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Abstract

Proteins sample a multitude of different conformations by undergoing small-

and large-scale conformational changes that are often intrinsic to their func-

tions. Information about these changes is often captured in the Protein Data

Bank by the apparently redundant deposition of independent structural solu-

tions of identical proteins. Here, we mine these data to examine the conserva-

tion of large-scale conformational changes between homologous proteins. This

is important for both practical reasons, such as predicting alternative confor-

mations of a protein by comparative modeling, and conceptual reasons, such

as understanding the extent of conservation of different features in evolution.

To study this question, we introduce a novel approach to compare conforma-

tional changes between proteins by the comparison of their difference distance

maps (DDMs). We found that proteins undergoing similar conformational

changes have similar DDMs and that this similarity could be quantified by the

correlation between the DDMs. By comparing the DDMs of homologous pro-

tein pairs, we found that large-scale conformational changes show a high level

of conservation across a broad range of sequence identities. This shows that

conformational space is usually conserved between homologs, even relatively

distant ones.
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SIGNIFICANCE
Proteins do not exist in a single conformation but undergo conformational
changes, and these changes are intrinsic to their functions. Here, we show that
large-scale conformational changes are highly conserved between homologous
proteins across a broad range of evolutionary distances. Due to this conserva-
tion, alternative conformations may be predicted for a given protein based on
its homologs, leading to more accurate docking, function prediction, and better
overall understanding of protein function.
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1 | INTRODUCTION

The sequence-structure-function paradigm is a funda-
mental part of molecular evolutionary biology. We study
similarities between proteins' sequences and structures
and use them to reason about their evolutionary relations
and the similarity of their functions. This paradigm has
been extended and reinterpreted many times and an
important, outstanding question for its practical applica-
tions is which specific features of sequence, structure,
and function are conserved between homologs. For
instance, it has long been observed that homologous pro-
teins share similar folds, but the level of similarity tends
to wane with increasing evolutionary distance and
diminishing sequence similarity between the homologs.1

But other features, such as the stoichiometry of com-
plexes formed by homologs, are less conserved.2 In this
manuscript, we explore the conservation of large-scale
conformational changes of proteins to understand if and
how they may be predicted based on homology. In their
native state, proteins are highly flexible and exist in a
multitude of conformations forming an ensemble.3,4 A
protein can occupy different conformations in the ensem-
ble by undergoing conformational movements with a
broad range of time and length scales.5 This flexibility is
often intrinsic to protein function6–8 and thus, in order to
understand a protein's function, it is essential to know
the conformational changes it undergoes.

There are many experimental methods for studying pro-
tein flexibility, such as NMR (nuclear magnetic resonance)
relaxation-dispersion experiments9 and time-resolved crys-
tallography.10 Computational methods, like all-atom molec-
ular dynamics (MD) simulations11 and Normal Mode
Analysis (NMA) (most often using Elastic Network Models
[ENMs]12–15), can be used to predict the flexibility patterns/
alternative conformations of a protein. Homology-based
prediction of large-scale conformational changes could pro-
vide a simpler alternative, but it would require these
changes to be conserved between homologs. Many studies
have shown that homologous proteins share similar pat-
terns of structural flexibility, typically by indirect experi-
mental and computational approaches such as normal
modes, B-factor profiles, or the NMR relaxation-dispersion
constants of various residues.16–22 However, this was mostly
focused on local flexibility involving small-scale conforma-
tional changes. Reliable predictions of large-scale conforma-
tional changes would be important not only for our general
knowledge about a protein's conformational space, but also
for many practical applications such as modeling for molec-
ular replacement or for cryoEM or in docking studies. It
would also enable the prediction of alternative conforma-
tions of a protein based on those on its homologs—an
application that has been explored in the ConTemplate23

and ModFlex24 servers. Therefore, in this manuscript, we

evaluate the conservation of large-scale conformational
changes directly using experimentally solved structures
deposited in the Protein Data Bank (PDB).25

The PDB contains, on average, more than six coordinate
sets per individual protein that provide a sample of the pro-
tein's conformational ensemble,26–28 often capturing distinct
conformational and functional states of the protein and thus
characterizing different “neighborhoods” in the ensemble. A
previous study used this multiplicity of coordinate sets to
show that protein pairs that share one similar conformation
often share multiple conformations—suggesting that their
conformational spaces are conserved.23 Here, we expand on
this analysis, using a different approach—instead of directly
comparing various conformations of two proteins, we com-
pare their conformational changes. This requires comparing
the differences between pairs of conformations (Figure 1).
The advantage of this approach is that it would capture the
similarity in the conformational changes between proteins
that have some distinct structural features (a conceptual
example is presented in Figure 1).

