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1 Notation

The notation used below largely follows the convention from the AlphaFold 2 paper [1], which we summarize here for
convenience to the reader.

We denote the number of tokens – the fundamental sequential unit entering the Pairformer – by Ntoken (cropped
during training), the number of templates used in the model by Ntempl, the number of MSA rows used in the model by
Nmsa. Concrete values for these parameters are given in the data pipeline (section 2) and training details (section 5).
On the model side, we also denote the number of blocks in Pairformer-like stacks by Nblock (subsection 3.6), and the
number of recycling iterations by Ncycle.

We present architectural details in Algorithms, where we use the following conventions. We use capitalized operator
names when they encapsulate learnt parameters, e.g. we use Linear for a linear transformation with a weights matrix W
and a bias vector b, and LinearNoBias for the linear transformation without the bias vector. Note that when we have
multiple outputs from the Linear operator at the same line of an algorithm, we imply different trainable weights for
each output. A subscript index at the linear operator, e.g., LinearNoBiasa indicates also set of different trainable
weights, where a selects the weight matrix to be used for that sample (used in Algorithm 31). We use LayerNorm
for the layer normalization [2] operating on the channel dimensions with learnable per-channel gains and biases. We
also use capitalized names for random operators, such as generators for random augmentations. For functions without
parameters we use lower case operator names, e.g. sigmoid, softmax, stopgrad. We use ⊙ for the element-wise
multiplication, ⊗ for the outer product, ⊕ for the outer sum, and a⊤b for the dot product of two vectors. Indices i, j, k
always operate on the token dimension, indices l, m on the flat atom dimension, indices s, t on the sequence dimension
(e.g. indexing MSA sequences or diffusion’s time dimension), and index h on the attention heads dimension. The
channel dimension is implicit and we type the channel-wise vectors in bold, e.g. zij . Algorithms operate on sets of
such vectors, e.g. we use {zij} to denote all pair representations. Atomic positions (i.e. vectors in Euclidean space)
are specified as x⃗ ∈ R3. A full atomic structure is represented as a flat atom list {x⃗l} where l indexes the atom.
The mapping between tokens and their corresponding atoms is denoted i(l) ∈ N which maps the flat-atom index
l to the token index i and a = token_atom_idx(l) that maps the flat-atom index l to the within-token atom index
a ∈ {1, . . . , Nmax_atoms_per_token}.

2 Data pipeline

The data pipeline is the first step when running AlphaFold. It takes an input an mmCIF file and produces input features
for the model.

2.1 Parsing

The data pipeline operates on mmCIF format files. In addition to parsing the _atom_site section, we extract ba-
sic metadata (resolution, release date, method) and some non-coordinate information (bioassembly details, chemical
component details, chain names and sequences, and covalent bond information).

To simplify later code, the parser performs some basic structure cleanup. Alternative locations for atoms/residues are
resolved by taking the one with the largest occupancy, MSE residues are converted to MET residues, waters are removed,
and arginine naming ambiguities are fixed (ensuring NH1 is always closer to CD than NH2). The first bioassembly is
then expanded, to encourage the model to predict biologically relevant complexes.

During inference a dummy mmCIF is used as input with all atom coordinates zeroed out. This can either be con-
structed from an mmCIF deposited in PDB[3], or from a collection of CCD code sequences and SMILES strings
provided by the user.

2.2 Genetic search

We have 5 databases available to search for protein chains (see Table 1)
Jackhmmer searches use the following additional flags: -N 1 -E 0.0001 –incE 0.0001 –F1 0.0005 –F2 0.00005 –F3

0.0000005.
HHBlits searches use: -n 3 -e 0.001 -realign_max 100000 -maxfilt 100000 -min_prefilter_hits 1000 -p 20 -Z 500.
A further 3 databases are available for RNA chains (see Table 2). These databases are pre-processed by filtering to

RNA entries only if necessary, then clustering with settings: --min-seq-id 0.9 -c 0.8. We search the cluster representative
sequences.

Nhmmer searches use flags: -E 0.001 --incE 0.001 --rna --watson --F3 0.00005 (--F3 0.02 for sequences shorter than
50 nucleotides). RNA hit sequences are realigned to the query with hmmalign.
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Table 1 Genetics databases for protein chains

Database Search tool Database-specific flags Max sequences

UniRef90 [4] jackhmmer [5]∗ --seq_limit 100000 10,000
UniProt [6] jackhmmer --seq_limit 500000 50,000
Uniclust30 [7] + BFD [8] HHBlits v3.0-beta.3 [9] None
Reduced BFD [10] jackhmmer --seq_limit 50000 5,000
MGnify [11] jackhmmer --seq_limit 50000 5,000

∗All programs from the HMMER suite [12] are v3.3.

Table 2 Genetics databases for RNA chains

Database Clustering tool Search tool Max sequences

Rfam [13] mmseqs easy-cluster [14] nhmmer [15] 10,000
RNACentral [16] mmseqs easy-linclust nhmmer 10,000
Nucleotide collection [17] mmseqs easy-cluster nhmmer 10,000

The databases are used as follows:

• For training the models, we search UniRef90 (up to v2022_05), UniProt (v2020_05) with flag -Z 119222328,
Reduced BFD or the combination Uniclust30 (v2018_08) + BFD, MGnify (up to v2022_05), Rfam (v14.9),
RNACentral (v21.0), and Nucleotide collection (2023-02-23).

• For inference on recent PDB, we search UniRef90 (v2022_05), UniProt (v2021_04) with flag -Z 138515945,
Reduced BFD, MGnify (v2022_05), Rfam (v14.9), RNACentral (v21.0), and Nucleotide collection (2023-02-
23).

• For inference on the PoseBusters set, we search UniRef90 (v2020_01), UniProt (v2020_05),
Uniclust30 (v2018_08) + BFD, and MGnify (v2018_12).

Individual MSA results are cropped to the maximum number of sequences stated above. If no hits are found, a
length-1 MSA containing only the query sequence is returned.

The UniProt search result is kept separate and used to provide cross-chain genetic information, as in [18]. All other
results are stacked in the order listed and deduplicated to form the main MSA. During training, the main MSA for each
sequence is subsampled from size n to size k = Uniform[1, n] by selecting sequences to keep at random.

2.3 MSA processing

We construct an MSA with up to 16,384 rows (Nmsa ≤ 16,384). The first row is the query sequence, the next rows (up
to 8,191) are constructed by pairing the UniProt MSA based on species, as described in the AlphaFold-Multimer paper
[18]. Unlike in AlphaFold-Multimer, the rest of the MSA is constructed in a dense fashion, so if there are n paired rows
then, for each chain, the last (16384− n) rows in the output MSA are the first rows from the original MSA constructed
in subsection 2.2.

2.4 Template search

Template search is performed only for individual protein chains, we do not provide any multi-chain templates. The
template search takes as input the deduplicated UniRef90 MSA described in subsection 2.2, which in training is cropped
to the first 300 sequences. We then use hmmbuild to convert the MSA into an HMM, followed by hmmsearch with flags
--noali --F1 0.1 --F2 0.1 --F3 0.1 --E 100 --incE 100 --domE 100 --incdomE 100. Hmmsearch retrieves template hits
from a fasta file of all protein PDB sequences.

Template hits are filtered based on their release date. For PDB-based training datasets, the template release date must
be no less than 60 days before that of the example, while for distillation sets the max template date is 2018-04-30. At
inference time the max template date is our training cutoff of 2021-09-30 unless otherwise stated. We also remove
templates that contain the exact query sequence with greater than 95% coverage as well as short templates less than 10
residues or covering less than 10% of the query.



