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Abstract

Background: In order to understand how biological systems function it is necessary to determine the interactions and
associations between proteins. Gene fusion prediction is one approach to detection of such functional relationships. Its use
is however known to be problematic in higher eukaryotic genomes due to the presence of large homologous domain
families. Here we introduce CODA (Co-Occurrence of Domains Analysis), a method to predict functional associations based
on the gene fusion idiom.

Methodology/Principal Findings: We apply a novel scoring scheme which takes account of the genome-specific size of
homologous domain families involved in fusion to improve accuracy in predicting functional associations. We show that
CODA is able to accurately predict functional similarities in human with comparison to state-of-the-art methods and show
that different methods can be complementary. CODA is used to produce evidence that a currently uncharacterised human
protein may be involved in pathways related to depression and that another is involved in DNA replication.

Conclusions/Significance: The relative performance of different gene fusion methodologies has not previously been
explored. We find that they are largely complementary, with different methods being more or less appropriate in different
genomes. Our method is the only one currently available for download and can be run on an arbitrary dataset by the user.
The CODA software and datasets are freely available from ftp://ftp.biochem.ucl.ac.uk/pub/gene3d_data/v6.1.0/CODA/.
Predictions are also available via web services from http://funcnet.eu/.
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Introduction

In the post-genomic era it has become clear that the parts list of

genomes is insufficient to explain organismal complexity. Research

is shifting towards understanding organisms as systems of

interacting parts. Many new approaches are being developed to

identify the relationships between these parts in terms of

interactions and functional associations. Gene or domain fusion

is one of several genome context methods which can be used to

predict functional associations between pairs of proteins [1,2].

Genome context methods allow inheritance of functional infor-

mation between non-homologous proteins and are thus an

orthogonal approach to homology-based methods of function

prediction. In addition, they can predict networks of proteins

involved in common complexes and pathways [3].

Gene fusion is an evolutionary process whereby initially

separate genes become fused into a single open reading frame,

which is expressed as a multi-domain protein chain. By detecting

these events it can be inferred that the unfused proteins are

functionally related. Bioinformatic approaches which identify

fusion events in order to predict functional associations use either

whole protein sequence comparison or domain family assign-

ments. These are known as gene fusion and domain fusion

respectively. The two approaches are compatible and have

previously been combined [2]. Table 1 shows the various

implementations of gene/domain fusion detection which have

appeared in the literature. The most common approach is gene

fusion detection using BLAST [4], and/or Smith-Waterman [5].

In this scheme two proteins from a single genome (query

proteins), both predicted to be homologous to a third protein in a

different genome (fusion protein), are identified as functionally

associated (i.e. take part in a common biological process). In the

case of domain fusion, protein domain family annotation (e.g.

Pfam [6]) is used to identify two proteins from one genome

which contain distinct domains that are found fused in another

genome.
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The principle problem in accurately detecting functional

relationships with these methods is caused by large, promiscuous

domain families. If a relative of domain family A is found fused to

a relative from domain family B, all proteins containing domains

from A are potentially associated to all those containing domains

from B within any particular genome. If families A and B are

large, then there are many possible functionally associated pairs.

Large families tend to be functionally diverse and it is unlikely that

all members will be involved in the same biological process [7].

Promiscuous domain families are found in many different

proteins, fused to many different partner domain families [8]. The

protein kinase domain family Pkinase (Pfam code: PF00069) is one

of the most promiscuous in nature. It largely comprises eukaryotic

protein kinases involved in diverse biological processes. The result

of this is noise in the domain fusion analysis through functionally

misinformative fusions. Any protein containing members of the

Pkinase family can be linked to every other protein which contains

one of the .250 domains to which Pkinase is found fused.

Large families tend to be promiscuous and vice versa, therefore

solving one problem solves the other. One approach is to simply

exclude proteins containing highly promiscuous domains [2].

Alternatively only those pairs of query proteins which are thought

to be orthologous to the fusion protein are accepted [9]. This

results in high accuracy, although relatively few functional

relationships are determined – a maximum of one per fusion

protein in any particular genome [10]. The third approach is to

apply a scoring scheme which takes account of the size of families

and the uncertainty about which pairs are orthologous [7].

Because we expect some paralogues to take part in the same

biological processes, this approach allows more predictions to be

made, while maintaining a reasonable degree of accuracy [7]. To

our knowledge no assessment has been published of the relative

performance of these solutions, or any contrasting implementa-

tions of gene/domain fusion. It is especially important to find good

solutions to this problem as higher eukaryotes such as humans

have more large, promiscuous domain families than other

organisms.

Our method, CODA, uses the domain fusion approach and

implements a novel score to cope with the problem of large,

promiscuous families. CODA is compared against two existing

implementations of gene fusion and one of domain fusion.