Our group previously developed the PDBFlex server31

to study the flexibility and conformational diversity of pro-
teins using experimentally solved X-ray crystallographic
coordinate sets from the PDB. Here, we use the PDBFlex
server to further study the similarity of conformational
changes in homologous proteins. However, there is no
established, systematic method to compare conformational
changes.32 Thus, we first developed a method to do this
using the distance map representation of protein struc-
tures (Figure 1). For each protein with two distinct confor-
mations, we calculated the difference distance map
(DDM) representing the conformational difference
between them. The DDMs of pairs of homologous proteins
were then compared and the DDM similarities were quan-
tified by calculating the correlation between them. We
found that large-scale conformational changes are highly
conserved between homologous proteins across a wide
range of evolutionary distances, as most homologs had
high DDM correlations. This suggests that such conforma-
tional changes can be inferred for a given target protein
based on the conformational changes of its homologs.

2 | RESULTS

2.1 | Characterization of conformational
diversity using X-ray crystallographic
coordinate sets from the Protein Data Bank

The PDBFlex server31 identifies groups of independently
solved coordinate sets of the same protein, which we call
“clusters.” We divided each PDBFlex cluster into subclus-
ters representing distinct conformations of the protein
(or neighborhoods in the ensemble) based on a 3 Å RMSD
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threshold. This allowed us to focus on large-scale confor-
mational changes such as relative domain
rearrangements.27 One representative coordinate set was
selected for each subcluster to use for further analyses (see
Methods). We found that with the 3 Å threshold, most
proteins (~93%) have only one distinct conformation rep-
resented in the PDB, but there are over 2,000 proteins for
which there are at least two conformations (Figure S1).

2.2 | Identification of homologous
protein pairs and distribution of protein
families

We next identified homologous protein pairs to compare
their conformational changes. For simplicity, we only

considered proteins with exactly two conformations in
our dataset since this would limit the comparison to just
two pairs of coordinate sets (four coordinate sets in total)
per homologous pair (Figure 1). Briefly, from the set of
proteins with two conformations, a total of 48,489 homol-
ogous pairs were identified using BLAST.33 To ensure
that the comparison of conformational changes would be
based on the full length of both proteins, these pairs were
further filtered such that both the query and the subject
sequence had ≥ 90% coverage in the alignment (see
Methods). This resulted in a final set of 530 proteins for-
ming 20,740 pairs.

We then assessed the distribution of protein fami-
lies in this dataset, by mapping each protein to its
corresponding Pfam34 family(ies) using HMMER.35

Surprisingly, the final set of homologous pairs had a

FIGURE 1 Analysis of protein conformational changes using difference distance maps (DDMs) (a) Two proteins (A and B) with

significant structural differences have two conformations each (A1 and A2, B1 and B2) and undergo similar conformational changes, such

that the difference between the conformations of A (A2-A1) is similar to the difference between the conformations of B (B2-B1). (b) The

conformations are described by distance maps. (c) Differences between conformations are described by DDMs. (d) Similarities between

DDMs can be measured by their correlation. PDB chains used to make the DMs and DDMs: mouse catalytic antibody 39-A11 1a4kH29 and

1a4jB,29 and Llama glama Fab 48A2 anti-Met antibody 4r96B30 and 4r96F30
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total of 20,185 (97%) pairs in which either one or
both homologs were mapped to the immunoglobulin
superfamily/clan. However, only 228 (~13%) of the
1,815 proteins with two conformations were mapped
to this superfamily. The overrepresentation of this
superfamily in the final set of pairs could be
explained largely by the high level of similarity
between members of this superfamily (Figure S2).
Indeed, the average number of blast hits per query
protein from this superfamily was 195.4 (before filter-
ing for coverage), whereas proteins not in this super-
family only had an average of 5.1 hits. To prevent our
final conclusions from being biased by the overrepre-
sentation of the immunoglobulin superfamily in our
dataset, the homologous pairs were divided into two
subsets—immunoglobulin pairs (20,185) and non-
immunoglobulin pairs (555)—which were analyzed
separately.