Supplementary information for AlphaFold 3 3

Template structures are retrieved from the corresponding PDB mmCIF file, and we attempt to locate the template
sequence reported by hmmsearch. This should be a subsequence of the chain returned by hmmsearch, but we fall
back to checking other chains for a match, and if necessary realigning the query to the reported template chain with
Kalign v.0.2.0 [19]. Once the relevant residues have been identified, that part of the template structure can be featurized
similarly to the training example itself (see subsection 2.8).

Templates are sorted by e-value. At most 20 templates can be returned by our search, and the model uses up to 4
(Ntempl ≤ 4). At inference time we take the first 4. At training time we choose k random templates out of the available
n, where k ∼ min(Uniform[0, n], 4). This reduces the efficacy of simply copying the template.

Note that templates are strictly single chain; when predicting a complex, we make no attempt to select templates from
the same PDB file in order to gain information about inter-chain interactions.

2.5 Training data

We train on a mixture of five structural datasets, as summarized in Table 3 below. Selecting an example for the model
to train on proceeds as follows:

1. Sample a dataset according to a set of dataset weights (See the weights column of Table 3).

2. Draw an example from the selected dataset. The examples from PDB-based datasets are drawn according to our
weighting sampling procedure (described in subsubsection 2.5.1 below); examples from other datasets are drawn
uniformly.

3. Sample a structural crop from the selected example (described in subsection 2.7 below).

Table 3 Sampling of training examples: Examples are drawn from a mixture of datasets with associated weight frac-
tions (weight column). Within a dataset, examples are drawn either according to our weighted procedure or uniformly
(Sampling strategy column).

Name Description Sampl. strategy Weight

Weighted PDB Ground truth PDB structures weighted 0.5
Disordered protein PDB distillation Proteins with unresolved residues weighted 0.02
Protein monomer distillation Protein monomer predictions from MGnify uniform 0.495
Short protein monomer distillation Protein short monomer predictions from MGnify uniform 0.005
RNA distillation RNA monomer predictions from Rfam uniform 0.05
Transcription factor negatives MGnify protein + random DNA uniform 0.011

Transcription factor positives DNA+protein predictions from JASPAR uniform 0.021

2.5.1 Weighted PDB dataset

For training on PDB data, we sample single chains and chain-pair interfaces with a bespoke weighting meant to both
redundancy-reduce (via clustering) and stratify molecule types that exist in the underlying data (via weight factors).
First, a list of chains and interfaces are collected from our filtered PDB training set (filtering described in subsubsec-
tion 2.5.4), with interfaces defined as pairs of chains with minimum heavy atom (i.e. non-hydrogen) separation less
than 5Å. Each item from this dataset is then either a chain or interface and is sampled with a weight w dependent upon
its item type r ∈ {chain, interface}, chain count per type n{prot,nuc,ligand}

2, and cluster size Nclust:

w ∝ βr
Nclust

(αprot ∗ nprot + αnuc ∗ nnuc + αligand ∗ nligand). (1)

We chose parameters βchain = 0.5, βinterface = 1, αprot = 3, αnuc = 3, αligand = 1. The cluster size Nclust is determined
from our clustering procedure, described in subsubsection 2.5.3 below.

The selected chain or interface is then used to bias the cropping procedure to select crops near the selected chain or
interface (see subsection 2.7).

1Transcription factor training is only applied during fine tuning.
2For example, for a DNA or RNA chain item we would have nprot = 0, nnuc = 1, nligand = 0, and for a protein-protein interface item we would

have nprot = 2, nnuc = 0, nligand = 0.
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2.5.2 Distillation datasets

Other than PDB ground truth structures, our four other datasets were obtained via AlphaFold distillation, three of which
coming from AlphaFold 2 predictions and one from AlphaFold 3 predictions.

1. Protein monomer distillation: AlphaFold 2 predictions of MGnify sequences with greater than 200 residues (same
as used in AlphaFold-Multimer).

2. Short protein monomer distillation: AlphaFold 2 predictions of MGnify sequences between 4 and 200 residues
(same inference run as for protein monomer distillation). N≈41,000,000 structures between both the long and
short protein monomer distillation sets.

3. Disordered protein PDB distillation: AlphaFold-Multimer v2.3 predictions of PDB proteins from the training set
with ground truth nucleic acids and small molecules inserted after the prediction is aligned to the ground truth
protein. Predictions are filtered to having at least 40 unresolved residues, at least 60 GDT with respect to the
ground truth and no atom clashes after inserting nucleic acids and small molecules. The resulting distillation
structures therefore include all resolved entities in the ground truth PDB structure, with predicted coordinates for
all protein residues (including unresolved ones) and ground truth coordinates for all non-protein entities. This
distillation set was used to ensure predictions of unstructured regions are consistent with disordered strands seen
in AlphaFoldDB predictions. Only the first bioassembly was used for this distillation set. N≈25,000 structures.

4. RNA distillation: We clustered Rfam (v14.9) using MMseqs2 with 90% sequence identity and 80% coverage,
taking one sequence per cluster (the cluster representative). AlphaFold 3 predictions of sequences from this set
were then used as an RNA distillation training set with a minimum of 10 residues and maximum average predicted
distance error (PDE) of 2. N≈65,000 structures after filtering.

5. Transcription factor positive distillation: We constructed a dataset of positive protein-DNA examples in the fol-
lowing way. We first find transcription factors profiles from the JASPAR 9 database [20] which have gene ids
matching those used in two high-throughput SELEX datasets [21, 22]. Next, for each profile in this filtered dataset
we assign a protein sequence in two ways: 1) by taking the canonical sequence under the profile’s Uniprot ID; 2)
by searching across sequences used in at least one of two SELEX datasets mentioned above for the sequence with
highest similarity to the Uniprot sequence and matching gene id. Sequence similarity is computed as the number
of non-gap matches between aligned sequences (aligned via Kalign v2.0 [19]), divided by the minimum length of
the two pre-aligned sequences. We next clustered the transcription factor sequences with 10% sequence identity
and 60% coverage and randomly select 50% of clusters for training. Next we generate positive DNA sequences
which should bind each transcription factor. Specifically, for each protein sequence, we sample 10 random single-
stranded motifs from corresponding JASPAR profile’s position frequency matrix (PFM) and remove any identical
samples. For each random motif, the protein sequence, the DNA strand, and the DNA strand’s reverse comple-
ment are combined to form a single distillation example. This gives a total of 16,439 protein-DNA complexes
containing 1,165 unique protein sequences. Predictions on this set were made with AlphaFold 3 (trained without
positive transcription factor distillation). These predictions were further filtered to only those with a minimum
protein-DNA predicted distance error (PDE) of 5 Å, the majority of the predictions have much lower PDE (99%
less than 3 Å).

During training the DNA helices in this set are randomly extended with idealized DNA helices, this is done with
the following steps:

a) Remove DNA leaving atoms (OP3) from the original prediction.

b) Sample Nnew ∼ U{0, 100−Norig}, where Norig is the number of base pairs in the original prediction.

c) Sample Nstart ∼ U{0, Nnew} and set Nend ← Nnew −Nstart.

d) Construct two idealized B-DNA helices with random complementary base pairs of length Nstart and Nend.

e) Align the last base pairs of one of the random helices to the first base pair in the original prediction, and
align the first base pair in the other random helix to the last base pair in the original prediction.

f) If the new extended structure has any new clashes or violations, then we return the original structure without
modifications. A clash is defined as having two heavy atoms within 1.5 Å, excluding neighbouring residues.
A violation is defined if the bond angle differs by more than 20 degrees to the RDKit reference conformer,
or if the bond lengths differ by more than 0.2 Å to the reference conformer.