STRING-fusion is a gene fusion approach used for the STRING

database by the Bork group [3]. Prolinks-fusion is a gene fusion

approach used in the Prolinks database by the Eisenberg group

[11]. Truong-fusion is a domain fusion method employed by

Truong & Ikura [12]. These respectively represent orthologue-

only gene fusion, scored gene fusion and domain fusion with

exclusion of promiscuous families.

We show that in several cases CODA can produce a greater

number of hits than other methods while maintaining accuracy and

more generally that gene/domain fusion approaches can succeed in

higher eukaryotes to a similar degree as in lower eukaryotes.

Furthermore we find that the different methods are complementary,

with low overlap between the results they produce.

CODA is available for download and can also be used through

web services, allowing users to determine functional relationships

in their genome of interest.

Results

Initially we show how different domain family classifications

affect the performance of our method CODA (Co-Occurance of

Domains Analysis) and how it copes with the problem of

promiscuous domains. Subsequently CODA is compared to other

gene/domain fusion approaches. Benchmarks were performed

using a measure of similarity between the Gene Ontology (GO)

terms of each functionally associated protein pair predicted in the

query genome by each method. We use an ‘enrichment’ score

where a score of 10 means that we have found 10 times as many

functionally similar pairs of proteins as would be expected by

chance.

CODA was developed using Saccharomyces cerevisiae (hereafter

referred to as yeast) as the query genome as this genome has the

most comprehensive functional annotation. The human genome is

used as an example of a complex higher eukaryote and to provide

an independent test of performance.

Performance of CODA
Alternative domain classifications. CODA uses domain

pairs to identify fusions. In previous work ProDom and Pfam

Table 1. Overview of gene/domain fusion implementations for predicting functional associations.

Authors Fusion detection method All homologues/Orthologues-only Scoring

Marcotte et al. [2] Gene fusion (BLAST) and domain fusion
(ProDom) pooled.

All homologues – 5% most promiscuous
domains removed

None

Enright et al. [1] Gene fusion (BLAST and S-W) All homologues S-W based Z-scores

Snel et al. [9] Gene fusion (S-W) Orthologue-only (bidirectional best hit) # fusions events/# target genomes

Enright & Ouzounis [21] Gene fusion (BLAST, component overlap
,10%)

All homologues (although component and
composite proteins clustered)

None

Yanai et al. [22] Gene fusion (BLAST) Orthologue-only (one link between each COG) None

Marcotte & Marcotte, [7] Gene fusion (BLAST) All homologues Probability of observing fusion and
uncertainty due to large families

Truong & Ikura [12] Domain fusion (Pfam domains) All homologues (promiscuous domains removed) None

Bowers et al. [11] Gene fusion (BLAST) All homologues Probability of observing fusion

Reid et al., this work Domain fusion (Pfam domains) All homologues Frequency of homologues in query
and individual target genomes

Those methods designed purely for examining gene fusion as an evolutionary process have been excluded. ‘All homologues’ refers to the approach of allowing all hits
between protein pairs which are homologous to a fusion protein, while ‘orthologue-only’ refers to methods which only allow hits where the query proteins are
orthologous to a fusion protein.
doi:10.1371/journal.pone.0010908.t001

CODA

PLoS ONE | www.plosone.org 2 June 2010 | Volume 5 | Issue 6 | e10908



domains have been used to detect domain fusions for prediction of

functional associations [1,12,13], however structural domain

representations (e.g. SCOP & CATH) have not been explored in

these terms. We found that datasets based principally on CATH

domains (CATH-Pfam and CATH) performed less well than those

based on Pfam domains (see Supplementary Figure S1). This could

have been because CATH superfamilies tend to be broader than

Pfam families, including more functional subfamilies, resulting in

reduced scores for hits involving these larger families. Additional

analysis using CATH subfamilies did not improve performance

however (see Supplementary Figure S2) and thus it is more likely

that CATH had lower performance due to lower coverage of the

genomes. Multi-Domain Architecture (MDA) datasets containing

only Pfam domains were used for subsequent analyses.

CODA is insensitive to promiscuous domains. Domain

fusion methods are liable to detect many false positives due to

promiscuous domains and large families [7]. This problem is

tackled by the CODA score which takes account of the size of

domain families. As large families tend to be promiscuous, the

scoring method should also penalise promiscuity. Here a

promiscuous domain family is described as one which co-occurs

with more than 50 other domain families.

Figure 1 shows that CODA coped well with promiscuous

domains, finding a greater number of hits for an enrichment of 10

when promiscuous domains were present (1663) compared to

when they were removed (1494).