2.3 | Representing large-scale
conformational changes of proteins using
difference distance maps

We next developed a method to systematically compare
conformational changes between proteins, based on the
distance map representation of protein structures. A dis-
tance map (DM) is a matrix of the inter-residue distances
of all residue pairs in a protein and offers an alternative
representation of protein structures. A protein that
undergoes a conformational change can, therefore, be
described by two DMs (one for each conformation). The
difference between the two conformations (that is, the
conformational change) can be represented by a differ-
ence distance map (DDM), obtained by subtracting one
DM from the other. We calculated DDMs between the
representatives of the conformational subclusters for all
the proteins in our dataset (Figure 1). A visual

FIGURE 2 Periplasmic binding proteins (PBPs) undergo similar conformational changes and have visually similar difference distance

maps (DDMs). (a) Two conformations of: Left: Lysine-Arginine-Ornithine binding protein represented by 2laoA38 in green and 1lahE39 in

cyan; Right: GlnP substrate-binding domain 2 (SBD2) represented by 4kr5B37 in green and 4kqpA37 in cyan (ligands not shown here).

(b) DDM of: Left: 2laoA-1lahE; Right: 4kr5B-4kqpA
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comparison of the DDMs and “morphing movies” for sev-
eral protein pairs suggested that proteins undergoing con-
formational changes that look similar on visual
inspection often have visually similar DDMs. For exam-
ple, periplasmic binding proteins undergo a typical,
“Pacman-like,” “close-open” hinge movement upon bind-
ing/releasing their substrates36,37 and have strikingly sim-
ilar DDMs (Figure 2).

The correlation between the values of equivalent ele-
ments of the two DDM matrices offers a simple metric of
their similarity. For each pair of homologous proteins in
our final dataset, we calculated both the Pearson and
Spearman correlation between their DDMs. Both coeffi-
cients were well correlated with each other, with the
Spearman correlation generally having a lower value
(Figure S3). For example, the visual similarity of the
DDMs in Figure 2 is reflected in the high values of the
DDM correlations which are 0.88 for the Pearson correla-
tion and 0.72 for the Spearman correlation. In the follow-
ing analyses, we use the absolute value of the correlation
to quantify the similarity between two DDMs, as the sign
of the correlation simply reflects the arbitrary order in
which the individual DMs were subtracted to get
the DDM.

2.4 | Conformational changes are highly
conserved across a wide range of
evolutionary distances

It has long been observed that the structural similarity of
homologous proteins decreases with their broadly
defined evolutionary distance, usually estimated by the
proxy of sequence identity.1 We explored the extension of
this observation to the conformational changes of pro-
teins by analyzing the DDM correlations of homologous

protein pairs and found that, for a broad range of
sequence similarity, the majority of proteins show high
DDM correlations (absolute Pearson correlation ≥ 0.50
or absolute Spearman correlation ≥ 0.30, values based on
data shown in Figure S3), suggesting highly similar, that
is, conserved pattern of conformational changes
(Figure 3, Figure S4, Table 1, Table S1). This was found
to be the case even between distant homologs (defined
here as having sequence identity <50%). High DDM cor-
relations were observed for more than 90% of the distant
immunoglobulin homologs and more than 60% of the dis-
tant non-immunoglobulin homologs (Table 1 and
Table S1). This confirms the validity of the main hypothe-
sis evaluated here, of the broad conservation of large-
scale conformational changes in homologous proteins.
An example of such similarity in a pair of distant homo-
logs is illustrated and discussed in detail below for two
adenylate-forming enzymes (Figure 4).

The structures of enzymes from the adenylate-
forming superfamily consist of an N- and C-terminal
domain. These enzymes catalyze two-step reactions and

FIGURE 3 Absolute Pearson DDM correlation vs. sequence identity for (a) immunoglobulin homologs, p-value = 1.54 � 10�102.

