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Glioblastoma multiforme (GBM) is the most malignant primary tumour in

the central nervous system, but the molecular mechanisms underlying its

pathogenesis remain unclear. In this study, data set GSE50161 was used to

construct a co-expression network for weighted gene co-expression network

analysis. Two modules (dubbed brown and turquoise) were found to have

the strongest correlation with GBM. Functional enrichment analysis indi-

cated that the brown module was involved in the cell cycle, DNA replica-

tion, and pyrimidine metabolism. The turquoise module was primarily

related to circadian rhythm entrainment, glutamatergic synapses, and axo-

nal guidance. Hub genes were screened by survival analysis using The Can-

cer Genome Atlas and Human Protein Atlas databases and further tested

using the GSE4290 and Gene Expression Profiling Interactive Analysis

databases. The eight hub genes (NUSAP1, SHCBP1, KNL1, SULT4A1,

SLC12A5, NUF2, NAPB, and GARNL3) were verified at both the tran-

scriptional and translational levels, and these gene expression levels were

significant based on the World Health Organization classification system.

These hub genes may be potential biomarkers and therapeutic targets for

the accurate diagnosis and management of GBM.

Glioblastoma multiforme (GBM), which accounts for

47.1% of primary malignant brain tumours [1], is clas-

sified as a grade IV glioma by the World Health Orga-

nization (WHO) and a highly lethal tumour [2]. GBM

is considered incurable, with a 5-year survival rate of

only 5.5% [1]. The poor prognosis is also related to

the high recurrence rate of tumours despite aggressive

multimodality treatments, including maximal surgical

resection, radiotherapy, and chemotherapy [3].

Molecular data on brain tumours have a significant

impact on prognosis and clinical management [4]. In

2016, the WHO classification of tumours of the central

nervous system improved the traditional diagnostic cri-

teria—which was based only on histological properties
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—and incorporated molecular markers, by establishing

the ‘ISN-Haarlem’ consensus [5]. Specifically, an inte-

grated diagnostic approach based on clinical,

histopathological, and molecular data is required to

more accurately distinguish glioma tumour subtypes

and define prognosis in response to specific treatments.

According to a recent study, glioblastoma patients

may benefit from molecular targeted therapies [6].

Here, we report two modules using weighted gene co-

expression network analysis (WGCNA) [7], which

might provide potential biomarkers and therapeutic

targets for more accurate diagnosis and treatment of

GBM.

WGCNA, using soft-thresholding techniques to con-

vert a gene co-expression similarity measure into a net-

work connection strength, can reconstruct gene co-

expression modules and summarise modules using

module eigengene [8]. WGCNA can yield more robust

results as compared to unweighted networks [7].

WGCNA is one of the most extensive methods of

genomic analysis, and it has a high degree of superior-

ity by focussing on a group of genes, rather than a sin-

gle gene, to minimise bias. In addition, WGCNA does

not require cut-off criteria and can retrieve momentous

information, which is otherwise omitted with other

methods. WGCNA has been applied in various can-

cers, such as pancreatic cancer, breast cancer, and

osteosarcoma [9–11]. To identify key biomarkers and

to further understand the molecular mechanisms of

GBM, we used WGCNA to analyse GBM from a new

perspective in this study.

Materials and methods

Data information

Two microarray profiles, including GBM samples

(GSE50161 and GSE4290), were downloaded from the

National Center for Biotechnology Information Gene

Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/)

[12]. As for the GSE50161 data set, 34 paediatric GBM

samples and 13 normal samples were selected for WGCNA

[13]. As for the GSE4290 data set, 81 malignant glioma cell

samples and 23 nontumour samples from epilepsy patients

were selected for validation [14]. The two data sets above

were both based on the platform of the Affymetrix Human

Genome U133 Plus 2.0 Array.

Construction of WGCNA

GBM and normal samples were ranked by the median

absolute deviation from large to small, and we precalcu-

lated the power parameter of the top 5000 genes using the

pickSoftThreshold function of WGCNA [8]. This function

provided the appropriate soft-thresholding power for net-

work construction by calculating the scale-free topology fit

index for several powers. Adjacency was turned into topo-

logical overlap, which could measure the network connec-

tivity of a gene defined as the sum of its adjacency with all

other genes for the network generation. Modules were

grouped with tightly connected genes, which had similar

expression profiles, and then identified on the dendrogram

using the Dynamic Tree Cut algorithm. The first principal

component of a given module is defined as the module

eigengene, which can be considered as a representative of

the gene expression profile in a module. The dissimilarity

of module eigengenes was calculated to choose a cutline to

merge some modules.

