2)	0.0284 (9)
C45	0.8743 (3)	1.0243 (2)	0.5782 (2)	0.0265 (9)
		(-)		

H45	0.9038	0.9798	0.6061	0.032*
C46	0.8581 (3)	1.0274 (2)	0.5005 (2)	0.0216 (8)
C47	0.8837 (3)	0.9611 (2)	0.4636 (2)	0.0208 (8)
C48	0.9198 (3)	0.8924 (2)	0.4998 (2)	0.0231 (8)
H48	0.9288	0.8861	0.5517	0.028*
C49	0.8700 (3)	1.0787 (3)	0.7002 (2)	0.0380 (11)
H49A	0.8921	1.0271	0.7189	0.057*
H49B	0.8101	1.0906	0.7085	0.057*
H49C	0.9212	1.1155	0.7277	0.057*
C51	0.8924 (3)	0.9936 (2)	0.2414 (2)	0.0273 (9)
C52	0.8854 (3)	1.0006 (3)	0.1662 (2)	0.0331 (10)
H52	0.9006	1.0477	0.1485	0.040*
C53	0.8561 (3)	0.9384 (3)	0.1179 (2)	0.0357 (11)
Н53	0.8510	0.9438	0.0668	0.043*
C54	0.8339 (3)	0.8682 (3)	0.1414 (2)	0.0352 (11)
C55	0.8426 (3)	0.8619 (2)	0.2168 (2)	0.0271 (9)
Н55	0.8277	0.8146	0.2341	0.033*
C56	0.8727 (3)	0.9230 (2)	0.2678 (2)	0.0246 (9)
C57	0.8900 (3)	0.9097 (2)	0.3485 (2)	0.0224 (8)
C58	0.9268 (3)	0.8424 (2)	0.3845 (2)	0.0220 (8)
H58	0.9415	0.8023	0.3571	0.026*
C59	0.8031 (4)	0.8003 (3)	0.0885 (3)	0.0470 (13)
H59A	0.8494	0.7584	0.1096	0.071*
H59B	0.8026	0.8146	0.0385	0.071*
H59C	0.7373	0.7840	0.0829	0.071*
C61	0.9431 (3)	0.8322 (2)	0.4614 (2)	0.0225 (8)
C62	0.9826 (3)	0.7596 (2)	0.5007 (2)	0.0256 (9)
C63	1.0329 (3)	0.7553 (2)	0.5791 (2)	0.0297 (9)
H63	1.0431	0.8005	0.6086	0.036*
C64	1.0682 (3)	0.6878 (3)	0.6149 (3)	0.0361 (10)
H64	1.1025	0.6865	0.6686	0.043*
C65	1.0540 (3)	0.6209 (3)	0.5729 (3)	0.0382 (11)
H65	1.0779	0.5738	0.5977	0.046*
C66	1.0051 (4)	0.6234 (3)	0.4947 (3)	0.0426 (12)
H66	0.9959	0.5780	0.4655	0.051*
C67	0.9694 (4)	0.6919 (2)	0.4589 (3)	0.0354 (10)
H67	0.9355	0.6931	0.4052	0.042*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0507 (3)	0.0241 (2)	0.0290 (2)	-0.00541 (19)	0.0163 (2)	0.00051 (17)
Br2	0.0458 (3)	0.0455 (3)	0.0442 (3)	-0.0152 (2)	0.0254 (2)	0.0000(2)
O1	0.0412 (19)	0.0322 (16)	0.0332 (18)	0.0032 (15)	0.0150 (16)	0.0008 (14)
C1	0.114 (7)	0.103 (7)	0.193 (11)	0.038 (6)	0.073 (8)	0.032 (7)
Cl1	0.0854 (14)	0.0902 (15)	0.167 (2)	-0.0199 (12)	0.0125 (15)	0.0345 (15)
Cl2	0.288 (4)	0.0771 (16)	0.247 (4)	-0.066 (2)	0.181 (4)	-0.0282 (19)
N1	0.0251 (18)	0.0179 (16)	0.0216 (17)	-0.0018 (13)	0.0093 (14)	-0.0006 (13)