Comparison of CODA with pre-existing methods
We wanted to determine the performance of CODA relative to

comparable methods. To our knowledge the relative effectiveness

of different gene/domain fusion methods has been unclear. While

gene fusion has the potential to exploit all known genes, domain

fusion only has access to those parts of genes classified into domain

families. However, because domain families are composed using

powerful methods for detecting homologues (e.g. profile Hidden

Markov Models), domain fusion approaches can detect more

distantly related fusion events. Sequence comparison approaches

(e.g. Smith-Waterman and BLAST) used in gene fusion approach-

es cannot detect such distant relationships. Thus it is unclear

whether one approach might provide more coverage than the

other.

Several resources provide functional associations derived from

such methods. These include STRING [9], Prolinks [11] and the

Domain Fusion Database [12]. These methods could not be run

on arbitrary sets of genomes/sequences. Therefore, to benchmark

CODA against these datasets, it was necessary to use only those

sequences which had been used to produce the results provided by

the respective web servers. Furthermore, because of this, it was not

possible to directly compare all three methods. CODA was

compared to STRING-Fusion on the STRING sequence set, to

Prolinks-Fusion on the Prolinks sequence set, and to Truong-

fusion on the Truong dataset.

Relative performance of CODA and other methods.

Figure 2a shows that CODA outperformed STRING-Fusion at

almost all levels of enrichment. STRING-Fusion considers only

pairs of proteins thought to be orthologous to fusion proteins and

so had a relatively small maximum number of hits, 548. This was

at an enrichment of 16.3. For a similar enrichment, CODA found

1549 hits. STRING-fusion was able to achieve higher accuracy,

although only finding a very small number of fusions.

Figure 2b shows that Prolinks-fusion outperformed CODA. For

an enrichment of 10 CODA found 1312 protein pairs while

Prolinks-fusion found 17361 pairs (all its results) for a higher

enrichment of 17. Figure 2c shows that the improved performance

of Prolinks over CODA was due to a large number of links

between homologues. In fact when homologous pairs were

removed from the results of both methods (pairs with BLAST E-

value, = 1e-6), CODA found 1306 protein pairs for an enrich-

ment of 10, while Prolinks-fusion found only 1021. Note that

CODA explicitly excludes pairs with homologous domains.

Figure 2d shows the results for CODA against Truong-fusion.

There is no score provided for results from Truong-fusion and so

Figure 1. CODA with and without promiscuity filter (prom50). The promiscuity filter removes all results involving a domain that is known to
occur in protein chains with 50 or more different domain families, across all genomes. Enrichment is a measure of accuracy: the number of true
positives divided by the number of positives expected by chance given the number of hits (see methods).
doi:10.1371/journal.pone.0010908.g001

CODA
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there is only one point on the graph referring to the complete set of

189 pairs of proteins identified by the method. We see that

compared to CODA, Truong-fusion was more accurate for the

number of hits it produces, with an enrichment of 21 for 189 hits.

CODA finds 52 hits for an enrichment of 19 and was able to find

1023 hits for an enrichment of 10.

Domain fusion methods find functional associations for

more proteins than gene fusion methods. Do fusion

methods tend to find many links between few proteins, or few

links between many proteins? In order to examine the number of

links vs. proteins produced by the methods the first 500 top

scoring hits from CODA were taken for comparison with the top

500 from STRING-fusion, as STRING-fusion only produced

,500 hits (Supplementary Figure S3). For comparison between

CODA and Prolinks-fusion the first 1000 hits were taken (Figure

S4). Truong-fusion only produced 189 hits and so these were

compared to the first 189 hits from CODA (Figure S5). The

results show that in all cases CODA had a roughly 1:1

relationship between new links and proteins, i.e. for each novel

link, one of the proteins had not been seen before. Both Prolinks-

fusion and STRING-fusion introduced fewer novel proteins for

each link. Truong-fusion however behaved almost exactly the

same as CODA, suggesting that this behaviour may be a feature

of domain fusion methods.

It seems therefore that, for a given query protein, gene fusion

methods provide more links to other proteins and thus increase the

probability that there will be functional information available to

annotate the query protein. This could be particularly important

for query proteins from genomes with a low coverage of functional

annotation. Where annotation is more frequent, domain fusion

methods may provide a greater increase in coverage by identifying

associations for more proteins. Ultimately this suggests that gene

and domain fusion methods are complementary and can be used

side by side.