Identification of significant GBM modules

To find significant gene modules, we created module–trait
relationships to detect the correlation between module

eigengenes and the GBM trait. The log10 transformation of

the P-value was defined as the gene significance. The higher

the absolute value of gene significance, the more biologi-

cally significant the gene [8]. Module significance was deter-

mined as the average absolute gene significance measure for

all genes in a given module. The module membership mea-

sure is highly related to the intramodular connectivity.

Highly connected intramodular hub genes tend to have

high module membership values to the respective module.

Generally, the module with the absolute module signifi-

cance ranked first among all the selected modules was con-

sidered as the one most related to GBM traits and was

called the key module.

Functional enrichment analysis

In order to gain further insight into the function of genes

in key modules, eigengenes in the key module were sub-

jected to Gene Ontology (GO) enrichment analysis to iden-

tify the enrichment results of biological processes (BPs),

cell components, and molecular functions using the CLUS-

TERPROFILER R package [15]. Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway enrichment analyses of

key modules were also performed [16]. Fisher’s exact test

based on hypergeometric distribution was used for statisti-

cal analysis. P < 0.05 was considered to have statistical sig-

nificance and to achieve significant enrichment.

Identification of hub genes in key modules

R function exportNetworkToCytoscape was used to export

the key modules as networks in text format for CYTOSCAPE

(ver3.6.1, https://cytoscape.org/) [17]. After importing the

texts in CYTOSCAPE, we sorted the node degree of genes in
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the key modules and screened the top 30 genes in each

module. The Cancer Genome Atlas (TCGA, http://cance

rgenome.nih.gov/) is a landmark cancer genomics pro-

gramme that contains over 20 000 molecularly charac-

terised primary cancer and matched normal samples

spanning 33 cancer types [18]. To further screen hub genes

among the key modules, we downloaded the GBM gene

expression data from TCGA database for survival analysis

(grouped by median expression level) of the top 30 genes in

each module above. If there were no significant results of

survival analysis by TCGA in a given module, we used the

Human Protein Atlas (HPA, https://www.proteinatlas.org/)

to screen candidate genes associated with survival in the

module by searching for the best cut-off expression value in

TCGA. By limiting the sample size in the group, the group-

ing was not less than 20% of the total sample in the HPA,

and genes with the lowest log-rank P-values (log-rank

P < 0.05) of survival analysis were selected [19]. The R

package limma was applied to screen differentially

expressed genes (DEGs) between GBM and nontumour

samples in GSE50161 [20]. The corresponding P-values of

less than 0.01 and log |fold change (FC)| larger than 1.5

were selected as the cut-off criteria for DEGs. DEGs asso-

ciated with survival were considered to be hub genes in

GBM tumorigenesis.

Validation of hub genes

We performed hub genetic verification in two separate data

sets from different sources. For data set GSE4290, the

screening methods and cut-off criteria for DEGs were the

same as in GSE50161. Volcano plots and hierarchical clus-

tering analyses were carried out using R packages ggplot2

and pheatmap, respectively. GO function enrichment and

KEGG pathway analysis were also performed on DEGs.

The differential expression levels of these hub genes were

also verified in GEPIA (http://gepia.cancer-pku.cn/) [21].

The GBM and normal data sources were from TCGA and

the Genotype-Tissue Expression project [22]. In addition,

the HPA database provided immunohistochemically (IHC)

stained specimens of the proteins of genes. It was used for

verifying the translational levels of hub genes in normal

and tumour tissues (including three normal samples and at

least nine GBM samples).

Hub gene expression distribution (WHO

classification)

To further investigate the distribution of these eight key

genes in the WHO classification, we used R to analyse the

mRNAseq_693 data set in the Chinese Glioma Genome

Atlas (CGGA, http://www.cgga.org.cn/) database. The

mRNAseq_693 data set contained 188 GBM samples in

WHO grade II, 255 samples in grade III and 249 samples

in grade IV. Gene expression data were subjected to a t-test

after log2 (expression + 0.001) conversion. A P-value of

less than 0.05 was considered statistically significant.