supporting information

O11	0.0392 (18)	0.0219 (15)	0.0278 (16)	0.0056 (13)	0.0176 (14)	0.0026 (12)
O12	0.0473 (19)	0.0242 (16)	0.0258 (16)	0.0014 (14)	0.0135 (14)	0.0034 (13)
C11	0.022 (2)	0.022 (2)	0.027 (2)	-0.0053(16)	0.0099 (17)	-0.0046 (16)
C12	0.032 (2)	0.023 (2)	0.036 (2)	0.0015 (18)	0.017 (2)	-0.0020(18)
C13	0.032 (2)	0.027 (2)	0.038 (3)	-0.0015 (18)	0.019 (2)	-0.0086(18)
C14	0.029 (2)	0.030(2)	0.029 (2)	-0.0027(18)	0.0157 (19)	-0.0062(17)
C15	0.026(2)	0.025(2)	0.027(2)	0.0001 (17)	0.0113 (18)	-0.0008(16)
C16	0.019 (2)	0.0214 (19)	0.024 (2)	-0.0038(16)	0.0080 (17)	-0.0052(16)
C17	0.022(2)	0.0212 (19)	0.022(2)	-0.0054(16)	0.0082(17)	-0.0046(15)
C18	0.022(2)	0.023 (2)	0.021 (2)	-0.0008(16)	0.0076(17)	-0.0001(16)
C19	0.055(3)	0.048(3)	0.034(3)	0.007 (2)	0.026(2)	-0.005(2)
C21	0.026(2)	0.030(2)	0.027(2)	0.0039(18)	0.0117(18)	-0.0022(18)
C22	0.032(2)	0.038(2)	0.026(2)	0.0091 (19)	0.0136(19)	0.0063(18)
C23	0.032(2) 0.027(2)	0.050(2) 0.051(3)	0.025(2)	0.00000000000000000000000000000000000	0.0120(19)	0.0002(2)
C24	0.029(2)	0.031(3) 0.044(3)	0.029(2)	0.011(2) 0.008(2)	0.0126(19)	-0.009(2)
C25	0.029(2) 0.029(2)	0.030(2)	$0.02^{(2)}$	0.000(2)	0.0120(19) 0.0134(19)	-0.003(2)
C26	0.025(2)	0.026(2)	0.026(2)	0.0022(10)	0.0121(18)	-0.0019(17)
C27	0.023(2)	0.020(2)	0.026(2)	-0.0021(17)	0.0121(10) 0.0100(17)	-0.0019(17)
C28	0.025(2)	0.023(2) 0.024(2)	0.020(2) 0.027(2)	-0.0011(17)	0.0100(17) 0.0127(18)	-0.0040(10)
C29	0.020(2) 0.041(3)	0.021(2)	0.027(2)	0.002(2)	0.0127(10)	-0.018(2)
C31	0.041(3) 0.022(2)	0.033(3)	0.030(3)	-0.002(2)	0.017(2) 0.0111(17)	-0.0034(16)
C32	0.022(2)	0.0211(1))	0.023(2)	-0.0009(17)	0.0111(17) 0.0153(18)	-0.0013(17)
C33	0.020(2) 0.027(2)	0.021(2) 0.024(2)	0.033(2)	-0.0013(17)	0.0133(10) 0.0114(19)	-0.0016(18)
C34	0.027(2) 0.031(2)	0.021(2) 0.032(2)	0.035(2) 0.034(2)	-0.0015(17)	0.011((1))	0.0010(10)
C35	0.031(2) 0.038(3)	0.032(2)	0.051(2)	0.0000(19)	0.010(2) 0.021(2)	0.0037(17)
C36	0.053(3)	0.023(2) 0.022(2)	0.051(3)	0.0031(1))	0.021(2) 0.029(3)	-0.003(2)
C37	0.033(3)	0.022(2)	0.031(3)	0.002(2)	0.022(2)	0.009(2)