Overlap between the results of different methods. Do

different fusion methods tend to identify functional links between

the same proteins? There was only a small overlap between

CODA and the gene fusion methods (STRING-fusion and

Prolinks-fusion) in the proteins identified as involved in fusion

events (Figure 3a). There was a larger overlap between CODA

and Truong-fusion as might be expected from their more similar

methodologies. In terms of the specific pairwise associations found

the overlap was however rather small (Figure 3b). Out of 500

predicted functional associations CODA and STRING-fusion

Figure 2. Comparisons between CODA and other methods on the yeast genome. (a) Relative performance of CODA and STRING-fusion
methods on the STRING dataset. (b) Relative performance of CODA and Prolinks-fusion on the Prolinks dataset. (c) Relative performance of CODA and
Prolinks-Fusion on the Prolinks dataset, with all results between homologous pairs removed (BLAST E-value ,1e-6). (d) Relative performance of CODA
and Truong-fusion on the Truong dataset.
doi:10.1371/journal.pone.0010908.g002

CODA
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shared only 54, with only 97 common proteins. CODA and

Prolinks-fusion shared only four out of 1000 functional associations

and 26 of the proteins. Despite their similar methodologies and

genes identified in fusion events, CODA and Truong-fusion find

only nine of the same functional links amongst the first 189 hits.

These results further indicate that there is potential for integrating

different methods of gene and domain fusion to increase the

overall prediction power for determining proteins involved in

common biological processes.

The reason for the low overlap between CODA and Truong-

fusion is that, despite both using domains to identify fusions, they

have rather different approaches for reducing false positives. For

example, if in yeast, protein A contains domain x and protein B

contains domain y. Both human and mouse genomes contain a

gene with both x and y domains. If there are fewer than 10 pairs of

genes in yeast with x or y domains, Truong’s method will identify a

functional linkage between A and B. In this case there is one gene

with domain x and there are nine with domain y, making a total of

nine possible linkages and Truong-fusion accepts this linkage.

Truong does not take account of the number of copies in the target

genome. In this case there are nine genes with domain x and 26

with domain y in mouse and even more in human. CODA

therefore gives a score of 0.13 (1/(1+9)+1/(26+9)), which is not

significant for functional similarity. CODA is designed to score the

uncertainty about whether the fused domains and the domains

being linked are orthologues; in this case it is clearly not certain.

CODA and Truong often disagree because CODA takes into

account the frequency of domains in the target genome (that

containing the fusion gene), which Truong’s method does not. The

two methods agree on those linkages about which there is little or

no uncertainty regarding orthology in the relationship between

fused and unfused domains. They differ however when there is

greater uncertainty.

The overlap between CODA and STRING-fusion is apparently

higher than for CODA and Truong-fusion. STRING-fusion is

strict about orthology when calling a fusion event (using bi-

directional best hits) and this is, in theory, more similar to a high-

scoring CODA hit than a high-scoring Truong-fusion hit.

Of the nine links identified by both Truong-fusion and CODA,

eight are known from experiments to act in the same pathway.

The ninth is either a novel result or a false positive (Thymidylate

synthase and Protein VHS3). More generally, we found, using the

full STRING database, that those links which overlapped between

CODA and any of the other fusion methods tended to have

evidence from other types of prediction methods, most often gene

neighbourhood. This might be expected due to the similarity of

gene/domain fusion and gene neighbourhood methods, compared

to say co-expression, which leverages more distinct information.

70% of the CODA-Truong, 48% of the CODA-STRING and

50% of the CODA-Prolinks overlaps were also found by gene

neighbourhood. This is compared to 30%, 17% and 25% for

co-expression.

Assessment of performance on the human genome. In

previous work the analysis of gene fusion for function prediction

has been largely limited to prokaryotes and yeast. Detecting

functional relationships between proteins using gene/domain

fusion in higher eukaryotes is hampered by expanded gene/

domain families. In order to examine this we have tested the

performance of methods on the human genome.

Figure 4a shows that STRING-fusion and CODA performed

well despite the increased problems of promiscuity and large gene/

domain families in the human genome. CODA found 3932 hits at

an enrichment of 10. STRING-fusion found a maximum of 561 hits

for an enrichment of ,20; at this enrichment CODA found 1118

hits. STRING-fusion was able to achieve the highest enrichment of

the two methods, finding 20 hits for an enrichment of 70.

Prolinks-fusion performed less well on the human dataset than

in yeast, even when allowing homologous pairs (Figure 4b). In this

dataset, CODA found 1611 protein pairs for an enrichment of 10,

while Prolinks-fusion found none. The greatest enrichment that

Prolinks-fusion achieved in human was 6.7, although it did find

.25000 pairs at this level. At higher levels of enrichment CODA

is able to find ,100 hits for an enrichment of .30. Note that

CODA finds fewer hits in the Prolinks dataset than the STRING

dataset as the Prolinks dataset is somewhat smaller, containing 168

genomes versus 373 in STRING.

The Truong-fusion results had been obtained using Swiss-Prot

release 39 and TrEMBL release 17. These datasets were released

in 2001 at which point the human genome was not complete.

CODA requires complete genomes for accurate scoring and

therefore it was not possible to compare against Truong-fusion for

human. However Truong-fusion managed to find 235 associations

between human proteins for an enrichment of 28.