Prediction of transcription factors of hub genes

Identification of the transcription factors (TFs) that operate

a perturbed gene network and detection of their target

genes are instrumental steps in uncovering key insights into

oncogenic programmes, including the discovery of thera-

peutic targets [23–25]. The iRegulon in CYTOSCAPE is a plu-

gin to reverse engineer the transcriptional regulatory

network underlying a co-expressed gene set using cis-regu-

latory sequence analysis [26]. iRegulon relies on the analy-

sis of the regulatory sequences around each gene in the

gene set to detect enriched TF motifs or ChIP-seq peaks,

using databases of nearly 10 000 TF motifs and 1000

ChIP-seq data sets or ‘tracks’. Next, it associates enriched

motifs and tracks with candidate TFs and determines the

optimal subset of direct target genes. In order to explore

the TFs of hub genes in key modules, we used the iRegulon

plugin to predict the TFs of hub genes in the two modules.

The screening conditions were normalised enrichment

scores > 3.

Validates the role of high expression of Hub

gene by siRNA transfection knockdown method

Hub gene identification has confirmed the high expression

of four Hub genes of NUSAP1, SHCBP1, NUF2 and

KNL1 in tumours. In order to further study the role of

these four genes in GBM, we used siRNA transfection

knockdown method to knock down the mRNA expression

of four Hub genes of NUSAP1, SHCBP1, NUF2 and

KNL1 in human astroblastoma cell line U87 (it was pur-

chased from the Committee on Type Culture Collection of

the Chinese Academy of Sciences. Shanghai, China) and

then determined the level of mRNA of four Hub genes by

RT-PCR method (All primers are listed in Table 1); next,

we analysed the variation of proliferation and cloning abil-

ity of U87 cells by CCK8 method and clone formation

Table 1. The sequences of siRNA and RT-qPCR primers.

Gene Primer Tm

SAP1-F TGGACCTCTAATGATGGGCAG 60

SAP1-R AGGCTTGTTCTTGCGAATCCC 60

SHCBP1-F GGAAGTGTATCCTGTTGAGGGA 60

SHCBP1-R ACCAGGTATTGTTCCATCCTGT 60

NUF2-F GGAAGGCTTCTTACCATTCAGC 60

NUF2-R GACTTGTCCGTTTTGCTTTTGG 60

KNL1-F CTTCACACCGAGGACTCAAGA 60

KNL1-R TTTGATGTGTAGAAGAGGCACTG 60

GAPDH-F GGAGCGAGATCCCTCCAAAAT 60

GAPDH-R GGCTGTTGTCATACTTCTCATGG 60
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experiment, and finally, the role of four Hub genes was val-

idated.

Statistical analyses

Data were analysed by using IBM SPSS 21.0 software (IBM,

Chicago, IL, USA) and are presented as the mean � SD.

Quantitative PCR results and clone formation were anal-

ysed by Student’s t-test, and CCK8 cell proliferation was

analysed by one-way analysis.

Results

WGCN construction and module selection

We analysed 5000 genes, which were divided into two

clusters (Fig. 1A). Our fitting degree of the scale-free

topological model was 0.85. Thus, this network con-

formed to the power-law distribution and was close to

the real biological network state. Network topology

for thresholding powers from 1 to 20 was performed,

and the relatively balanced scale independence

(Fig. 1B) and mean connectivity (Fig. 1C) of the

WGCNA were identified subsequently. It showed that

8 had the best power value. Thus, b = 8 was selected

to produce a hierarchical clustering tree (dendrogram)

of 5000 genes. As a result, nine modules were identi-

fied (Fig. 2A). Different colours represented different

modules, and genes that could not be classified in any

module were put into the grey module, which was

removed in the subsequent analysis (Fig. 2B).

Correlation between modules and identification

of key modules

The analytic results of the interaction relationships of

nine modules showed that genes within modules dis-

played more topological overlap than the genes across

modules, according to the topological overlap heat-

map in the gene network (Fig. 3A). This revealed that

Fig. 1. Clustering of samples and

determination of soft-thresholding power.

(A) Clustering of samples. (B) The scale-

free topology fitting index (R2, y-axis) as a

function of the soft-thresholding power (x-

axis). The red line indicates R2 = 0.9. (C)

The mean connectivity (degree, y-axis) is

displayed as a function of the soft-

thresholding power (x-axis). Red Arabic

numbers in the panels denote different

soft-thresholds. b = 8, there was a trade-

off between maximising the scale-free

topology model fitting index (R2) and

maintaining a high mean number of

connections.
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each module was independent of each other. Similar

results were demonstrated by the heatmap plotted

according to adjacencies (Fig. 3C). The module eigen-

gene of the turquoise and brown modules revealed a

high correlation with disease status compared with

other modules (Fig. 3B). The turquoise module (cor-

relation index: �0.85, P = 8e�14) was negatively corre-

lated with the disease, while the brown module

(correlation index: 0.88, P = 8e�15) was positively cor-

related. Thus, we identified turquoise and brown

modules as the key modules. Figure 4A,B illustrate

the strong correlation between module membership

and gene significance in brown and turquoise mod-

ules, respectively.