6. Transcription factor negatives distillation: We constructed a dataset of negative protein-DNA examples. It was
generated with the following steps:
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a) Sample a DNA length N ∼ U{60, 100} with 0.3 probability, and from the empirical distribution of DNA
lengths in PDB with 0.7 probability.

b) Randomly generate a DNA sequence with N bases and its reverse complement.

c) Generate a prediction with AlphaFold 3 for the dsDNA.

d) Sample a random protein prediction from the protein monomer distillation set.

e) Centre and randomly rotate the protein and DNA, then translate them such that the minimum distance
between the two is at least 25Å +N (2, 3)Å.

2.5.3 Training set clustering

In order to reduce bias in the training and evaluation sets, clustering was performed on PDB chains and interfaces, as
follows.

• Chain-based clustering occur at 40% sequence homology for proteins, 100% homology for nucleic acids, 100%
homology for peptides (<10 residues) and according to CCD identity for small molecules (i.e. only identical
molecules share a cluster).

• Chain-based clustering of polymers with modified residues is first done by mapping the modified residues to
a standard residue using SCOP [23, 24] convention (https://github.com/biopython/biopython/
blob/5ee5e69e649dbe17baefe3919e56e60b54f8e08f/Bio/Data/SCOPData.py). If the mod-
ified residue could not be found as a mapping key or was mapped to a value longer than a single character, it was
mapped to type unknown.

• Interface-based clustering is a join on the cluster IDs of the constituent chains, such that interfaces I and J are
in the same interface cluster Cinterface only if their constituent chain pairs {I1, I2}, {J1, J2} have the same chain
cluster pairs {Cchain

1 , Cchain
2 }.

2.5.4 Filtering

The PDB data is filtered with the following constraints.
Filtering of targets:

• The structure must have been released to the PDB before the cutoff date of 2021-09-30.

• The structure must have a reported resolution of 9 Å or less.

• The maximum number of polymer chains in a considered structure is 300 for training and 1000 for evaluation.

• Any polymer chain containing fewer than 4 resolved residues is filtered out.

Filtering of bioassemblies:

• Hydrogens are removed.

• Polymer chains with all unknown residues are removed.

• Clashing chains are removed. Clashing chains are defined as those with >30% of atoms within 1.7 Å of an atom
in another chain. If two chains are clashing with each other, the chain with the greater percentage of clashing
atoms will be removed. If the same fraction of atoms are clashing, the chain with fewer total atoms is removed.
If the chains have the same number of atoms, then the chain with the larger chain id is removed.

• For residues or small molecules with CCD codes, atoms outside of the CCD code’s defined set of atom names are
removed.

• Leaving atoms (ligand atom or groups of atoms that detach when bonds form) for covalent ligands are filtered
out.

• Protein chains with consecutive Cα atoms >10 Å apart are filtered out.

• For bioassemblies with greater than 20 chains, we select a random interface token (with a centre atom <15 Å to
the centre atom of a token in another chain) and select the closest 20 chains to this token based on minimum
distance between any tokens centre atom.

• Crystallization aids are removed if the mmCIF method information indicates that crystallography was used (see
Table 9).

https://github.com/biopython/biopython/blob/5ee5e69e649dbe17baefe3919e56e60b54f8e08f/Bio/Data/SCOPData.py
https://github.com/biopython/biopython/blob/5ee5e69e649dbe17baefe3919e56e60b54f8e08f/Bio/Data/SCOPData.py
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2.6 Tokenization

In AlphaFold 2, the protein residue was the fundamental sequential unit entering the Evoformer single and pair stacks.
In this work we have generalized the tokenization scheme so as to accommodate a wider variety of molecular types. We
used the following procedure.

• A standard amino acid residue (Table 13) is represented as a single token.

• A standard nucleotide residue (Table 13) is represented as a single token.

• A modified amino acid or nucleotide residue is tokenized per-atom (i.e. N tokens for an N-atom residue)

• All ligands are tokenized per-atom

For each token we also designate a token centre atom, used in various places below:

• Cα for standard amino acids

• C1′ for standard nucleotides

• For other cases take the first and only atom as they are tokenized per-atom.

2.7 Cropping

Our cropping procedure is largely equivalent to that found in AlphaFold-Multimer [18], with the caveat that before
the cropping was applied to protein residues and now it is applied to tokens. We have three main cropping strategies,
described below, that are randomly selected from, with dataset-specific selection weights (see Table 4).

Table 4 Weights for sampling cropping strategies

Dataset Cropping weight

Contiguous Spatial Spatial interface

Weighted PDB 0.20 0.40 0.40
Disordered protein PDB complex 0.20 0.40 0.40
Monomer distillation 0.25 0.75 0.00
Short protein distillation 0.25 0.75 0.00
RNA distillation 0.25 0.75 0.00

2.7.1 Contiguous cropping

Here contiguous sequences of polymer residues and/or ligand atoms are selected for each chain. For details see section
7.2.1 and Algorithm 1 from the AlphaFold-Multimer paper [18].

2.7.2 Spatial Cropping

In this procedure, polymer residues and ligand atoms are selected that are within close spatial distance of a reference
atom. The reference atom is selected at random from the set of token centre atoms (defined in subsection 2.6). For
examples coming out of the Weighted PDB or Disordered protein PDB complex datasets, where a preferred chain or
interface is provided (subsection 2.5), the reference atom is selected at random from token centre atoms that exist within
this chain or interface.

Once the reference atom is selected, the final crop is determined via Algorithm 2 of AlphaFold-Multimer [18].

2.7.3 Spatial Interface Cropping

In this procedure, polymer residues and ligand atoms are selected that are within close spatial distance of an interface
atom. The interface atom is selected at random from the set of token centre atoms (defined in subsection 2.6) with a
distance under 15Å to another chain’s token centre atom. For examples coming out of the Weighted PDB or Disordered
protein PDB complex datasets, where a preferred chain or interface is provided (subsection 2.5), the reference atom is
selected at random from interfacial token centre atoms that exist within this chain or interface.

Once the interface atom is selected, the final crop is determined via Algorithm 2 of AlphaFold-Multimer [18].
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2.8 Featurisation and model inputs

Table 5 lists the main model input features, which fall into the following categories:

• Token features. Composed of per-token features, such as position indexes (token_index); chain identifiers
(asym_id); masks (is_protein).

• Reference features. Features derived from a residue, nucleotide or ligand’s reference conformer. Given an input
CCD code or SMILES string, the conformer is typically generated with RDKit v.2023_03_3 [25] using ETKDGv3
[26]. On error, we fall back to using the CCD ideal coordinates, or finally the representative coordinates if they
are from before our training date cut-off (2021-09-30 unless otherwise stated). At the end, any atom coordinates
still missing are set to zeros.

• Msa features. Features derived from genetics search, e.g. the MSA itself, deletion matrix, and profile.

• Template features. Features derived from template search, e.g. the template atom positions.

• Bond features. Features providing bond information, e.g. the expected locations of polymer-ligand bonds, and
of intra-/inter-ligand bonds.

In the algorithms, features are referred as “f” with the feature name in superscript and the element indices in subscript,
e.g. the one-hot encoded msa feature with shape [Nmsa, Ntoken, 32] is denoted as f msa

si ∈ N32

Table 5 Input features to the model. Feature dimensions: Ntoken is the number of tokens, Nmsa is the number of MSA
sequences, Ntempl is the number of templates, Natom is the number of atoms, Nchains is the number of chains, Nbonds is
the number of bonds, Nperm the number of atom permutations.