Applying CODA to identify associations between
proteins

Annotation from the OMIM (Online Mendelian Inheritance in

Man) database was mapped to all associations identified by

Figure 3. Overlap between the results of different methods. Overlap in (a) proteins involved in linkages and (b) linked pairs of proteins
identified with yeast genome as query. Data is shown for the top scoring 500 hits for CODA and STRING-fusion, the first 1000 hits for CODA and
Prolinks-fusion and the first 189 hits for CODA and Truong-fusion. CODA is represented by blue ellipses, STRING-fusion by red and Prolinks-fusion by
green and Truong-fusion by orange.
doi:10.1371/journal.pone.0010908.g003

CODA
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CODA in human using Gene3D [14]. Only those links identified

by CODA with a score of 0.56 or greater were included. This

score cut-off was found to represent an enrichment of 10 for both

yeast and human datasets. We identified uncharacterised proteins,

which were linked directly to proteins involved in human disease.

The uncharacterised human protein Q6NZ37 (UniProt acces-

sion) was found to be associated with several proteins involved in

mental disorders. TPH2 (Q8IWU9) is known to be involved in

major depressive disorder (MIM:608516) and is directly involved

in the biosynthesis of serotonin from L-tryptophan. Another

associate of Q6NZ37, TPH (P17752; MIM:191060) has been

shown to be involved in suicidal behaviour, thought to be related

to depression [15]. Several other associates of Q6NZ37 are known

or thought to be involved in serotonin biosynthesis. Additional

associates sialic acid synthase (NANS; Q9NR45) and quinolinate

phosphoribosyltransferase (QPRT; Q96G22) are known to be

involved in brain function. Sialic acid is linked with development

of neural tissues during embryogenesis [16] and quinolate levels in

human brain are thought to be involved in the pathogenesis of

neurological disorders (MIM: 606248). Quinolate metabolism also

feeds into serotonin metabolism. Another example of a function-

ally coherent network of interactions identified by CODA centred

on DNA ligase I. Mutations in this gene have been linked with rare

cases of multi-symptomatic disease [17]. A protein of unknown

function, Q96LW4, is linked to this and other known ligases,

suggesting that it too is involved in DNA replication and

potentially forms of multi-symptomatic disease. Searches within

STRING, Prolinks and Truong data gave no associations for

either of these proteins.

Additional functional coverage produced by CODA
We wanted to determine how much additional functional

coverage of the human genome could be generated by CODA. To

do this we considered those proteins between which CODA found

high confidence functional associations and asked how many

could, based on these associations, be assigned a GO term where

before they were unannotated. CODA found 1453 high

confidence (CODA score . = 0.56) associations between 900

human proteins using the Gene3D dataset. Of these 900 proteins,

664 could already be annotated with a GO biological process term

using annotation from GOA (Camon et al., 2004) and allowing all

evidence types. Of the remaining 236 unannotated proteins, 107

could be annotated by transferring high quality GO annotation

(experimental evidence and author statements) using the associ-

ations established by CODA. Although this is a small number of

proteins in terms of the whole human genome, these proteins have

not previously been annotated with GO terms. The annotations

for these proteins are presented as Supplementary Dataset S1.

Discussion

We present a new domain fusion method designed to be

accurate in predicting functional associations between proteins in

higher eukaryotes. The genomes of higher eukaryotes contain

large protein domain families, which make the detection of

functional associations by gene/domain fusion less reliable. To

cope with this problem, previous methods have either considered

only orthologues [9] or implemented a scoring system based on the

frequencies of domain families in the whole target sequence

database [7]. We have implemented a scoring system, but rather

than using counts of domain frequency across all genomes as in

previous scoring methods the CODA score uses domain counts

within individual genomes. This reduces the problem of large

domain families and allows good scores between pairs where there

is a genome in which the fusion protein has few homologues.

CODA was shown to cope well with the problem of large,

promiscuous domains families.

Gene/domain fusion methods in general have been thought to

perform better in prokaryotes than eukaryotes as prokaryotes tend

to have smaller families of homologous genes/domains [7]. Here it

was shown that CODA, STRING-fusion and Truong-fusion are

both robust to the complexities of the human genome, achieving

high accuracy and coverage, with CODA finding ,7 times more

results than STRING for a reasonable error rate. However, at

very low error rates STRING outperformed CODA. Prolinks-

fusion did not perform as well in human as in yeast, possibly due to

the increased problems of large homologous domain families and

promiscuous domains.