(b) non-immunoglobulin homologs, p-value = 0.0259. ‘n’ represents the number of pairs in each bin, points represent means, and error bars

represent standard error of the mean. p-values are based on a linear regression of absolute DDM correlation vs. sequence identity, as

implemented in R v.4.0.0

TABLE 1 Distribution of absolute Pearson DDM correlation

values for homologous pairs

All homologs
Abs. Pearson
correlation ≥ 0.50 Total

Immunoglobulins 16,813 (93.8%) 17,933

Non-
immunoglobulins

365 (70.7%) 516

Distant homologs
Abs. Pearson
correlation ≥ 0.50 Total

Immunoglobulins 4,775 (93.8%) 5,093

Non-
immunoglobulins

172 (65.9%) 261
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occupy two different conformations for the catalysis of
each half-reaction. The conformational movement
involves a large-scale rotation of the C-terminal domain
with respect to the N-terminal domain, such that two dif-
ferent faces of the C-terminal domain are presented to
the active site for each half-reaction.42 Our dataset con-
tains one pair of distant homologs from this superfamily,
with a sequence identity of 28.36%. The first protein is
McbA, a fatty acid CoA ligase from Marinactinospora
thermotolerans. This enzyme catalyzes the synthesis of
β-carboline amides from 1-acetyl-3-carboxy-β-car-
boline40,43 by first adenylating the substrate, followed by
amidation to give the product.40 The second protein is
4-chlorobenzoate:CoA ligase from Alcaligenes sp. This
enzyme catalyzes the adenylation of 4-chlorobenzoate
(4-CB), followed by thioesterification to give
4-chlorobenzoate:CoA (4-CB-CoA).41 Both enzymes
occupy two conformations (Figure 4) that reflect the
large-scale rotation of the C-terminal domain that is
unique to this superfamily. The extreme similarity in the

domain rotation in both enzymes is clearly reflected in
the similarity of the DDMs which have a Pearson correla-
tion of 0.97 (Spearman correlation of 0.70) (Figure 4).
This high similarity is seen despite the low sequence
identity, suggesting that if only one of the two conforma-
tions had been solved for either of these proteins, the sec-
ond conformation, and thus, the conformational change,
could have been modeled based on that of its homolog.

When the DDM correlations between homologous
proteins were compared against their sequence identity,
we found that DDM correlation decreases, however
slightly, with decreasing sequence identity (Figure 3,
Figure S4). This trend is clearly visible for the set of
homologous immunoglobulin pairs, but much weaker for
non-immunoglobulins (Figure 3 and Figure S4). This
observation suggests that the similarity of the conforma-
tional changes of a pair of homologs depends, at least to
some degree, on their evolutionary distance.

While most homologous pairs in the dataset showed
high DDM correlation values, we note that in each

FIGURE 4 Conformational change in two adenylate-forming enzymes. (a) Top: Adenylation conformation (6sq8C40 in green) and

amidation conformation (6sq8E40 in cyan) of McbA (ligands not shown). Ala455 is shown in red sticks and Ala481 is shown in blue sticks on

both conformations for reference. Bottom: The DDM of 6sq8C-6sq8E. (b) Top: Adenylation conformation (3cw8X41 in green) and thioester-

forming conformation (3cw9B41 in cyan) of 4-chlorobenzoate:CoA ligase (ligands not shown). Thr463 is shown in red sticks and Leu490 is

shown in blue sticks on both conformations for reference. Bottom: The DDM of 3cw8X-3cw9B
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sequence identity bin, there is a tail of outliers with low
correlations. Manual examination showed that most of
these outliers do, in fact, show very different conforma-
tional changes. For example, a pair of homologous
importin-β proteins from Saccharomyces cerevisiae and
Chaetomium thermophilum (sequence identity ~40%)
illustrates this effect (Figure 5). Proteins in the importin-
β (Impβ) superfamily are transport proteins that move
cargo from the cytoplasm into the nucleoplasm through
the nuclear pore complex.44 In our dataset, there are two
conformations for both the S. cerevisiae Impβ (represen-
ted by 3ea5D45 and 5owuA46) and C. thermophilum Impβ
(represented by 4xriA and 4xrkA47) (Figure 5a). The
DDMs for these proteins are strikingly different with a
Pearson correlation of 0.023 (Spearman correlation of
0.067) (Figures 5b and C). This is confirmed by visual
inspection of the four coordinate sets, which reflect four
significantly different conformations. Both homologs in
this dataset have one “extended” conformation and one
“compressed” conformation. However, the relative direc-
tions of the conformational change between the two con-
formations are different in the two proteins (Figure 5a).