Feature & Shape Description

residue_index
[Ntoken]

Residue number in the token’s original input chain.

token_index
[Ntoken]

Token number. Increases monotonically; does not restart at 1 for new
chains.

asym_id
[Ntoken]

Unique integer for each distinct chain.

entity_id
[Ntoken]

Unique integer for each distinct sequence.

sym_id
[Ntoken]

Unique integer within chains of this sequence. E.g. if chains A, B and
C share a sequence but D does not, their sym_ids would be [0, 1, 2, 0].

restype
[Ntoken, 32]

One-hot encoding of the sequence. 32 possible values: 20 amino acids
+ unknown, 4 RNA nucleotides + unknown, 4 DNA nucleotides + un-
known, and gap. Ligands represented as “unknown amino acid”.

is_protein / rna / dna / ligand
[Ntoken]

4 masks indicating the molecule type of a particular token.

ref_pos
[Natom, 3]

Atom positions in the reference conformer, with a random rotation and
translation applied. Atom positions are given in Å.

ref_mask
[Natom]

Mask indicating which atom slots are used in the reference conformer.

ref_element
[Natom, 128]

One-hot encoding of the element atomic number for each atom in the
reference conformer, up to atomic number 128.

ref_charge
[Natom]

Charge for each atom in the reference conformer.
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Feature & Shape Description

ref_atom_name_chars
[Natom, 4, 64]

One-hot encoding of the unique atom names in the reference conformer.
Each character is encoded as ord(c) − 32, and names are padded to
length 4.

ref_space_uid
[Natom]

Numerical encoding of the chain id and residue index associated with
this reference conformer. Each (chain id, residue index) tuple is as-
signed an integer on first appearance.

msa
[Nmsa, Ntoken, 32]

One-hot encoding of the processed MSA, using the same classes as
restype.

has_deletion
[Nmsa, Ntoken]

Binary feature indicating if there is a deletion to the left of each position
in the MSA.

deletion_value
[Nmsa, Ntoken]

Raw deletion counts (the number of deletions to the left of each MSA
position) are transformed to [0, 1] using 2

π arctan d
3 .

profile
[Ntoken, 32]

Distribution across restypes in the main MSA. Computed before MSA
processing (subsection 2.3).

deletion_mean
[Ntoken]

Mean number of deletions at each position in the main MSA. Computed
before MSA processing (subsection 2.3).

template_restype
[Ntempl, Ntoken]

One-hot encoding of the template sequence, see restype.

template_pseudo_beta_mask
[Ntempl, Ntoken]

Mask indicating if the Cβ (Cα for glycine) has coordinates for the tem-
plate at this residue.

template_backbone_frame_mask
[Ntempl, Ntoken]

Mask indicating if coordinates exist for all atoms required to compute
the backbone frame (used in the template_unit_vector feature).

template_distogram
[Ntempl, Ntoken, Ntoken, 39]

A one-hot pairwise feature indicating the distance between Cβ atoms
(Cα for glycine). Pairwise distances are discretized into 38 bins of equal
width between 3.25Å and 50.75Å; one more bin contains any larger
distances.

template_unit_vector
[Ntempl, Ntoken, Ntoken, 3]

The unit vector of the displacement of the Cα atom of all residues
within the local frame of each residue. Local frames are computed
as in [1].

token_bonds
[Ntoken, Ntoken]

A 2D matrix indicating if there is a bond between any atom in token i
and token j, restricted to just polymer-ligand and ligand-ligand bonds
and bonds less than 2.4 Å during training.

3 Model architecture

The model architecture is broadly based on AlphaFold 2; however, we made a number of changes to enable the model to
predict a wider range of molecules than proteins and also to further increase the accuracy in protein structure predictions.

The model is a conditional diffusion model, where unlike most other diffusion models most of the computation
is happening in the conditioning. The conditioning part of the model is similar in overall architecture to the trunk
(Template Module, MSA Module, and Pairformer) of AlphaFold 2, with a number of key differences. The algorithm
corresponding to the architecture is shown in Algorithm 1 and in Main Article Fig. 1d. We introduce a more general
tokenization scheme, where each amino acid residue corresponds to one token as in AlphaFold 2 and each nucleotide
corresponds to one token, while for other molecules we encode each heavy atom as its own token. In order to get the
initial trunk input feature we have a more sophisticated input feature embedder that performs attention over all atoms
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in order to encode the information about the chemical structure of all the molecules, leading to a single representation
representing all the tokens.

Given the input features, we build a pair representation in a manner similar to AlphaFold 2. This pair representation
and the single representation are then fed into the main part of the conditioning network, which is recycled multiple
times.

The main part of the conditioning network consists of a TemplateEmbedder in a similar style to AlphaFold 2 which
encodes information about provided templates into the pair representation. This is followed by an MSA Module that
extracts information from the MSA and encodes it into the pair representation. Here we use MSAs for both protein
sequences as well as RNA sequences. The resulting pair representation is then used as an input for the main Pairform-
erStack, which also receives the single representation as an input and processes the representation further forming the
main loop of the model.

The resulting single and pair embeddings are then used to condition a diffusion process. Here the diffusion is
parametrized by a Diffusion Module, which is a considerably cheaper sub-network that encodes a single denoising
step. Notably it scales quadratically in the number of tokens rather than cubically. The resulting output structure from
the Diffusion Module is then passed to a confidence head, which uses the pair and single representation together with
the structure to provide confidence measures. The components of the model are described in the subsequent sections.

Algorithm 1 Main Inference Loop

def MainInferenceLoop({f *}, Ncycle = 4, cs = 384, cz = 128) :

1: {sinputs
i } = InputFeatureEmbedder({f *})

2: siniti = LinearNoBias(s
inputs
i ) siniti ∈ Rcs

3: zinitij = LinearNoBias(s
inputs
i ) + LinearNoBias(s

inputs
j ) zinitij ∈ Rcz

4: zinitij +=RelativePositionEncoding({f *})

5: zinitij +=LinearNoBias(f token_bonds
ij )

6: {ẑij}, {ŝi} = 0,0

7: for all c ∈ [1, . . . , Ncycle] do
8: zij = zinitij + LinearNoBias(LayerNorm(ẑij)) zij ∈ Rcz

9: {zij} +=TemplateEmbedder({f *}, {zij})

10: {zij} +=MsaModule({f msa
Si }, {zij}, {s

inputs
i })

11: si = siniti + LinearNoBias(LayerNorm(ŝi)) si ∈ Rcs

12: {si}, {zij} = PairformerStack({si}, {zij})
13: {ŝi}, {ẑij} ← {si}, {zij}
14: end for

15: {x⃗pred
l } = SampleDiffusion({f *}, {sinputs

i }, {si}, {zij})

16: {pplddt
l }, {ppae

ij }, {p
pde
ij }, {presolved

l } = ConfidenceHead({sinputs
i }, {si}, {zij}, {x⃗pred

l })

17: pdistogram
ij = DistogramHead(zij)

18: return {x⃗pred
l }, {pplddt

l }, {ppae
ij }, {p

pde
ij }, {presolved

l }, {pdistogram
ij }

3.1 Input embeddings

Any bonds provided by the user (via the token_bonds feature) are linearly embedded in Algorithm 1, the embedding of
the other user inputs, along with the RDKit reference conformer are described below.