These methods seem to occupy two distinct niches. The

methods which can achieve the highest accuracy but which

provide a relatively small number of hits (STRING-fusion and

Truong-fusion) are useful for identifying high quality sets of

Figure 4. Comparisons between CODA and other methods on the human genome. (a) Relative performance of CODA and STRING-fusion
methods on the STRING dataset. (b) Relative performance of CODA and Prolinks-fusion on the Prolinks dataset.
doi:10.1371/journal.pone.0010908.g004

CODA
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associations. However for any particular protein it is unlikely that

they will find an association. Methods such as Prolinks-fusion and

CODA can provide less certain associations for a greater number

of hits and therefore would be more appropriate where the other

methods cannot provide associations.

Interestingly there is little overlap between the methods in terms

of the functional links they predict and even the proteins included

in the links. This suggests that the particular implementation

greatly affects the links obtained (e.g. using domains vs. whole

proteins). Furthermore, much as different genome context

methods have been combined to produce larger sets of confident

predictions (e.g. [3]), using different implementations of the gene/

domain fusion method could allow a greater number of

predictions overall.

Finally it was shown that CODA is able to identify putative

disease-related proteins in humans. Furthermore, many previously

unannotated human proteins were assigned GO terms using

CODA suggesting that this approach will also be able to annotate

previously unannotated proteins in many other genomes. These

results are provided as a supplementary Dataset S1.

CODA is available for download and can be used to determine

functional relationships between proteins in any genome of interest

to the user. Pre-calculated results are also available via web

services.

Materials and Methods

Gene3D Multi-Domain Architecture datasets
Co-Occurrence of Domains Analysis (CODA) requires Multi-

Domain Architectures (MDAs) of proteins for complete genomes.

An MDA is a symbolic representation of the predicted domains for

a protein. The order and frequency of domains in a protein is not

considered by CODA and so discontinuous domains can be

collapsed and repeats ignored.

Several alternative MDA datasets were generated using domain

assignments from Gene3D v5 [14], each covering 527 complete

genomes (50 eukaryotes, 438 eubacteria and 39 archaea). Datasets

contained either only CATH domains, only Pfam domains or a

combination of the two. Further details of the construction of these

datasets are presented in Figure S6 and Table S1. These datasets

were used in developing the CODA method.

Only the results of the methods against which we compare

CODA were available, rather than the algorithms themselves.

Therefore, in order to compare CODA against these methods, it

was necessary to run CODA on the datasets used to generate those

results. For STRING and Prolinks, descriptions of the sequences

used are available from the respective web-servers. The Truong

dataset combined Swiss-Prot release 39 and TrEMBL release 17.

The Swiss-Prot release was retrieved from the EBI FTP server

(ftp://ftp.ebi.ac.uk/pub/databases/swissprot/sw_old_releases),

while TrEMBL release 17 was kindly provided by the PANDA

group at the EBI.

All STRING and Prolinks sequences were scanned with Pfam

HMMs using the same pfam_scan.pl protocol used for Gene3D

[18]. Details of these datasets are shown in Supplementary Table

S2.

Truong-fusion and CODA both use Pfam domains, so in order

to avoid giving CODA an advantage by using the most recent

Pfam annotation, the Truong dataset was annotated using Pfam

domain annotation from the contemporary Swiss-Prot and

TrEMBL records. The STRING and Prolinks datasets comprise

protein sequences from completed genomes. The Truong dataset

however gave no information of which genomes in the dataset

were complete and it is difficult to determine which genomes were

completed at this time. Therefore those proteins from species

which currently remain unsequenced were removed. The result is

that some incomplete genomes will remain and this may reduce

the performance of CODA, which expects complete genome

information to accurately score its results.

A benchmark for functional similarity using Gene
Ontology terms

The aim of the CODA method is to identify pairs of proteins

which are involved in similar biological processes. In order to

benchmark CODA it was therefore necessary to determine the

functional similarity between an arbitrary pair of proteins. We

compared the biological process Gene Ontology (GO) terms of

proteins using the semantic similarity approach of Resnik et al.

[19,20] and GO annotation from Gene3D. This approach

requires a corpus of terms in calculating its statistics and this

was varied according to whether the benchmark was performed in

yeast or human and whether the dataset was Gene3D, STRING,

Prolinks or Truong. Those terms with evidence type ‘Inferred

from Electronic Annotation (IEA)’, ‘No biological Data available

(ND)’ and ‘Inferred from Genomic Context (IGC)’ were removed

to avoid the circularity of benchmarking a method using results

derived from similar methods. The coverage of each of these

datasets by relevant GO terms is shown in Supplementary Table

S3. The GOSS score between any two proteins was taken as the

maximum GOSS score between any pair of terms associated with

those proteins.