Functional enrichment analysis of the two key

modules

For the GO enrichment analysis of key modules, the

detailed information of the brown module is shown in

Fig. 5A. They were mainly enriched in cell division,

including chromosome segregation, organelle fission,

and nuclear division, all of which were positively cor-

related with tumorigenesis. Detailed information of the

turquoise module is shown in Fig. 5B. They were

mainly enriched in the regulation of the nervous sys-

tem, such as positive regulation of neuronic

development and differentiation, which were negatively

correlated with tumorigenesis. Detailed information of

the KEGG pathway analysis for key modules is shown

in Fig. 6A,B. The brown and turquoise modules were

mainly focussed on the cell cycle and neural signalling

pathway, respectively. To provide solid insights, data

set GSE4290 was analysed, and the results of DEGs in

the data set are shown in Fig. S1A,B. KEGG pathway

analysis and GO enrichment analysis of the DEGs

were carried out (Figs S1C and S2). As we have seen,

the KEGG pathway is enriched in pathways such as

the cell cycle and GABAergic synapse. In the GO

functional analysis of DEGs, the BP components of

upregulated genes were mainly enriched in chromo-

some segregation and DNA replication, and the BP

components of down-regulated genes were mainly

enriched in neuronic development and synaptic func-

tion. This finding is consistent with the functional

analysis of our key modules.

Identification of hub genes in key modules

The top 30 genes screened in each module using CY-

TOSCAPE are shown in Fig. 6C,D. Figure 7 shows the

results of the survival analysis. Figure 8A is the result

of the differential expression level analysis. NUSAP1,

SHCBP1, NUF2 and KNL1 were the hub genes in the

Fig. 2. Cluster of module eigengenes and

cluster dendrogram. (A) Cluster

dendrogram of module eigengenes. (B)

The cluster dendrogram of genes in

GSE50161. Each branch of the

dendrogram represents a gene. Each

designated colour represents a co-

expression module.
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Fig. 3. Identification of key modules. (A) Network heatmap plot of co-expression genes. Different colours of the horizontal axis and the

vertical axis represent different modules. The progressively saturated yellow and red colours indicate the high co-expressed interrelation in

the heatmap. (B) Heatmap of the correlation between module eigengenes and GBM. Each row represents a module eigengene and each

column represents trait. The table is coloured by correlation according to the colour legend. The turquoise module is the most negatively

correlated with GBM, and the brown module is the most positively correlated with GBM. (C) The hierarchical clustering dendrogram and the

adjacency heatmap of each module. The top is the hierarchical clustering of the module crucial genes (labelled by colours). The bottom is

the adjacency heatmap, where each column and row correspond to one module crucial gene (labelled by colour) or trait labelled by y. Red

represents high adjacency (positive correlation), while blue colour represents low adjacency (negative correlation). Squares of red colour

along the diagonal are the meta-module.

Fig. 4. Module eigengenes in key modules. (A) Scatter plot of module eigengenes in the brown module. (B) Scatter plot of module

eigengenes in the turquoise module.
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brown module and SULT4A1, SLC12A5, NAPB and

GARNL3 in the turquoise module.

Validation of hub genes

The expression status of eight hub genes in normal

and GBM samples of the other two data sets are

shown in Fig. 8B,C, respectively. The results were sim-

ilar to those of the previous data set. We found differ-

ences in IHC staining between the tumour samples

and the normal cerebral cortex in the HPA database.

It showed the translation expression levels of

NUSAP1, SHCBP1 and KNL1, which were positively

correlated with disease status as they were upregulated

in GBM samples. It also showed the translational

expression levels of SULT4A1, SLC12A5, NAPB and

GARNL3, which were negatively correlated with dis-

ease status as they were downregulated in GBM sam-

ples (Fig. 9). Unfortunately, there were no related

IHC samples of NUF2 in the database. Overall, these

results showed that protein levels were consistent with

previously described transcription levels.