3.1.1 Input embedder

The residue type, reference conformer and MSA summary features (profile and deletion_mean) are embedded in Al-
gorithm 2. The reference conformer is embedded in a permutation invariant way using the AtomAttentionEncoder
(Algorithm 5).
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Algorithm 2 Construct an initial 1D embedding

def InputFeatureEmbedder({f *}) :

# Embed per-atom features.

1: {ai}, _, _, _ = AtomAttentionEncoder({f *}, ∅, ∅, ∅, catom = 128, catompair = 16, ctoken = 384)

# Concatenate the per-token features.

2: si = concat(ai, f
restype
i , f

profile
i , f deletion_mean

i )

3: return {si}

3.1.2 Relative position encoding

As in AlphaFold 2 and AlphaFold-Multimer, relative encodings are used to break symmetries across identical residues
(arel_pos

ij ) and chains (arel_chain
ij ). In AlphaFold 3 we introduce a relative token encoding, applied to tokens within the

same residue (see Algorithm 3). The relative position and token indices are clipped between [rmin, rmax], with rmax =
32. Relative chain indices are clipped between [smin, smax], with smax = 2.

Algorithm 3 Relative position encoding

def RelativePositionEncoding({f *}, rmax, smax, cz = 128) :

1: bsame_chain
ij = (f

asym_id
i == f

asym_id
j )

2: bsame_residue
ij = (f residue_index

i == f residue_index
j )

3: b
same_entity
ij = (f

entity_id
i == f

entity_id
j )

4: dresidue
ij =

clip(f residue_index
i − f residue_index

j + rmax, 0, 2 · rmax) if bsame_chain
ij

2 · rmax + 1 else
dresidue
ij ∈ N

5: a
rel_pos
ij = one_hot(dresidue

ij , [0, . . . , 2 · rmax + 1])

6: dtoken
ij =

clip(f token_index
i − f token_index

j + rmax, 0, 2 · rmax) if bsame_chain
ij and bsame_residue

ij

2 · rmax + 1 else
dtoken
ij ∈ N

7: arel_token
ij = one_hot(dij , [0, . . . , 2 · rmax + 1])

8: dchain
ij =

clip(f
sym_id
i − f

sym_id
j + smax, 0, 2 · smax) if not bsame_chain

ij

2 · smax + 1 else
dchain
ij ∈ N

9: arel_chain
ij = one_hot(dchain

ij , [0, . . . , 2 · smax + 1])

10: pij = LinearNoBias(concat([a
rel_pos
ij ,arel_token

ij , b
same_entity
ij ,arel_chain

ij ])) pij ∈ R cz

11: return {pij}



Supplementary information for AlphaFold 3 11

Algorithm 4 One-hot encoding with nearest bin

def one_hot(x,vbins) : x ∈ R, vbins ∈ RNbins

1: p = 0 p ∈ RNbins

2: b = argmin(|x− vbins|)
3: pb = 1

4: return p

3.2 Sequence-local atom attention

The “sequence-local atom attention” represents the whole structure as a flat list of atoms and allows all atoms to “talk”
directly to each other within a certain sequence neighbourhood. E.g., each subset of 32 atoms attends to the subset of the
nearby 128 atoms (nearby in the sequence space). This gives the network the capacity to learn general rules about local
atom constellations, independently from the coarse-grained tokenization where each standard residue is represented
with a single token only.

The restriction to a certain sequence neighbourhood is sub-optimal, but was necessary to keep the memory and
compute costs within reasonable bounds. The resulting attention pattern is equivalent to computing the full affinity
matrix and applying a neighbourhood mask that contains the rectangular blocks along the diagonal (see Suppl. Fig. 1).

flat atoms

flat atom
s

Supplementary Figure 1 Sequence-local atom attention. Each subset of atoms (rows) attends to a larger subset
of atoms (columns). The blue area depicts the theoretical full Natoms × Natoms attention matrix. The yellow rectangles
represent the attentions that are realized.

The conversion of the atom indexing by token index i ∈ Ntokens and atom name a ∈ Satom names, e. g. {x⃗a
i } to a flat

indexing with atom index l ∈ Natoms is denoted by the mapping of flat atom index to the token index i = tok_idx(l) .
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Algorithm 5 Atom attention encoder

def AtomAttentionEncoder({f *}, {rl}, {strunk
i }, {zij}, catom, catompair, ctoken) :

# Create the atom single conditioning: Embed per-atom meta data

1: cl = LinearNoBias(concat(⃗f
ref_pos
l , f

ref_charge
l , f ref_mask

l , f ref_element
l , f ref_atom_name_chars

l )) cl ∈ Rcatom

l ∈ {1, . . . , Natoms}

# Embed offsets between atom reference positions

2: d⃗lm = f⃗
ref_pos
l − f⃗

ref_pos
m d⃗lm ∈ R3

3: vlm = (f
ref_space_uid
l == f

ref_space_uid
m ) vlm ∈ R

4: plm = LinearNoBias(d⃗lm) · vlm plm ∈ Rcatompair

# Embed pairwise inverse squared distances, and the valid mask.

5: plm += LinearNoBias

(
1/

(
1 + ∥d⃗lm∥2

))
· vlm

6: plm += LinearNoBias(vlm) · vlm

# Initialise the atom single representation as the single conditioning.

7: ql = cl ql ∈ Rcatom

# If provided, add trunk embeddings and noisy positions.

8: if {rl} ≠ ∅ then
# Broadcast the single and pair embedding from the trunk.
9: cl += LinearNoBias(LayerNorm(strunk

tok_idx(l)))

10: plm += LinearNoBias(LayerNorm(ztok_idx(l) tok_idx(m)))

# Add the noisy positions.
11: ql += LinearNoBias (rl)

12: end if

# Add the combined single conditioning to the pair representation.

13: plm += LinearNoBias(relu(cl)) + LinearNoBias(relu(cm))

# Run a small MLP on the pair activations.

14: plm += LinearNoBias(relu(LinearNoBias(relu(LinearNoBias(relu(plm))))))

# Cross attention transformer.

15: {ql} = AtomTransformer({ql}, {cl}, {plm}, Nblock = 3, Nhead = 4)

# Aggregate per-atom representation to per-token representation

16: ai = mean
l∈{1,...,Natoms}
tok_idx(l)=i

(relu(LinearNoBias(ql))) ai ∈ Rctoken

17: q
skip
l , c

skip
l ,p

skip
lm = ql, cl,plm

18: return {ai}, {qskip
l }, {c

skip
l }, {p

skip
lm }
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Algorithm 6 Atom attention decoder

def AtomAttentionDecoder({ai}, {qskip
l }, {c

skip
l }, {p

skip
lm }) :

# Broadcast per-token activiations to per-atom activations and add the skip connection

1: ql = LinearNoBias(atok_idx(l)) + q
skip
l

# Cross attention transformer.

2: {ql} = AtomTransformer({ql}, {cskip
l }, {p

skip
lm }, Nblock = 3, Nhead = 4)

# Map to positions update.

3: r
update
l = LinearNoBias(LayerNorm(ql))

4: return {rupdate
l }

Algorithm 7 Atom Transformer

def AtomTransformer({ql}, {cl}, {plm}, Nblock = 3, Nhead,
Nqueries = 32, Nkeys = 128,Ssubset centres = {15.5, 47.5, 79.5, . . . }) :

# sequence-local atom attention is equivalent to self attention within rectangular blocks along the diagonal.

1: βlm =

0 if |l − c| < Nqueries/2 ∧ |m− c| < Nkeys/2 ∀ c ∈ Ssubset centres

−1010 else

2: {ql}=DiffusionTransformer({ql}, {cl}, {plm}, {βlm}, Nblock, Nhead)

3: return {ql}
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3.3 MSA Module

The MSA Module (Suppl. Fig. 2, Algorithm 8) in AlphaFold 3 fullfills a similar role to the Extra MSA Stack in
AlphaFold 2 and hence has a fairly similar network architecture to AlphaFold-Multimer in the block. It samples a new
iid random subset of the MSA for each recycling iteration, the MSA sequences and input features then get embedded
into representation msi for each token in each sequence in the msa. The Network architecture of the MSA Module then
consists of 4 homogeneous blocks which repeatedly process and combine the pair representation zij and the msa. The
final pair representation then gets passed on to the Pairformer Stack.