In this benchmark false positives could not be directly

determined as many proteins were unannotated or annotated

with relatively non-specific GO terms. Therefore, instead of

precision we calculated enrichment, based on the number of

positive hits expected by chance. Protein pairs identified by a

method, which exceeded a GOSS score of 4, were considered true

positive hits. Only ,3% of GOSS scores were . = 4 (see Figure

S7). For both human and yeast datasets, GOSS scores of 4 and

above are sufficiently rare that they are unlikely to be picked by

random chance (,1 in 20). Considering all protein pairs in yeast

(i.e. including those with no appropriate GO terms), the likelihood

of a score . = 4 was 0.0167. From 50 random protein pairs, we

would therefore expect to see 0.835 (5060.0167) functionally

similar pairs. If 10/50 pairs predicted by CODA have a GOSS

score . = 4, CODA has achieved an enrichment of 11.98 (10

observed true positives divided by 0.835 expected true positives).

The distribution of GOSS scores for the human genome was very

similar to the yeast genome, although 93.7% of pairs did not have

a GOSS score. For the human genome ,3% of GOSS scores

were . = 4. STRING, Prolinks and Truong datasets also had

,5% GOSS scores . = 4. The proportion of expected positives

used in calculating enrichment was varied appropriately for each

dataset.

The CODA score
Co-Occurrence of Domains Analysis (CODA) uses a Multi-

Domain Architecture (MDA) representation of proteins in

complete genomes (target genomes) to discover pairs of proteins

involved in common biological processes within a complete

genome of interest (the query genome). It is a novel approach in

the domain fusion idiom using a new scoring method.

Here we consider how the method is implemented for a

particular pair of proteins i = (p,q) in a query genome g. P is the set

of domains in protein p. a [ P denotes that protein p contains a

domain of superfamily a. J is the set of domain pairs j = (a,b) where

a [ P, b [ Q. In other words J consists of all the distinct pairs of

domains between proteins p and q. It is also required that

CODA
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P>Q = {}, as the two proteins must not share any domains of the

same family.

To determine a fusion event we require that a target genome

(one other than the query genome) contains a protein s where a [ S

and b [ S, i.e. domains which are separated in the query genome

are found fused in the target genome. The set T comprises those

genomes other than g, which contain such proteins s. For a domain

pair j in genome g, the fusion score Cj is taken as a maximum over

all genomes in T:

Cj~maxDT D
t~1

1

ngA
zntA

z
1

ngB
zntB

 !
, ð1Þ

where |T| is the number of elements of set T (i.e. the number of

target genomes), ngA and ngB are the frequencies of domain A and

domain B respectively in genome g and ntA and ntB are the

frequencies of domains A and B respectively in genome t.

For a particular protein pair i in query genome g, the maximum

Cj is taken over all possible domain pairs j.

Ci~maxDJ D
j~1 Cj

� �
, ð2Þ

where |J| is the number of elements in set J (i.e. distinct domain

pairs). Thus Ci is the CODA score for proteins p,q (pair i); the best

(highest) score over all domain pairs between the proteins and over

potential fusion proteins in all genomes (other than the query

genome). The important novel aspect of this score is that it takes

the maximum score over all the genomes whereas other methods

do not consider target genomes individually. The score was chosen

to reflect the uncertainty that fused domains and their unfused

relatives are orthologues. The highest (best) possible score is 1.

This occurs when there is only one example of each domain family

in the query genome and one fused protein in a target genome,

with no other domain homologues. In this case it is highly likely

that the query protein domains are orthologous to the target

protein. Several other scoring schemes were trialled, including that

used by Marcotte & Marcotte [7], however the CODA score

presented above was found to be most accurate for domain fusion.

Supporting Information

Figure S1 Comparative performance of Pfam, Pfam-CATH,

CATH and CATH-Pfam MDA datasets on the yeast genome.

Enrichment is the ratio of true positives achieved by CODA to the

number expected by chance. Points are plotted at successive score

cut-offs. At an enrichment of 10, Pfam-CATH performed best

with 1791 hits; Pfam achieved 1663 hits, CATH-Pfam 792 and

CATH 296. At higher enrichment (e.g. 15), the Pfam dataset

outperforms all others and finds ,500 hits. Datasets based

principally on CATH domains (CATH-Pfam and CATH)

performed less well than those based on Pfam domains. This

may be because CATH superfamilies tend to be broader than

Pfam families, including more functional subfamilies. This could

result in generally reduced scores for hits involving these larger

families. Additional analysis using CATH subfamilies did not

improve performance however (Figure S1) and thus it is more

likely that CATH had lower performance due to lower coverage of

the genomes. Pfam MDA datasets were chosen over Pfam-CATH

due to a similar performance at moderate enrichment and

superior performance at higher enrichment. CODA should be

used with a score cut-off of 0.56 to achieve an enrichment of 10 on

this dataset and 0.65 for an enrichment of 15.