Hub gene expression distribution (WHO

classification)

The expression levels of these eight hub genes,

NUSAP1, SHCBP1, NUF2, KNL1, SULT4A1,

SLC12A5, NAPB and GARNL3, showed significant

differences in the WHO classification (Fig. 10). A

Fig. 5. GO enrichment analysis of key

modules. (A) GO enrichment analysis of

genes in the brown module (top 10 in BP,

CC, and MF are listed). The y-axis depicts

names of terms in BP, CC, and MF,

respectively, and the x-axis depicts gene

ratio in the module. The circle size

represents the count and colours

represent the P-value; (B) GO enrichment

analysis of turquoise module genes (top

10 in BP, CC and MF are listed). CC,

cellular component; MF, molecular

function.
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higher WHO classification indicated higher expression

levels of NUSAP1, NUF2, SHCBP1 and KNL1 genes

in the brown module, and lower expression levels of

SULT4A1, SLC12A5, NAPB and GARNL3 in the tur-

quoise module; the difference was statistically signifi-

cant.

TFs of hub genes

Table 2 shows the prediction of the top 20 TFs of hub

genes in the brown and turquoise modules. The number

of targets (hub genes) and the number of motifs/tracks

for each TF are also listed in the table. E2F4 is the most

important TF of NUSAP1, SHCBP1, NUF2 and KNL1

in the brown module, and ATF2 is the most important

TF of SULT4A1, SLC12A5, NAPB and GARNL3 in the

turquoise module.

The role of high expression of Hub gene about

the proliferation and clone formation of GBM

cells

Cell proliferation and clone formation may be key

events in promoting the development of cancer. There-

fore, we can analyse the function of these four genes in

GBM by analysing the effects of these four genes on the

key events of these cancer cells. As shown in Fig. 11A,

the results showed that the expression of target genes in

siRNA group decreased significantly compared with

siNC. We can continue to use these siRNA for

functional experimental research. First, we detected

the effect of knockdown target gene in the U87 cells

by CCK8 method, the results as shown in Fig. 11B

that the cell proliferation rate of siRNA group (siNU-

SAP1, siSHCBP1, siNUF2 and siKNL1) decreased

Fig. 6. KEGG pathway enrichment and top 30 genes of key modules. (A) The KEGG pathways of the brown module. The y-axis depicts the

names of the terms of the pathways, and the x-axis represents the count. Colours represent P-values. (B) The KEGG pathways of the

turquoise module. (C) In the brown module, genes with node degrees in the top 30 are displayed. (D) In the turquoise module, genes with

node degrees in the top 30 are displayed. The higher the rank of the genes, the deeper the colour of the genes.
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significantly compared with siNC; in other words, the

genes of NUSAP1, SHCBP1, NUF2 and KNL1 could

promote cell proliferation. We further used clone forma-

tion experiment to assay the variation of proliferation

and cloning ability of U87 cells. As shown in Fig. 11C,

the number of clones in the siRNA group (siNUSAP1,

siSHCBP1, siNUF2 and siKNL1) decreased signifi-

cantly. The above results indicated that NUSAP1,

SHCBP1, NUF2 and KNL1 play a key role in promot-

ing the proliferation of GBM, which further confirms

the reliability of our previous analysis data.

Discussion

GBM is the most malignant glioma [27]. An in-depth

study on the molecular level and mechanism level of

Fig. 7. Survival analysis of hub genes. (A–D) In the brown module, genes with top 30 node degrees and significant results of survival

analysis in HPA are SHCBP1, NUSAP1, NUF2 and KNL1 (P < 0.05 was regarded as significant). (E–H) In the turquoise module, genes with

top 30 node degrees and significant results of survival analysis in TCGA are SULT4A1, SLC12A5, NAPB and GARNL3 (P < 0.05 was

regarded as significant).
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Fig. 8. Screening and validation of hub genes at the transcriptional level. (A) Screening hub genes in GSE50161 (including 34 paediatric

GBM samples and 13 normal samples). The expression status of four hub genes (NUSAP1, NUF2, SHCBP1 and KNL1) was positively

correlated with disease status. This was also consistent with the results for the brown module of WGCNA. The expression status of four

hub genes (SULT4A1, SLC12A5, NAPB and GARNL3) was negatively correlated with disease status. This was consistent with the results in

the turquoise module of WGCNA. (B) Validation of eight hub genes in GSE4290 (including 81 paediatric GBM samples and 23 normal

samples), and the results were the same as earlier. (C) The differential expression levels of hub genes were demonstrated in TCGA by

GEPIA. These results were consistent with the above results. These results fully demonstrated the reliability of our findings. (t-test;

*P < 0.05; **P < 0.01; ***P < 0.001).
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GBM is helpful to find new prevention and treatment

targets for GBM. We used WGCNA to explore the

tumorigenic factors of GBM and validated the sig-

nalling pathways and differential gene levels in two

other independent data sets. Finally, two modules

(brown module and turquoise module) and eight hub

genes (NUSAP1, NUF2, SHCBP1, KNL1, SULT4A1,

SLC12A5, NAPB and GARNL3) in the occurrence of

GBM were obtained.