The overall structure of the block is very similar to the Pairformer Stack, where the MSA representation fullfills a
role similar to the single representation. The individual blocks here are similar to the extra MSA stack in AlphaFold 2,
the difference here is that the attention is independently performed for each row of the MSA and that attention weights
are entirely projected from the pair representation, i.e. there is no key-query based attention. This also means that each
row of the MSA combines information via attention in the same way, this reduces computation and memory usage in
the attention. The MSA attention layer employs the same gating mechanism as the other attention layers. Otherwise
this part of the model works the same as AlphaFold 2, meaning the pair representation gets passed through Triangular
Multiplicative Update and Triangular self-attention layers and a transition block. In all the transition blocks we use
SwiGLU instead of ReLU.

Conceptually a difference to AlphaFold 2 is that here we do not combine information across different rows of the
MSA directly, but rather all information has to flow via the pair representation. The motivation behind this is that the
pair representation should contain as much information as possible about the proteins or nucleic acids as it forms the
backbone for the rest of the network.
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mean
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Supplementary Figure 2 MSA Module.
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Algorithm 8 MSA Module

def MsaModule({f *}, {zij}, {sinputs
i }, Nblock = 4, cm = 64) :

1: mSi = concat(f msa
Si , f has_deletion

Si , f deletion_value
Si )

2: {s} = SampleRandomWithoutReplacement({S})
3: msi ← LinearNoBias(msi) msi ∈ Rcm

4: msi+=LinearNoBias({sinputs
i })

5: for all l ∈ [1, . . . , Nblock] do
# Communication

6: {zij} += OuterProductMean({msi})

# MSA stack

7: {msi} += DropoutRowwise0.15(MSAPairWeightedAveraging({msi}, {zij}, c = 8))

8: {msi} += Transition({msi})

# Pair stack

9: {zij} += DropoutRowwise0.25(TriangleMultiplicationOutgoing({zij}))
10: {zij} += DropoutRowwise0.25(TriangleMultiplicationIncoming({zij}))
11: {zij} += DropoutRowwise0.25(TriangleAttentionStartingNode({zij}))
12: {zij} += DropoutColumnwise0.25(TriangleAttentionEndingNode({zij}))
13: {zij} += Transition({zij})
14: end for

15: return {zij}

Algorithm 9 Outer product mean

def OuterProductMean({msi}, c = 32, cz = 128) :

1: msi ← LayerNorm(msi)

2: asi,bsi = LinearNoBias(msi) asi,bsi ∈ Rc

3: oij = flatten
(
means(asi ⊗ bsj)

)
oij ∈ Rc·c

4: zij = Linear(oij) zij ∈ Rcz

5: return {zij}

Algorithm 10 MSA pair weighted averaging with gating

def MSAPairWeightedAveraging({msi}, {zij}, c = 32, Nhead = 8) : msi ∈ Rcm

# Input projections

1: msi ← LayerNorm(msi)

2: vh
si = LinearNoBias(msi) vh

si ∈ Rc, h ∈ {1, . . . , Nhead}
3: bhij = LinearNoBias(LayerNorm(zij))

4: gh
si = sigmoid

(
LinearNoBias(msi)

)
gh
si ∈ Rc

# Weighted average with gating

5: wh
ij = softmaxj

(
bhij

)
6: ohsi = gh

si ⊙
∑

j w
h
ijv

h
sj

# Output projection

7: m̃si = LinearNoBias
(
concath(o

h
si)

)
m̃si ∈ Rcm

8: return {m̃si}
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Algorithm 11 Transition layer

def Transition(x, n = 4) : x ∈ Rc

1: x← LayerNorm(x)

2: a = LinearNoBias(x) a ∈ Rn·c

3: b = LinearNoBias(x) b ∈ Rn·c

4: x← LinearNoBias(swish(a)⊙ b) x ∈ Rc

5: return x

3.4 Triangle updates of the pair representation

AlphaFold 3 uses the same update / attention scheme for the pair representation as AlphaFold 2 which establishes a
direct communication between the edges that connect 3 nodes (interpreting the pair representation as edge features of
a fully connected graph where the tokens are the nodes). This allows the network to easily detect inconsistencies in its
current belief about the spatial relationship and to update them accordingly. For more details, see [1].

Algorithm 12 Triangular multiplicative update using “outgoing” edges

def TriangleMultiplicationOutgoing({zij}, c = 128) : zij ∈ cz

1: zij ← LayerNorm(zij)

2: aij ,bij = sigmoid
(
LinearNoBias(zij)

)
⊙ LinearNoBias(zij) aij ,bij ∈ Rc

3: gij = sigmoid
(
LinearNoBias(zij)

)
gij ∈ Rcz

4: z̃ij = gij ⊙ LinearNoBias(LayerNorm(
∑

k aik ⊙ bjk)) z̃ij ∈ Rcz

5: return {z̃ij}

Algorithm 13 Triangular multiplicative update using “incoming” edges (differences to Algorithm 12 highlighted)

def TriangleMultiplicationIncoming({zij}, c = 128) : zij ∈ cz

1: zij ← LayerNorm(zij)

2: aij ,bij = sigmoid
(
LinearNoBias(zij)

)
⊙ LinearNoBias(zij) aij ,bij ∈ Rc

3: gij = sigmoid
(
LinearNoBias(zij)

)
gij ∈ Rcz

4: z̃ij = gij ⊙ LinearNoBias(LayerNorm(
∑

k aki ⊙ bkj )) z̃ij ∈ Rcz

5: return {z̃ij}
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Algorithm 14 Triangular gated self-attention around starting node

def TriangleAttentionStartingNode({zij}, c = 32, Nhead = 4) : zij ∈ cz

# Input projections

1: zij ← LayerNorm(zij)

2: qh
ij ,k

h
ij ,v

h
ij = LinearNoBias(zij) qh

ij ,k
h
ij ,v

h
ij ∈ Rc, h ∈ {1, . . . , Nhead}

3: bhij = LinearNoBias(zij)

4: gh
ij = sigmoid

(
LinearNoBias(zij)

)
gh
ij ∈ Rc

# Attention

5: ahijk = softmaxk

(
1√
c
qh
ij
⊤
kh
ik + bhjk

)
6: ohij = gh

ij ⊙
∑

k a
h
ijkv

h
ik

# Output projection

7: z̃ij = LinearNoBias
(
concath(o

h
ij)

)
z̃ij ∈ Rcz

8: return {z̃ij}

Algorithm 15 Triangular gated self-attention around ending node (differences to Algorithm 14 highlighted)

def TriangleAttentionEndingNode({zij}, c = 32, Nhead = 4) : zij ∈ cz

# Input projections

1: zij ← LayerNorm(zij)

2: qh
ij ,k

h
ij ,v

h
ij = LinearNoBias(zij) qh

ij ,k
h
ij ,v

h
ij ∈ Rc, h ∈ {1, . . . , Nhead}

3: bhij = LinearNoBias(zij)

4: gh
ij = sigmoid

(
LinearNoBias(zij)

)
gh
ij ∈ Rc

# Attention

5: ahijk = softmaxk

(
1√
c
qh
ij
⊤
kh
kj + bhki

)
6: ohij = gh

ij ⊙
∑

k a
h
ijk vh

kj

# Output projection

7: z̃ij = LinearNoBias

(
concath

(
ohij

))
z̃ij ∈ Rcz

8: return {z̃ij}
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3.5 Template embedding

The template embedding (Algorithm 16) combines all raw template features to a pair representation, and processes it
together with the given pair representation zij (produced in the previous recyling iteration). This allows the network to
attend to specific regions in the template based on its current belief about the structure.