N2	0.015(3)	0.023(2)	0.033(2)	0.001(2)	0.022(2)	0.0003(13)
021	0.0233(10) 0.0441(19)	0.0102(10) 0.0212(15)	0.0262(16)	0.0019(13) 0.0079(14)	0.0110(11) 0.0184(14)	0.0019(12)
022	0.052(2)	0.0212(15) 0.0236(16)	0.0258(16)	-0.0005(14)	0.0107(11) 0.0197(15)	0.0019(12) 0.0030(12)
C41	0.022(2) 0.025(2)	0.0230(10)	0.02200(10)	-0.0036(16)	0.0137(12)	-0.0024(16)
C42	0.028(2) 0.038(3)	0.022(2)	0.027(2)	0.0015(18)	0.020(2)	-0.0020(18)
C43	0.036(3)	0.022(2) 0.030(2)	0.037(2) 0.034(2)	-0.0006(19)	0.020(2)	-0.0113(19)
C44	0.027(2)	0.030(2) 0.034(2)	0.028(2)	-0.0028(18)	0.020(2)	-0.0075(18)
C45	0.027(2) 0.024(2)	0.031(2)	0.023(2) 0.024(2)	0.0020(10)	0.0010 (19) 0.0095 (18)	-0.0019(17)
C46	0.018(2)	0.024(2)	0.025(2)	-0.0040(16)	0.0108 (16)	-0.0068(16)
C47	0.010(2) 0.019(2)	0.021(2) 0.0225(19)	0.023(2)	-0.0038(15)	0.0100(10)	-0.0039(16)
C48	0.017(2) 0.027(2)	0.0220(1))	0.020(2)	-0.0006(17)	0.0103(10) 0.0118(17)	0.0008 (16)
C49	0.027(2) 0.042(3)	0.027(2) 0.047(3)	0.020(2) 0.028(2)	0.0000(17)	0.0110(17)	-0.008(2)
C51	0.012(3) 0.028(2)	0.034(2)	0.020(2) 0.021(2)	0.000(2)	0.017(2)	0.000(2)
C52	0.020(2) 0.031(2)	0.031(2) 0.046(3)	0.021(2) 0.025(2)	0.0101(10)	0.0000(10) 0.0132(19)	0.0021(17) 0.0081(19)
C53	0.031(2) 0.029(2)	0.010(3)	0.023(2) 0.018(2)	0.012(2) 0.017(2)	0.0192(19) 0.0095(19)	0.0001(1))
C54	0.025(2)	0.001(3)	0.010(2) 0.022(2)	0.017(2)	0.0032(19)	-0.010(2)
C55	0.023(2)	0.033(3)	0.022(2) 0.024(2)	0.010(2)	0.0037(10) 0.0070(17)	-0.0031(17)
C56	0.023(2)	0.022(2)	0.023(2)	0.0071(17)	0.0099(17)	0.0015 (16)
C57	0.023(2)	0.022(2)	0.023(2)	-0.0032(16)	0.0099(17)	-0.0019(10)
C58	0.022(2)	0.022(2)	0.023(2)	0.0002(16)	0.0000(17)	-0.0000(15)
C59	0.040(3)	0.061(3)	0.035(3)	0.012(2)	0.008(2)	-0.020(2)
				(-)		

supporting information

G (1		0.0015(10)				
C61	0.021 (2)	0.0215 (19)	0.027 (2)	-0.0035 (16)	0.0103 (17)	0.0003 (16)
C62	0.031 (2)	0.022 (2)	0.030 (2)	0.0006 (17)	0.0185 (19)	0.0021 (17)
C63	0.034 (2)	0.028 (2)	0.029 (2)	-0.0018 (19)	0.015 (2)	0.0016 (18)
C64	0.040 (3)	0.039 (3)	0.031 (2)	0.001 (2)	0.015 (2)	0.008 (2)
C65	0.042 (3)	0.027 (2)	0.052 (3)	0.006 (2)	0.024 (2)	0.014 (2)
C66	0.062 (3)	0.023 (2)	0.049 (3)	0.001 (2)	0.028 (3)	-0.003 (2)