It has been reported that chromosomal structural

variation and gene mutations are key factors influenc-

ing the occurrence and development of GBM [28,29].

Chromosomal instability (CIN) is one of the character-

istics of tumours, and nonmultiple chromosomes cause

genomic alterations in cells, resulting in the acquisition

of tumour characteristics in normal cells [30]. Interest-

ingly, we found that the BP component of the GO

enrichment analysis in the brown module was primar-

ily enriched in chromosome segregation, while the cell

component was mainly enriched in the spindle and

chromosome, suggesting that chromosomal instability

plays an active role in the occurrence of GBM. Consis-

tent with our findings, previous studies demonstrated

that the cell cycle process and chromosome instability

play an important role in the tumorigenesis of GBM

[31,32]. Simultaneously, the KEGG pathway analysis

of the genes in the brown module showed a consistent

result. As a malignant tumour in the central nervous

system, GBM is characterised by cell cycle disruption

and malignant cell proliferation [33], which is in accor-

dance with our results.

In the turquoise module, genes are mainly enriched

in positive neuron development and synaptic function

in the GO function annotation. The genes are mainly

negatively correlated with the status of GBM, which is

consistent with the progressive regulation of neurons

and synapses to inhibit tumour development. Corre-

spondingly, the main KEGG pathways in the tur-

quoise module-demonstrated enrichment included

circadian rhythm entrainment, glutamatergic synapses,

axonal guidance, GABAergic synapses, dopaminergic

synapses, retrograde endogenous cannabinoid sig-

nalling, MAPK signalling pathway and extracellular

matrix (ECM)–receptor interaction. Changes in circa-

dian rhythm parameters in the mouse model were

found to be associated with glioma diagnosis [34].

Netrin-1, an axonal guidance molecule, has been

reported to be associated with invasive and angiogenic

phenotypes [35]. The MAPK signalling pathway regu-

lates the normal cell cycle [36], and the ECM–receptor
interaction is essential for regulating cell adhesion and

cell differentiation [37]. Thus, an abnormal MAPK

Fig. 9. Validation of hub genes at the translational level by The HPA database. The translational expression levels of NUSAP1, SHCBP1 and

KNL1 in GBM were higher than those in normal tissue. The translational expression levels of SULT4A1, SLC12A5, NAPB and GARNL3 in

GBM were lower than those in normal tissue.

843FEBS Open Bio 11 (2021) 833–850 ª 2021 The Authors. FEBS Open Bio published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

C. Li et al. Identification of hub genes in GBM



signalling pathway and an aberrant ECM–receptor
interaction may promote GBM cell proliferation, pre-

vent cell differentiation and increase its invasiveness.

As a pivotal stage of the cell cycle, DNA replication

and chromosome segregation are thought to play criti-

cal roles in tumorigenesis. The dynamics of micro-

tubule defects and spindle anomalies lead to CIN,

which produces a multilayer genomic instability that is

common in human cancers [38]. During cell division,

the spindle assembly checkpoint (SAC) prevents the

separation of repeated chromosomes until each chro-

mosome is properly attached to the spindle device [39].

Error-free chromosome separation relies on a stable

connection between the kinetochore and spindle micro-

tubules, ensuring the correct separation of chromo-

somes during cell division [40]. Interestingly, the four

hub genes (NUSAP1, NUF2, SHCBP1 and KNL1) in

the brown module are associated with microtubules

and spindles. NUSAP1 encodes nucleolar and spindle-

associated protein 1, a nucleolar spindle-associated

protein that plays a role in spindle microtubule organi-

sation [41]. NUF2 encodes cell division associated 1,

responsible for kinetochore–microtubule attachment

under normal physiological conditions, and is, there-

fore, an essential protein for the isolation of sister

chromatids during mitosis [42]. SHCBP1 encodes Src

homologous and collagen (SHC) SH2-binding protein

1, a protein essential for midbody organisation and

cytokinesis completion [43]. KNL1 encodes kineto-

chore scaffold 1, which is involved in microtubule

attachment to chromosome centromeres and the acti-

vation of spindle checkpoints during mitosis [44].