In most cases, we do not know if the lack of correla-
tion between the DDMs of two proteins is caused by real
differences between their conformational ensembles or
by inadequate sampling of these ensembles in the PDB.
This example seems to belong to the latter class, as fur-
ther analysis showed that 3ea5D represents importin-β
bound to RanGTP, while 5owuA is bound to the C-
terminal region of the nucleoporin Nup1p. On the other
hand, 4xriA and 4xrkA represent the unbound protein in
different cellular environments (the polar cytoplasm or
nucleoplasm for 4xriA and the apolar nuclear pore chan-
nel for 4xrkA). Therefore, the conformations seen here
represent two different causes of conformational

changes—between binding of two different partners
vs. changes in the environment for the apo-structure.

3 | DISCUSSION

Proteins are highly flexible and sample multiple confor-
mations in their conformational ensembles. In this man-
uscript, we examined the similarities of the large-scale
conformational changes of homologous proteins, as sam-
pled by the multiple depositions in the Protein Data
Bank. Previous studies have suggested that the flexibility
patterns and conformational space of proteins are
conserved.16–23 Here, we expand the analysis of the con-
servation of large-scale conformational changes to a set
of homologous proteins using experimentally solved
structures and a newly developed method based on differ-
ence distance map (DDM) correlations (see Figure 1 for a
visual illustration). The main advantage of the method
presented here is that it makes use of experimentally
solved structures, thus avoiding assumptions made in
computational methods like normal mode analysis
(NMA)12,13 and molecular dynamics (MD).11 Difference
distance maps (DDMs) further offer easy visualization of
the structural differences, highly complementary to the
usual structure superpositions. We leveraged the multi-
plicity of coordinate sets in the Protein Data Bank
(PDB),25 as captured by the PDBFlex server,31 to identify
a set of 1,815 proteins with two well-separated conforma-
tions. This was done using a 3 Å RMSD threshold. When
the threshold is set to lower values, a greater number of
distinct conformations can be identified for a given pro-
tein. However, this would focus on local/small-scale con-
formational changes, whereas the goal of this manuscript
was to analyze large-scale conformational changes, like

FIGURE 5 Conformations of importin-β homologs. (a) 3ea5D45 in green, 5owuA46 in gold, 4xriA47 in cyan, and 4xrkA47 in pink. Glu770

in 3ea5D and 5owuA and Asn780 in 4xriA and 4xrkA are shown in red and are connected by arrows. This figure was created by

superimposing residues 1–150 of 3ea5D, 5–149 of 4xriA, and 38–149 of 4xrkA onto residues 1–150 of 5owuA based on the sequence

alignment. (b) DDM of 3ea5D-5owuA. (c) DDM of 4xriA-4xrkA
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domain rearrangements. The analysis can obviously be
repeated with lower thresholds, and we are planning to
release a server where users can set up their own thresh-
olds and repeat the analyses. Having identified proteins
with two conformations, we then identified homologous
proteins pairs and compared their conformational
changes based on their DDM correlations. We found that,
on average, when conformational ensembles contain two
main conformations, the conformational change between
them is very similar for homologous proteins. Impor-
tantly, this was observed even for very distant homologs
(sequence identities in the range of 20–30%) which could
mean that large-scale conformational changes are con-
served even if precise biochemical functions are not.

The results presented here illustrate both the strength
and weakness of using experimentally solved structures
to characterize the conformational ensembles of proteins.
The PDB depositions provide only a sample of the confor-
mational ensemble of any given protein. Thus, for pro-
teins that sample many different conformations, the PDB
may not contain coordinate sets corresponding to all
functionally relevant ones. This is evident in a number of
outliers with unusually low DDM correlations. Many of
these outliers represent homologous proteins that are
solved in different conformations, which may simply
reflect an incomplete sampling of their ensembles. This
observation leads to a practical application, where one
could create models of “missing” conformations for indi-
vidual proteins and ask whether they exist in nature. In
the case of the importin-β homologs shown in Figure 5,
this is likely to be the case, as the four coordinate sets
represent different environmental conditions and/or
binding partners of the proteins.45–47 However, the sam-
pling of the conformational space for most proteins is suf-
ficient to strongly support the general trend of
conservation of large-scale conformational changes in
homologous proteins.

Besides evidence of the broad conservation of confor-
mational changes, we also observed a slight trend of
increasing DDM correlation with increasing sequence
identity. Since sequence identity is a widely used (albeit
poor) proxy for evolutionary distance, these results sug-
gest that the similarity in conformational changes, like
folds,1 is dependent on evolutionary distance and
decreases with increasing distance. A similar observation
has also been made for the backbone flexibility profiles of
homologous proteins, as characterized by their B-factor
profiles.19 However, the correlation between DDM corre-
lation and sequence identity was particularly strong in
the immunoglobulin superfamily and much weaker for
the remaining set of proteins. This could be because the
sampling of the immunoglobulin family is particularly
dense and because many members of this family have

similar functions. The remaining proteins, representing a
variety of different protein families with different folds,
may have more complicated conformational spaces with
more potential conformations that are unevenly sampled
in the PDB. Further studies looking deeper into individ-
ual protein families could help to confirm this.