The template_backbone_frame_mask, template_distogram, template_restype, template_pseudo_beta_mask and tem-
plate_unit_vector features from Table 5 are concatenated into a 2D feature. In the main recycling loop (Algorithm 1)
the pairwise embeddings zij are passed into the template embedder (Algorithm 16). Each template is processed in-
dependently with a PairformerStack, and the resulting activations are averaged to obtain a pairwise embedding of all
templates.

Algorithm 16 Template embedder

def TemplateEmbedder({f *}, {zij}, Nblock = 2, c = 64) :

1: b
template_backbone_frame_mask
ij = f

template_backbone_frame_mask
ti · f template_backbone_frame_mask

tj

2: b
template_pseudo_beta_mask
ij = f

template_pseudo_beta_mask
ti · f template_pseudo_beta_mask

tj

3: atij = concat(f
template_distogram
tij , b

template_backbone_frame_mask
ij , f

template_unit_vector
tij , b

template_pseudo_beta_mask
ij )

4: atij ← atij ⊙ (f
asym_id
i == f

asym_id
j )

5: atij ← concat(atij , f
template_restype
ti , f

template_restype
tj )

6: uij = 0 uij ∈ Rc

7: for all t ∈ [1, . . . , Ntemplates] do
8: vij = LinearNoBias(LayerNorm(zij)) + LinearNoBias(atij) vij ∈ Rc

9: {vij} += PairformerStack({vij}, Nblock)

10: uij += LayerNorm(vij)

11: end for

12: uij ← uij

Ntemplates

13: uij ← LinearNoBias(ReLU(uij)) uij ∈ Rc

14: return {uij}

3.6 Pairformer stack

The Pairformer Stack (Algorithm 17, Main Article Fig. 2a) fulfills a similar role to the Evoformer stack in AlphaFold 2,
the Pairformer stack uses just a single representation si, rather than a representation for a subset of the MSA. Here the
single representation plays a role similar to the privileged first row in the Evoformer in AlphaFold 2.

As a consequence of this change there is no column-wise attention in the stack. The single attention with pair bias is
the same as the row-wise attention used in AlphaFold 2, but only applied to a single sequence, which corresponds to the
single represenation si.

Furthermore unlike in AlphaFold 2 the single representation does not influence the pair representation, the pair rep-
resentation is used to control information flow in the single representation by biasing the Attention logits.

All Transition blocks use SwiGLU.
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Algorithm 17 Pairformer stack

def PairformerStack({si}, {zij}, Nblock = 48) :

1: for all l ∈ [1, . . . , Nblock] do
# Pair stack

2: {zij} += DropoutRowwise0.25(TriangleMultiplicationOutgoing({zij}))
3: {zij} += DropoutRowwise0.25(TriangleMultiplicationIncoming({zij}))
4: {zij} += DropoutRowwise0.25(TriangleAttentionStartingNode({zij}))
5: {zij} += DropoutColumnwise0.25(TriangleAttentionEndingNode({zij}))
6: {zij} += Transition({zij})
7: {si} +=AttentionPairBias({si}, ∅, {zij}, βij = 0, Nhead = 16)

8: {si} +=Transition({si})
9: end for

10: return {si}, {zij}

3.7 Diffusion Module

In AlphaFold 2 the final structure was realised using a Structure Module using invariant point attention. For AlphaFold 3
we replaced it with a relatively standard non-equivariant point-cloud diffusion model over all atoms (Algorithm 18 and
Main Article Fig. 2b). During training, we train a denoiser to remove Gaussian noise from the positions of all heavy
atoms conditioned on the features from the main trunk. The denoiser is based on a modern transformer, but with several
modifications to make it more amenable to the task. The main changes are:

• We incorporate conditioning from the trunk in several ways: we initialise the activations from the single em-
bedding, use a variant of Adaptive Layernorm [27] for the single conditioning and logit biasing for the pair
conditioning.

• We use standard modern transformer tricks (e.g. SwiGLU [28]) and methods used in AlphaFold 2 (gating).

• We use a two-level architecture, working first on atoms, then tokens, then atoms again.

Notably, the transformer only uses a single linear layer to embed all atom positions and and a single linear layer to
project the updates at the end, there are no geometric biases involved (e.g. locality or SE(3) invariance). This is in
contrast to contemporary trends of using stronger domain specific inductive biases.

The details of the architecture are outlined in Algorithm 20.
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Algorithm 18 Sample Diffusion

def SampleDiffusion( {f *}, {sinputs
i }, {strunk

i }, {ztrunk
ij }, Noise Schedule [c0, c1, . . . , cT ],

γ0 = 0.8, γmin = 1.0, noise scale λ = 1.003, step scale η = 1.5 ):

1: x⃗l ∼ c0 · N (0⃗, I3) x⃗l ∈ R3

2: for all cτ ∈ [c1, . . . , cT ] do
3: {x⃗l} ← CentreRandomAugmentation({x⃗l})
4: γ = γ0 if cτ > γmin else 0

5: t̂ = cτ−1(γ + 1)

6: ξ⃗l = λ
√

t̂2 − c2τ−1 · N (0⃗, I3) ξ⃗l ∈ R3

7: x⃗
noisy
l = x⃗l + ξ⃗l

8: {x⃗denoised
l } = DiffusionModule({x⃗noisy

l }, t̂, {f *}, {sinputs
i }, {strunk

i }, {ztrunk
ij })

9: δ⃗l = (x⃗l − x⃗denoised
l )/t̂

10: dt = cτ − t̂

11: x⃗l ← x⃗
noisy
l + η · dt · δ⃗l

12: end for

13: return {x⃗l}

Algorithm 19 CentreRandomAugmentation

def CentreRandomAugmentation({x⃗l}, strans = 1Å) :

1: x⃗l ← x⃗l −mean
l

x⃗l

2: R = UniformRandomRotation()

3: t⃗ ∼ strans · N (0⃗, I3)

4: x⃗l ← R · x⃗l + t⃗

5: return {x⃗l}
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Algorithm 20 Diffusion Module

def DiffusionModule({x⃗noisy
l }, t̂, {f *}, {sinputs

i }, {strunk
i }, {ztrunk

ij },
σdata = 16, catom = 128, catompair = 16, ctoken = 768) :

# Conditioning

1: {si}, {zij}=DiffusionConditioning(t̂, {f *}, {sinputs
i }, {strunk

i }, {ztrunk
ij }, σdata)

# Scale positions to dimensionless vectors with approximately unit variance.

2: r
noisy
l = x⃗

noisy
l /

√
t̂2 + σ2

data r
noisy
l ∈ R3

# Sequence-local Atom Attention and aggregation to coarse-grained tokens

3: {ai}, {qskip
l }, {c

skip
l }, {p

skip
lm } = AtomAttentionEncoder({f *}, {rnoisy

l }, {strunk
i }, {zij}, catom, catompair, ctoken)

ai ∈ Rctoken

# Full self-attention on token level.

4: ai+=LinearNoBias(LayerNorm(si))

5: {ai} ← DiffusionTransformer({ai}, {si}, {zij}, βij = 0, Nblock = 24, Nhead = 16)