Many studies have reported that some of the four hub

genes in the brown module are cancer-associated genes

that play a positive role in tumorigenesis and malig-

nant phenotype in glioma. NUSAP1 is a prognostic

Fig. 10. Hub gene expression distribution in the World Health Organization classification (188 GBM samples in WHO grade II, 255 samples

in grade III and 249 samples in grade IV). The expression levels of NUSAP1, SHCBP1, KNL1 and NUF2 genes of the brown module and

SULT4A1, SLC12A5, NAPB and GARNL3 genes of the turquoise module were significantly different in the different World Health

Organization classification. (t-test; *P < 0.05; **P < 0.01; ***P < 0.001).
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factor for gliomas [45], and silencing NUSAP1 can

inhibit GBM cell proliferation both in vivo and in vitro

[46]. Knockdown of NUF2 by small interfering RNA

can inhibit tumour growth and induce apoptosis in

human glioma cells [47]. SHCBP1 is highly expressed

in gliomas and promotes proliferation and invasion of

glioma cells by activating the NF-jB signalling path-

way [48]. KNL1 is a type of cancer/testis antigen [49]

and has been confirmed to be highly expressed in high-

grade glioma cell lines and glioma patients, but its

detailed function in glioma has not been explored [50].

We predicted the TFs of four hub genes, and some of

them are correlated with gliomas in previous reports.

For example, E2F4 is potentially a key transcriptional

regulator in GBM that regulates the transcription of

multiple genes [51]. KLF5 is involved in GBM angio-

genesis by regulating angiogenic factors with G-patch

and FHA domain1 (AGGF1) expression [52]. FOXM1

activates MMP2 to enhance the invasiveness of glio-

mas [53]. In summary, all four hub genes in the brown

module are associated with microtubules and spindles,

and chromosome separation error is vital in tumorige-

nesis. It should be noted that NUF2 participates in the

normal function of SAC as part of the nuclear division

cycle 80 (NDC80) complex, while KNL1 is directly

involved in the activation of SAC. Meanwhile,

NUSAP1 and KNL1 directly or indirectly influence the

repair of DNA damage [54,55]. Based on our results,

we speculate that the abnormally high expression of

the four hub genes leads to CIN or DNA repair disor-

ders during the cell division process and normal cells

acquire cancer cell characteristics.

We also screened SULT4A1, SLC12A5, NAPB and

GARNL3 in the turquoise module that was downregu-

lated in data sets and TCGA. SULT4A1 encodes sul-

fotransferase family 4A member 1, a brain-specific

sulfotransferase involved in the metabolism of neuro-

transmitters [56]. SLC12A5 encodes a potassium and

chloride transporter of the SLC12 family, which is

exclusively expressed in the central nervous system and

retina [57]. NAPB encodes the NSF attachment pro-

tein beta, which is preferentially expressed in brain tis-

sues [58]. GARNL3 encodes a GTPase-activating Rap/

RanGAP domain like 3, associated with the positive

regulation of GTPase activity. These four hub genes

are preferentially expressed in brain tissues, and their

dysfunction can lead to neuropsychiatric diseases. For

example, SULT4A1 and SLC12A5 are associated with

schizophrenia [59,60]. Alternatively, spliced isoforms

of NAPB are associated with autism, and GARNL3 is

linked with intellectual disability [61,62]. There are few

studies on the three genes (SULT4A1, NAPB,

GARNL3) in GBM, and a few studies have reported

the possibility of SLC12A5 as a biomarker for GBM

[63]. However, due to the significant differences in

their expression in GBM, further research is needed.

For the TF prediction of these genes, we found that

some TFs demonstrated a positive regulation of ner-

vous system development and function in previous

reports. For example, defects in ATF-2 cause dysplasia

and neurological abnormalities in mice [64]. REST is

involved in coordinating the neural induction and dif-

ferentiation processes [65]. ESR1 polymorphisms are

associated with the risk of developing dementia [66].

In summary, all four hub genes are associated with the

Table 2. The top 20 TFs of hub genes in key modules. NES,

normalised enrichment score.