Found at: doi:10.1371/journal.pone.0010908.s001 (0.60 MB EPS)

Figure S2 Performance of CODA using CATH domains, with

and without subfamilies. CATH domains showed lower perfor-

mance than Pfam domains in detecting functional relationships

between proteins using CODA. This could have been due to low

coverage of CATH domains relative to Pfam or because CATH

has larger families causing low scores for many hits. CATH

superfamilies were clustered at varying sequence identity cut-offs

(30, 35, 40, 50, 60, 70, 80, 90, 95 and 100%) using an in-house

implementation of directed multi-linkage clustering. The domain

counts used in the CODA score were then adjusted using these

clusters. Let us say that there are two proteins in yeast, each with

one domain. The first protein contains domain A and the second

domain B. A protein is found in E. coli which is a fusion of these

two domains: A9B9. Let us say that A and A9 are in the same 50%

cluster but not the same 60% cluster, i.e. they share 50% sequence

identity. The counts for ngA in the CODA score (equation 1) then

only include the number of members of the same 50% cluster that

belong to yeast. ngB is the number of members of that 50% cluster

which belong to E. coli. Likewise, if B and B9 are in the same 70%

cluster but not the same 80% clusters, then the counts are taken

from that 70% cluster. Using subfamilies slightly improves

performance at high enrichment but only where there are few

hits. We therefore concluded that the reduced performance of

CATH relative to Pfam was related to a mixture of lower coverage

of genomes and than the size and functional specificity of the

families.

Found at: doi:10.1371/journal.pone.0010908.s002 (0.52 MB EPS)

Figure S3 Relationship between number of links and proteins

for first 500 novel links between CODA (blue) and STRING-

fusion (red).

Found at: doi:10.1371/journal.pone.0010908.s003 (0.55 MB EPS)

Figure S4 Relationship between number of links and proteins

for first 1000 novel links between CODA (blue) and Prolinks-

fusion (green).

Found at: doi:10.1371/journal.pone.0010908.s004 (0.57 MB EPS)

Figure S5 Relationship between number of links and proteins

for first links between CODA (blue) and Truong-fusion (orange).

Found at: doi:10.1371/journal.pone.0010908.s005 (0.56 MB EPS)

Figure S6 Overlap criterion for combining CATH and Pfam

domains into a single dataset. The datasets which included both

CATH and Pfam domains were generated in two ways. The

CATH-Pfam dataset had CATH domains assigned first, while

Pfam-CATH had Pfam domains assigned first. Examples of the

second type of domain were added if the overlap between them

and the already assigned, primary domains was no greater than

30% in both directions (see Figure S1). The initial set of CATH

domains did not overlap with each other, nor did the Pfam

domains. This resulted in 4 different datasets – CATH, Pfam,

CATH-Pfam and Pfam-CATH. Table S1 gives details on the

domain coverage of these datasets. Existing datasets of CATH or

Pfam domains do not overlap within themselves. When CATH

and Pfam are combined there are frequent overlaps as many

domains are equivalent between the datasets and criteria for

domain boundaries vary. Shown in Figure S6 is an example for the

CATH-Pfam dataset, where CATH domains are placed first. The

percentage of residues of either domain involved in the overlap

must not exceed 30%.

Found at: doi:10.1371/journal.pone.0010908.s006 (0.14 MB EPS)

Figure S7 Distribution of biological process GOSS scores

between yeast proteins in the Gene3D dataset. Proteins without

appropriate GO terms were excluded. GOSS score bins were

bounded such that the bin labelled 2 contains values . = 2 and

CODA
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,2.5. The bars represent the frequency and the blue line

represents the cumulative proportion of GOSS scores which have

less than the stated value. We show here the distribution of GOSS

scores in the yeast genome. Protein pairs which score 0 because

they do not have comparable GO terms were ignored (43.4% of all

yeast pairs).

Found at: doi:10.1371/journal.pone.0010908.s007 (0.63 MB EPS)

Table S1 Size of Gene3D datasets and genome coverage with

different Multi-Domain Architecture (MDA) types. Coverage is

calculated as the percentage of proteins which have at least one

domain. The CATH-Pfam and Pfam-CATH datasets therefore

appear identical, although their domain assignments are not.

Found at: doi:10.1371/journal.pone.0010908.s008 (0.03 MB

DOC)

Table S2 Coverage of STRING, Prolinks and Truong datasets

with Pfam domains. Coverage is calculated as the percentage of

proteins with at least one domain. Raw numbers are shown in

brackets.

Found at: doi:10.1371/journal.pone.0010908.s009 (0.03 MB

DOC)

Table S3 Percentage of individual protein for each genome in

each dataset which has at least one relevant GO term.

Found at: doi:10.1371/journal.pone.0010908.s010 (0.03 MB

DOC)

Dataset S1 Novel functional annotation assigned to human

gene products using CODA.

Found at: doi:10.1371/journal.pone.0010908.s011 (0.33 MB

XLS)
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