Overall, the conservation of large-scale conforma-
tional changes shown in this study suggests that
homology-based modeling of individual conformations of
a protein can be extended to multiple conformations.
This application was originally explored in the ConTem-
plate server,23 which is currently unavailable. We
recently developed the ModFlex server24 as another tool
for this purpose. By providing multiple template struc-
tures from each homolog identified for a query protein,
the user can explore and model a variety of different con-
formations for the target.

The results shown here also point to a relatively sim-
ple method to model/predict the conformational move-
ment of a given target protein. If two different
conformations of the target protein can be modeled, the
conformational movement between them can be simu-
lated/modeled using a variety of methods. These range
from simple morphing algorithms48,49 to more complex
steered molecular dynamics simulations50 and motion-
planning techniques.51 This was demonstrated for the
pore domain of the Streptomyces lividans K-channel
(KcsA).51 This kind of modeling has wide applicability to
the field of biology. For example, it would make it possi-
ble for biologists to analyze the role of specific residues in
enabling conformational movements, to perform in silico
docking to different conformations including intermedi-
ate states, and in general, to form a more complete pic-
ture of protein function.

4 | MATERIALS AND METHODS

4.1 | PDBFlex dataset

This project leveraged data from the PDBFlex server.31

Briefly, the PDBFlex server clusters all X-ray crystallo-
graphic coordinate sets from the Protein Data Bank
(PDB)25 using a 95% sequence identity threshold, creating
clusters of coordinate sets corresponding to individual
proteins in the PDB (while allowing for a few mutations
between individual coordinate sets). Each such cluster is
represented by one coordinate set (referred to as the clus-
ter master/representative). For each cluster, pairwise
CαRMSDs (root mean square deviations of the Cα atoms
after optimal superposition, based on their sequence
alignments) were calculated between all cluster members
and stored as an all-to-all RMSD matrix.
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The PDBFlex server is automatically updated approxi-
mately once per month. All analyses in this project were
performed using the November 2, 2020 version of
PDBFlex. These analyses/steps are described below, and
an overview is presented in Figure 6.

4.2 | Initial filtering of dataset

The version of PDBFlex used for this manuscript con-
tained 364,133 coordinate sets in total. This dataset was
filtered (Figure 6, step 1) based on a comparison of the
SEQRES sequence (the sequence of the construct used
for crystallization) and the PDB sequence (that is, the

sequence of residues that were resolved in the structure),
using in-house scripts. For each coordinate set:

1. The “maximum possible SEQRES coverage” was cal-
culated as:

m¼ Length of PDB sequence
Length of SEQRES sequence

�100

2. The SEQRES sequence and PDB sequence were
aligned using an in-house script that uses BLAST.33

The sequence identity of this alignment was calcu-
lated as:

FIGURE 6 Overview of all analyses. Ig, immunoglobulin

s¼ No:of identical residues
No:of mutually aligned residues i:e: residues not aligned to gapsð Þ�100:
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Coordinate sets with m < 90% and/or s < 100% were
removed from the dataset. Any coordinate sets for which
these values could not be calculated were also removed
to ensure that the final dataset did not contain any coor-
dinate sets that did not meet the filtering criteria.

4.3 | Identification of subclusters
corresponding to distinct conformations
within each PDBFlex cluster

For each PDBFlex cluster with more than one coordinate
set, the coordinate sets were grouped based on the
CαRMSD matrix into “subclusters” corresponding to dis-
tinct conformations (Figure 6, step 2). This grouping was
done using a greedy clustering algorithm, as described by

Daura et al.52 Additionally, one coordinate set was cho-
sen as the representative of each subcluster, to be used in
further analyses. The procedure is described below:

The algorithm first identifies “neighbors” for each
coordinate set in a cluster. Two coordinate sets are con-
sidered to be neighbors if the RMSD between them is
below a predefined threshold. The coordinate set with
the maximum number of neighbors is then selected as
the representative of the first subcluster, which is com-
posed of this representative and its neighbors. These
coordinate sets are then removed from the cluster and
the process is repeated until all coordinate sets have been
grouped into subclusters.