C67	0.049 (3)	0.024 (2)	0.037 (3)	0.001 (2)	0.020 (2)	0.0022 (18)

Geometric parameters (Å, °)

O1—H7	0.80 (2)	C36—C37	1.384 (6)
O1—H8	0.79 (2)	С36—Н36	0.9500
C1—Cl2	1.681 (10)	С37—Н37	0.9500
C1—C11	1.752 (10)	N2—C57	1.357 (5)
C1—H1A	0.9900	N2—C47	1.362 (5)
C1—H1B	0.9900	N2—H2	0.8800
N1—C27	1.352 (5)	O21—C41	1.369 (5)
N1—C17	1.359 (5)	O21—H5	0.79 (2)
N1—H1	0.8800	O22—C51	1.361 (5)
O11—C11	1.355 (5)	О22—Н6	0.79 (2)
О11—Н3	0.79 (2)	C41—C42	1.390 (5)
O12—C21	1.366 (5)	C41—C46	1.404 (5)
O12—H4	0.79 (2)	C42—C43	1.378 (6)
C11—C12	1.386 (5)	C42—H42	0.9500
C11—C16	1.409 (5)	C43—C44	1.389 (6)
C12—C13	1.381 (6)	C43—H43	0.9500
C12—H12	0.9500	C44—C45	1.385 (5)
C13—C14	1.386 (6)	C44—C49	1.508 (6)
С13—Н13	0.9500	C45—C46	1.405 (5)
C14—C15	1.389 (5)	C45—H45	0.9500
C14—C19	1.514 (6)	C46—C47	1.481 (5)
C15—C16	1.405 (5)	C47—C48	1.388 (5)
C15—H15	0.9500	C48—C61	1.399 (5)
C16—C17	1.481 (5)	C48—H48	0.9500
C17—C18	1.390 (5)	C49—H49A	0.9800
C18—C31	1.400 (5)	C49—H49B	0.9800
C18—H18	0.9500	C49—H49C	0.9800
C19—H19A	0.9800	C51—C52	1.399 (6)
C19—H19B	0.9800	C51—C56	1.408 (6)
C19—H19C	0.9800	C52—C53	1.385 (6)
C21—C22	1.399 (6)	С52—Н52	0.9500
C21—C26	1.407 (6)	C53—C54	1.392 (7)
C22—C23	1.377 (6)	С53—Н53	0.9500
C22—H22	0.9500	C54—C55	1.392 (6)
C23—C24	1.390 (6)	C54—C59	1.512 (6)
С23—Н23	0.9500	C55—C56	1.399 (6)
C24—C25	1.394 (6)	С55—Н55	0.9500
C24—C29	1.516 (6)	C56—C57	1.474 (5)

C25—C26	1.399 (6)	C57—C58	1.368 (5)
С25—Н25	0.9500	C58—C61	1.400 (5)
C26—C27	1.482 (5)	C58—H58	0.9500
C27—C28	1.370 (6)	С59—Н59А	0.9800
C28—C31	1.403 (5)	С59—Н59В	0.9800
C28—H28	0.9500	С59—Н59С	0.9800
С29—Н29А	0.9800	C61—C62	1.479 (5)
С29—Н29В	0.9800	C62—C63	1.389 (6)
С29—Н29С	0.9800	C62—C67	1.400 (6)
C31—C32	1.487 (5)	C63—C64	1.365 (6)
C32—C33	1.388 (6)	С63—Н63	0.9500
C32—C37	1.401 (6)	C64—C65	1.389 (6)
C33—C34	1.372 (6)	С64—Н64	0.9500
С33—Н33	0.9500	C65—C66	1.382 (7)
C34—C35	1.385 (6)	С65—Н65	0.9500
С34—Н34	0.9500	C66—C67	1.381 (6)
C35—C36	1.379 (6)	С66—Н66	0.9500
С35—Н35	0.9500	С67—Н67	0.9500
	11(())		100 5 (4)
H/-OI-H8	116 (6)	$C_{36} = C_{37} = C_{32}$	120.5 (4)
Cl2 = Cl = Cl1	114.0 (6)	$C_{30} = C_{37} = H_{37}$	119.7