Hub genes source TFs NES Targets Motifs/Tracks

Brown module E2F4 10.219 4 7

SIN3A 8.997 4 7

CRX 7.359 2 17

PAX4 6.075 3 8

SOX14 5.985 3 3

ZFY 5.955 3 6

ALX4 5.107 2 5

FOXM1 5.032 3 4

FOXJ2 4.927 2 9

GTF3C2 4.672 1 7

KLF5 4.619 2 15

ZBED1 4.619 2 3

ZNF423 4.589 1 1

RXRA 4.574 2 10

ARID3C 4.567 2 6

ARID3A 4.544 1 1

YY1 4.529 1 15

NF1 4.522 1 3

E2F3 4.507 1 3

E1V4 4.499 1 3

Turquoise module ATF2 6.734 4 44

REST 6.460 3 11

ESR1 5.375 4 4

EBF1 4.895 3 4

CREB1 4.885 3 5

HOXB4 4.838 3 3

OSR1 4.806 2 3

TEAD4 4.668 2 1

CLK1 4.574 2 1

RFX2 4.369 2 30

GCM1 4.058 3 4

HOXA5 3.990 3 25

PRRX1 3.916 2 4

DBP 3.911 2 2

ZBTB18 3.742 2 2

NFKB1 3.516 2 1

FOXN4 3.155 1 6

CRX 3.110 1 1

GATA5 3.089 1 4

TEAD1 3.073 3 4
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normal development of the nervous system and can be

considered negatively associated with tumorigenesis.

The proteins encoded by the above four hub genes

play a key role in energy metabolism, which is vital

for normal cellular processes, especially in the central

nervous system. Therefore, further research into the

role and mechanism of these genes in the development

of GBM is necessary.

In addition, this study also found that these eight

hub genes all had significant differences in the WHO

grading of glioma. The expression levels of these genes

in the WHO classification were consistent with the

results of our study, further revealing the potential of

these genes as biomarkers. In general, the above

results provide further insights that enhance our

understanding of the pathogenesis of GBM at the

molecular level.

This study has several limitations. First, it focussed

on bioinformatics data mining and analysis. Further

mechanistic studies need to be performed to

understand the detailed role of these genes in GBM

fully. Second, due to the limitations in data availabil-

ity, this study did not perform a comprehensive analy-

sis of GBM subtypes based on clinical data. Finally,

we validated our findings only in a single Gene

Expression Omnibus data set and TCGA database,

and use of more data sources would be required for

further verification.

Conclusions

This study explored the tumorigenic factors of GBM

using WGCNA. We identified two modules (brown

and turquoise) and eight hub genes (NUSAP1, NUF2,

SHCBP1, KNL1, SULT4A1, SLC12A5, NAPB and

GARNL3) in the occurrence of GBM. The brown

module plays a positive role in GBM tumorigenesis,

primarily in the cell cycle, chromosome separation

and DNA replication. Simultaneously, the turquoise

module plays a negative role in tumorigenesis,

Fig. 11. Knockout NUSAP1, SHCBP1, NUF2 and KNL1 gene can decrease the proliferation and cloning of U87 cells. (A) The level of

NUSAP1, SHCBP1, NUF2 and KNL1 mRNA was determined by RT-PCR after siRNA transfection. (B) The proliferation ability of U87 cells

was evaluated by CCK8 method. (C) Clone formation analysis was used to evaluate the cloning ability of U87 cells (unpaired t-test, N = 3,

mean � SD, *P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001).
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primarily in the positive regulation of nervous system

development and cell differentiation. These two key

modules enhance our understanding of tumorigenic

mechanisms in patients with glioblastoma. In addi-

tion, these eight hub genes and corresponding TFs

may act as prognostic biomarkers and therapeutic tar-

gets for GBM.
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Fig. S1. Visualizing DEGs in GSE4290 and KEGG

pathway enrichment. Note: (A) The number of genes

that had an absolute fold change greater than 1.5 and

a P-value less than 0.05. (B) Heat map hierarchical

clustering showed that the top 100 DEGs in

GBM groups compared with control groups. (C)

KEGG pathway enrichment analysis of the DEGs in

GSE4290 (P-value less than 0.001 are shown). Up-reg-

ulated pathways are labelled red, and down-regulated

pathways are labelled blue. Abbreviations: DEGs,

different expression genes; KEGG, Kyoto Encyclope-

dia of Genes and Genomes.

Fig. S2. GO enrichment analysis of DEGs in

GSE4290. Note: GO enrichment analysis of up-regu-

lated genes; (B) GO enrichment analysis of down-regu-

lated genes.. Top 10 in BP, CC and MF are listed.

Abbreviations: GO, gene ontology; BP, biological pro-

cess; CC, cellular component; MF, molecular function;

ATP, adenosine triphosphate.
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