We set the RMSD threshold to 3 Å in order to analyze
large-scale conformational changes. This threshold has
been historically used in the field of structure prediction
to distinguish correct and incorrect models, and in our
earlier analysis,27 it clearly identified large conforma-
tional changes from local ones.

4.4 | Identification of homologous
protein pairs

BLAST (v.2.2.30+)33 was used to identify homologous
protein (cluster) pairs. Only proteins (clusters) with two

conformations (subclusters) were considered (Figure 6,
steps 3–4). First, a FASTA file containing the SEQRES
sequence of each cluster master/representative was cre-
ated (1,815 sequences in total) (Figure 6, step 3). This was
used to create a blast database, using makeblastdb (with
the -hash_index option) (Figure 6, step 4a).

Pairwise sequence alignments were then obtained by
running blastp (Figure 6, step 4b). The FASTA of master
sequences was used as the query and the database cre-
ated in the previous step was used as the search database.
The e-value threshold was set to 0.005 and
-max_target_seqs to 1815. The output from this step was
then filtered such that only the alignments in which the
coverage of both the query and subject sequence was
≥ 90% were retained (Figure 6, step 4c). Query coverage
was defined as:

where,
No. of query residues in alignment = End of align-

ment in query – Start of alignment in query +1
No. of query residues aligned to gap = Alignment

length – (End of alignment in subject – Start of alignment
in subject +1)

(Subject coverage was defined in the same way,
except values for query and subject in the above formula
were switched.)

In this way, a total of 20,740 homologous protein
pairs (i.e., pairs of PDBFlex clusters) were identified
where each protein had two conformations (i.e.,
each PDBFlex cluster contained exactly two
subclusters).

4.5 | Assignment of Pfam families to
PDBFlex clusters

For each cluster (protein) with two subclusters (distinct
conformations), the cluster master/representative
sequence was used to identify the corresponding Pfam34

families (Figure 6, step 5). This was done by running
hmmscan (HMMER v.3.3.2)35 against the Pfam database
(Pfam-A, v.34.0) with the –tblout, —dombtblout and
–cut_ga options.

No:of query residues in alignment�No:of query residues aligned to gap
Query length

�100
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4.5.1 | Immunoglobulin superfamily

Clusters that mapped to the immunoglobulin clan/
superfamily were identified by parsing the “tblout” file
and retrieving all queries (i.e., cluster representatives)
that had a hit to at least one of the following Pfam fami-
lies: Adeno_E3_CR1, Adhes-Ig_like, bCoV_NS7A,
bCoV_NS8, C1-set, C2-set, C2-set_2, CD4-extracel,
DUF1968, Herpes_gE, Herpes_gI, Herpes_glycop_D, I-
set, ICAM_N, ig, Ig_2, Ig_3, Ig_4, Ig_5, Ig_6, Ig_7,
Ig_C17orf99, Ig_C19orf38, Ig_Tie2_1, Izumo-Ig, K1, Mar-
ek_A, ObR_Ig, PTCRA, Receptor_2B4, UL141, V-set, V-
set_2, V-set_CD47

4.5.2 | Homologous immunoglobulin/non-
immunoglobulin pairs

Homologous protein pairs in which either the query or
the subject protein or both mapped to the immunoglobu-
lin superfamily were classified as immunoglobulin
(Ig) pairs. Protein pairs in which neither the query nor
the subject protein mapped to this superfamily were clas-
sified as non-immunoglobulin (non-Ig) pairs (Figure 6,
step 6).

4.6 | Calculation of difference distance
maps (DDM) and DDM correlations

For each protein (PDBFlex cluster) with two conforma-
tions (subclusters), two distance maps (DMs) were calcu-
lated based on the representative coordinate sets of the
two subclusters. These were then subtracted to get a dif-
ference distance map (DDM) that represented the confor-
mational difference/change of the protein. Then, the
similarity of the conformational changes of homologous
proteins (i.e., different PDBFlex clusters) was assessed by
calculating correlations between their DDMs (Figure 6,
step 7). Several alignment steps and corrections were
made to assure the proper assignment of equivalent resi-
dues in the four coordinate sets involved in each of these
calculations. The technical description of these steps is
given in the Supplementary Methods and in Figure S5
and Figure S6.
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