CI2—CI—HIA	108.7	C_{32} — C_{37} — H_{37}	119.7
CII—CI—HIA	108.7	C57 = N2 = U2	124.2 (3)
CI2—CI—HIB	108.7	C_{37} N2 H2	117.9
CII—CI—HIB	108./	C47 - N2 - H2	117.9
HIA—CI—HIB	107.6	C41—021—H5	113 (4)
$C_2/=N_1=C_1/C_2$	124.4 (3)	$C_{51} = 022 = H_{6}$	11/(4)
$C_2/-N_1$	117.8	021 - C41 - C42	119.8 (4)
CI/-NI-HI	117.8	021 - 041 - 046	119.5 (3)
СП—ОП—Н3	116 (4)	C42 - C41 - C46	120.7 (4)
C21—012—H4	110 (3)	C43 - C42 - C41	120.2 (4)
OII - CII - CI2	120.5 (4)	C43—C42—H42	119.9
	119.2 (3)	C41—C42—H42	119.9
C12-C11-C16	120.4 (4)	C42 - C43 - C44	121.3 (4)
	120.7 (4)	C42—C43—H43	119.3
C13—C12—H12	119.7	C44—C43—H43	119.3
CII—CI2—HI2	119.7	C45 - C44 - C43	11/./ (4)
C12 - C13 - C14	120.8 (4)	C45 - C44 - C49	122.0 (4)
C12—C13—H13	119.6	C43 - C44 - C49	120.4 (4)
C14—C13—H13	119.6	C44 - C45 - C46	123.2 (4)
C13 - C14 - C15	118.3 (4)	C44—C45—H45	118.4
C13 - C14 - C19	120.6 (4)	C46—C45—H45	118.4
C15-C14-C19	121.1 (4)	$\begin{array}{c} C41 \\ C41 \\ C41 \\ C46 \\ C47 \\$	116.9 (3)
C14—C15—C16	122.6 (4)	$\begin{array}{c} C41 - C46 - C47 \\ C45 - C46 - C47 \\ C47 - C47 \\$	125.4 (3)
C14—C15—H15	118.7	U45 - U46 - U47	119.7 (3)
C10-C15-H15	118./	N2 - C47 - C48	110.9 (3)
C15—C16—C11	117.2 (3)	N2 - C47 - C46	118.5 (3)
C15-C16-C17	120.2 (3)	C48—C47—C46	124.5 (3)

C11—C16—C17	122.6 (3)	C47—C48—C61	121.4 (3)
N1—C17—C18	116.9 (3)	C47—C48—H48	119.3
N1—C17—C16	118.5 (3)	C61—C48—H48	119.3
C18—C17—C16	124.5 (3)	C44—C49—H49A	109.5
C17—C18—C31	121.3 (4)	C44—C49—H49B	109.5
C17—C18—H18	119.3	H49A—C49—H49B	109.5
C31—C18—H18	119.3	С44—С49—Н49С	109.5
С14—С19—Н19А	109.5	H49A—C49—H49C	109.5
C14—C19—H19B	109.5	H49B—C49—H49C	109.5
H19A—C19—H19B	109.5	O22—C51—C52	121.9 (4)
C14—C19—H19C	109.5	O22—C51—C56	118.2 (3)
H19A—C19—H19C	109.5	C52—C51—C56	119.9 (4)
H19B—C19—H19C	109.5	C53—C52—C51	119.4 (4)
012-021-022	122.1 (4)	C53—C52—H52	120.3
012 - 021 - 022	1184(3)	C51—C52—H52	120.3
C^{22} C^{21} C^{26}	119 5 (4)	$C_{52} - C_{53} - C_{54}$	120.5 122.4(4)
C_{23} C_{22} C_{21} C_{20}	120.2(4)	C52—C53—H53	118.8
C_{23} C_{22} C_{21} C_{23} C_{22} H_{22}	119.9	C54—C53—H53	118.8
$C_{23} = C_{22} = H_{22}$	119.9	$C_{54} = C_{55} = H_{55}$	117.5(4)
$C_{22} = C_{23} = C_{24}$	121 7 (4)	C_{53} C_{54} C_{55}	117.5(4) 122.0(4)
$C_{22} = C_{23} = C_{24}$	119.1	$C_{55} = C_{54} = C_{59}$	122.0(4)
$C_{22} = C_{23} = H_{23}$	119.1	$C_{55} = C_{54} = C_{55}$	120.0(3) 122.2(4)
$C_{24} = C_{23} = H_{23}$	119.1	$C_{54} = C_{55} = C_{50}$	122.2 (4)
$C_{23} = C_{24} = C_{23}$	110.0(4) 122.0(4)	C56-C55-H55	118.9
$C_{25} = C_{24} = C_{25}$	122.0(4) 120.0(4)	C55 C56 C51	118.7(4)
$C_{25} = C_{24} = C_{25}$	120.0(4) 121.8(4)	$C_{55} = C_{56} = C_{57}$	118.7(4)
$C_{24} = C_{25} = C_{20}$	110 1	$C_{55} = C_{50} = C_{57}$	110.9(4)
$C_{24} = C_{25} = H_{25}$	119.1	$N_{2} C_{57} C_{58}$	122.3(4)
$C_{20} = C_{20} = 1123$	119.1 118.7(4)	$N_2 = C_57 = C_56$	118.0(3)
$C_{25} = C_{20} = C_{21}$	118.7(4)	C_{58} C_{57} C_{56}	110.3(3)
$C_{23} = C_{20} = C_{27}$	110.3(4) 123.0(3)	$C_{57} = C_{57} = C_{50}$	122.5(3)
N1 C27 C28	123.0(3) 118.8(4)	C57 C58 H58	110.7
N1 = C27 = C26	118.0(4)	$C_{57} = C_{58} = H_{58}$	119.7
C_{28} C_{27} C_{26}	110.2(3) 122.0(3)	C_{54} C_{59} H_{59A}	109.5
$C_{20} = C_{21} = C_{20}$	122.9(3) 120.5(4)	C_{54} C_{59} H_{59R}	109.5
$C_{27} = C_{28} = C_{31}$	110.8	$H_{50A} = C_{50} = H_{50B}$	109.5
$C_{27} = C_{28} = H_{28}$	119.8	C_{54} C_{59} H_{59C}	109.5
C_{24} C_{29} H_{29A}	100.5	$H_{50A} = C_{50} = H_{50C}$	109.5
$C_24 = C_29 = H_29R$	109.5	H50B C50 H50C	109.5
$H_{20A} = C_{20} = H_{20B}$	109.5	$\begin{array}{ccc} C48 & C61 & C58 \end{array}$	109.5 118 1 (3)
1129A - C29 - 1129B	109.5	$C_{48} = C_{61} = C_{58}$	110.1(3)
$H_{20A} = C_{20} = H_{20C}$	109.5	$C_{40} = C_{01} = C_{02}$	121.0(3) 120.9(3)
$H_{20}^{20} = C_{20}^{20} = H_{20}^{20} C_{20}^{20}$	109.5	$C_{30} = C_{01} = C_{02}$	120.9(3)
1129D - 029 - 11290	118.0 (4)	$C_{03} = C_{02} = C_{07}$	117.0(4)
C18 - C31 - C32	121 1 (4)	C67 - C62 - C61	122.3(7)
$C_{10} = C_{31} = C_{32}$	121.1(7) 1209(3)	C64 - C63 - C62	120.1(4) 1218(4)
$C_{23} = C_{31} = C_{32}$	120.7(3) 117.7(4)	С64—С63—Н63	110 1
$C_{33} = C_{32} = C_{31}$	11/.7 (T)	$C_{04} = C_{05} = 1105$	119.1
033-032-031	122.3 (4)	CU2-CU3-RU3	117.1

C37—C32—C31	119.9 (4)	C63—C64—C65	120.1 (4)
C34—C33—C32	121.9 (4)	С63—С64—Н64	120.0
С34—С33—Н33	119.1	С65—С64—Н64	120.0
С32—С33—Н33	119.1	C66—C65—C64	119.5 (4)
C_{33} — C_{34} — C_{35}	119.8 (4)	C66—C65—H65	120.2
C33—C34—H34	120.1	C64 - C65 - H65	120.2
$C_{35} = C_{34} = H_{34}$	120.1	C67 C66 C65	120.2
$C_{25} = C_{25} = C_{24}$	120.1	C67 - C66 - U66	120.1 (4)
$C_{30} = C_{33} = C_{34}$	119.7 (4)	C(5 - C(6 - H))	120.0
C30-C35-H35	120.2		120.0
С34—С35—Н35	120.2	C66—C6/—C62	121.0 (4)
C35—C36—C37	120.4 (4)	С66—С67—Н67	119.5
С35—С36—Н36	119.8	С62—С67—Н67	119.5
С37—С36—Н36	119.8		
011	-177.9 (4)	021-041-042-043	-178.3 (4)
C16—C11—C12—C13	1.6 (6)	C46—C41—C42—C43	0.1 (6)
C11—C12—C13—C14	0.5 (6)	C41—C42—C43—C44	1.1 (6)
C12—C13—C14—C15	-2.1 (6)	C42—C43—C44—C45	-1.4 (6)
C12—C13—C14—C19	177.1 (4)	C42—C43—C44—C49	177.6 (4)
C13—C14—C15—C16	1.6 (6)	C43—C44—C45—C46	0.4 (6)
C19—C14—C15—C16	-177.6 (4)	C49—C44—C45—C46	-178.6 (4)
C14—C15—C16—C11	0.5 (6)	O21—C41—C46—C45	177.5 (3)
C14—C15—C16—C17	-178.5 (4)	C42—C41—C46—C45	-1.0 (6)
O11—C11—C16—C15	177.4 (3)	O21—C41—C46—C47	-3.9(6)
C12—C11—C16—C15	-2.1 (5)	C42—C41—C46—C47	177.6 (4)
O11—C11—C16—C17	-3.6(5)	C44—C45—C46—C41	0.8 (6)
C12—C11—C16—C17	176 9 (4)	C44—C45—C46—C47	-178.0(4)
C_{27} N1- C_{17} - C_{18}	0.0(5)	C57 - N2 - C47 - C48	03(5)
C_{27} N1- C_{17} - C_{16}	-1782(3)	C_{57} N2 C_{47} C_{46}	-1790(3)
C_{15} C_{16} C_{17} N_{1}	1783(3)	C_{41} C_{46} C_{47} N_{2}	38(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.6(5)	$C_{45} = C_{46} = C_{47} = N_2$	-177.6(3)
$C_{15} = C_{16} = C_{17} = C_{18}$	0.0(3)	$C_{43} = C_{40} = C_{47} = C_{42}$	-175.5(4)
$C_{11} = C_{10} = C_{17} = C_{18}$	-178.7(4)	$C_{41} = C_{40} = C_{47} = C_{48}$	31(6)
C11 - C10 - C17 - C18	-1/6.7(4)	C43 - C40 - C47 - C48	3.1(0)
NI = CI / = CI6 = C31	0.0(3)	$N_2 - C_4 / - C_{48} - C_{61}$	1.1(0)
C10 - C1/ - C18 - C31	1/8./(4)	C40-C47-C48-C61	-1/9.6 (4)
012 - 021 - 022 - 023	-1/9.2(4)	022-051-052-053	-180.0(4)
C26—C21—C22—C23	2.3 (6)	C56—C51—C52—C53	2.1 (6)
C21—C22—C23—C24	-1.2 (6)	C51—C52—C53—C54	-0.6 (6)
C22—C23—C24—C25	-0.8 (6)	C52—C53—C54—C55	-0.4(6)
C22—C23—C24—C29	178.1 (4)	C52—C53—C54—C59	-179.3 (4)
C23—C24—C25—C26	1.8 (6)	C53—C54—C55—C56	-0.2 (6)
C29—C24—C25—C26	-177.2 (4)	C59—C54—C55—C56	178.7 (4)
C24—C25—C26—C21	-0.7 (6)	C54—C55—C56—C51	1.7 (6)
C24—C25—C26—C27	179.2 (4)	C54—C55—C56—C57	-173.7 (4)
O12—C21—C26—C25	-179.9 (4)	O22—C51—C56—C55	179.4 (3)
C22—C21—C26—C25	-1.4 (6)	C52—C51—C56—C55	-2.6 (6)
O12—C21—C26—C27	0.2 (6)	O22—C51—C56—C57	-5.4 (6)
C22—C21—C26—C27	178.8 (4)	C52—C51—C56—C57	172.7 (4)

C17—N1—C27—C28	-1.8 (6)	C47—N2—C57—C58	-1.2 (6)
C17—N1—C27—C26	175.9 (3)	C47—N2—C57—C56	-179.9 (3)
C25—C26—C27—N1	-142.9 (4)	C55—C56—C57—N2	-147.1 (4)
C21—C26—C27—N1	36.9 (6)	C51—C56—C57—N2	37.7 (5)
C25—C26—C27—C28	34.7 (6)	C55—C56—C57—C58	34.3 (6)
C21—C26—C27—C28	-145.4 (4)	C51—C56—C57—C58	-141.0 (4)
N1-C27-C28-C31	2.8 (6)	N2-C57-C58-C61	0.7 (6)
C26—C27—C28—C31	-174.8 (4)	C56—C57—C58—C61	179.4 (4)
C17—C18—C31—C28	0.4 (6)	C47—C48—C61—C58	-1.5 (6)
C17—C18—C31—C32	-178.8 (4)	C47—C48—C61—C62	179.3 (4)
C27—C28—C31—C18	-2.2 (6)	C57—C58—C61—C48	0.6 (6)
C27—C28—C31—C32	177.0 (4)	C57—C58—C61—C62	179.8 (4)
C18—C31—C32—C33	-22.9 (6)	C48—C61—C62—C63	-25.3 (6)
C28—C31—C32—C33	157.9 (4)	C58—C61—C62—C63	155.5 (4)
C18—C31—C32—C37	154.1 (4)	C48—C61—C62—C67	154.4 (4)
C28—C31—C32—C37	-25.0 (6)	C58—C61—C62—C67	-24.8 (6)
C37—C32—C33—C34	-0.7 (6)	C67—C62—C63—C64	-0.4 (6)
C31—C32—C33—C34	176.5 (4)	C61—C62—C63—C64	179.3 (4)
C32—C33—C34—C35	0.1 (6)	C62—C63—C64—C65	-0.1 (7)
C33—C34—C35—C36	0.2 (7)	C63—C64—C65—C66	0.7 (7)
C34—C35—C36—C37	0.1 (7)	C64—C65—C66—C67	-0.9 (7)
C35—C36—C37—C32	-0.8 (7)	C65—C66—C67—C62	0.4 (7)
C33—C32—C37—C36	1.0 (6)	C63—C62—C67—C66	0.2 (6)
C31—C32—C37—C36	-176.2 (4)	C61—C62—C67—C66	-179.5 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
N1—H1…O11	0.88	1.82	2.547 (4)	138
N2—H2…O21	0.88	1.85	2.575 (4)	138
O11—H3…O1	0.79 (2)	1.80(3)	2.578 (4)	167 (5)
O12—H4…Br1	0.79 (2)	2.43 (2)	3.219 (3)	175 (5)
O21—H5···Br1 ⁱ	0.79 (2)	2.41 (2)	3.200 (3)	170 (5)
O22—H6…Br2	0.79 (2)	2.35 (2)	3.131 (3)	170 (5)
O1—H7···Br2 ⁱⁱ	0.80 (2)	2.41 (2)	3.206 (3)	173 (5)
O1—H8····Br1	0.79 (2)	2.61 (3)	3.365 (3)	159 (5)

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*+1/2; (ii) -*x*+1, *y*-1/2, -*z*+1/2.