6: ai ← LayerNorm(ai)

# Broadcast token activations to atoms and run Sequence-local Atom Attention

7: {rupdate
l } = AtomAttentionDecoder({ai}, {qskip

l }, {c
skip
l }, {p

skip
lm })

# Rescale updates to positions and combine with input positions

8: x⃗out
l = σ2

data/(σ
2
data + t̂2) · x⃗noisy

l + σdata · t̂/
√

σ2
data + t̂2 · rupdate

l

9: return {x⃗out
l }

Algorithm 21 Diffusion Conditioning

def DiffusionConditioning(t̂, {f *}, {sinputs
i }, {strunk

i }, {ztrunk
ij }, σdata, cz = 128, cs = 384) :

# Pair conditioning

1: zij = concat([ztrunk
ij ,RelativePositionEncoding({f *})])

2: zij ← LinearNoBias(LayerNorm(zij)) zij ∈ Rcz

3: for all b ∈ [1, 2] do
4: zij+=Transition(zij , n = 2)

5: end for

# Single conditioning

6: si = concat([strunk
i , s

inputs
i ])

7: si ← LinearNoBias(LayerNorm(si)) si ∈ Rcs

8: n = FourierEmbedding(14 log(t̂/σdata), 256)

9: si+=LinearNoBias(LayerNorm(n))

10: for all b ∈ [1, 2] do
11: si+=Transition(si, n = 2)

12: end for

13: return {si}, {zij}
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Algorithm 22 Fourier Embedding

def FourierEmbedding(t̂, c)

# Randomly generate weight/bias once before training

1: w,b ∼ N (0⃗, Ic) w,b ∈ Rc

# Compute embeddings

2: return cos(2π(t̂w + b))

Algorithm 23 Diffusion Transformer

def DiffusionTransformer({ai}, {si}, {zij}, {βij}, Nblock, Nhead):

1: for all n ∈ [1, . . . , Nblock] do
2: {bi} = AttentionPairBias({ai}, {si}, {zij}, {βij}, Nhead)
3: ai ← bi +ConditionedTransitionBlock(ai, si)

4: end for

5: return {ai}

Algorithm 24 DiffusionAttention with pair bias and mask

def AttentionPairBias({ai}, {si}, {zij}, {βij}, Nhead) : ai ∈ Rca , c = ca/Nhead

# Input projections

1: if {si} ≠ ∅ then
2: ai ← AdaLN(ai, si)

3: else
4: ai ← LayerNorm(ai)

5: end if

6: qh
i = Linear(ai) qh

i ∈ Rc, h ∈ {1, . . . , Nhead}
7: kh

i ,v
h
i = LinearNoBias(ai) kh

i ,v
h
i ∈ Rc, h ∈ {1, . . . , Nhead}

8: bhij ← LinearNoBias(LayerNorm(zij)) + βij

9: gh
i ← sigmoid

(
LinearNoBias(ai)

)
gh
i ∈ Rc

# Attention

10: Ah
ij ← softmaxj

(
1√
c
qh
i
⊤
kh
j + bhij

)
11: ai ← LinearNoBias

(
concath

(
gh
i ⊙

∑
j A

h
ijv

h
j

))
ai ∈ Rca

# Output projection (from adaLN-Zero [27])

12: if {si} ≠ ∅ then
13: ai ← sigmoid(Linear(si, biasinit=-2.0))⊙ ai

14: end if

15: return {ai}
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Algorithm 25 Conditioned Transition Block

# SwiGLU transition block with adaptive layernorm

def ConditionedTransitionBlock(a, s, n = 2) : a ∈ Rc

1: a← AdaLN(a, s)

2: b← swish(LinearNoBias(a))⊙ LinearNoBias(a) b ∈ Rn·c

# Output projection (from adaLN-Zero [27])

3: a← sigmoid(Linear(s, biasinit=-2.0))⊙ LinearNoBias(b) a ∈ Rc

4: return a

Algorithm 26 Adaptive LayerNorm

def AdaLN(a, s) :

1: a← LayerNorm(a, scale=False, offset=False)

2: s← LayerNorm(s, offset=False)

3: a← sigmoid(Linear(s))⊙ a+ LinearNoBias(s)

4: return a

3.7.1 Diffusion Training

Our diffusion training methodology largely follows [29]. With some notable differences, mostly to the loss.
To improve training efficiency we train the Diffusion Module with a larger batch size than the trunk (see Main Article

Fig. 2c). To realise this, we run the trunk once and then create 48 versions of the input structure by randomly rotating
and translating according to Algorithm 19 and adding independent noise to each structure. We then train the Diffusion
Module over all of them in parallel. This is efficient since the Diffusion Module is much cheaper than the model trunk.

We apply a weighted aligned MSE loss to the denoised structure output from the Diffusion Module. We first perform
a rigid alignment of the ground truth x⃗GT

l on to the denoised structure x⃗l as

{x⃗GT-aligned
l } = weighted_rigid_align({x⃗GT

l }, {x⃗l)}, {wl}) (2)

with weights wl provided in Equation 4. We then compute a weighted MSE

LMSE =
1

3
mean

l

(
wl||x⃗l − x⃗

GT-aligned
l ||2

)
, (3)

with upweighting of nucleotide and ligand atoms as

wl = 1 + f is_dna
l αdna + f is_rna

l αrna + f
is_ligand
l αligand (4)

and hyperparameters αdna = αrna = 5, and αligand = 10.
To ensure that the bonds for bonded ligands (including bonded glycans) have the correct length, we introduce an

auxiliary loss during fine tuning as

Lbond = mean
(l,m)∈B

(∥∥x⃗l − x⃗m

∥∥− ∥∥∥x⃗GT
l − x⃗GT

m

∥∥∥)2

, (5)

where B is the set of tuples (start atom index, end atom index) defining the bond between the bonded ligand and its
parent chain.

We also apply an auxiliary structure-based loss based on smooth LDDT, as described in Algorithm 27. The final loss
from the Diffusion Module is then:

Ldiffusion = (t̂2 + σ2
data)/(t̂+ σdata)

2 · (LMSE + αbond · Lbond) + Lsmooth_lddt (6)

Where t̂ is the sampled noise level, σdata is a constant determined by the variance of the data (set to 16) and αbond is
0 for regular training, and 1 for both fine tuning stages. Prior to computing these losses, we apply an optimal ground
truth chain assignment as described in subsection 4.2.
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During training the noise level is sampled from σdata · exp(−1.2+1.5 ·N (0, 1)), during inference the noise schedule
is defined as

t̂ = σdata · (s1/pmax + t · (s1/pmin − s
1/p
max))

p (7)

where smax = 160, smin = 4 · 10−4, p = 7 and t is distributed uniformly between [0, 1] with a step size of 1
200 .

Algorithm 27 Smooth LDDT Loss

def SmoothLDDTLoss({x⃗l}, {x⃗GT
l }, {f

is_dna
l }, {f is_rna

l }) :

# Compute distances between all pairs of atoms

1: δxlm ← ||x⃗l − x⃗m||
2: δxGT

lm ← ||x⃗GT
l − x⃗GT

m ||

# Compute distance difference for all pairs of atoms

3: δlm ← abs(δxGT
lm − δxlm)

4: ϵlm ← 1
4

[
sigmoid(12 − δlm) + sigmoid(1− δlm)) + sigmoid(2− δlm) + sigmoid(4− δlm)

]
# Restrict to bespoke inclusion radius

5: f is_nucleotide
l ← f is_dna

l + f is_rna
l

6: clm ← (δxGT
lm < 30Å)f is_nucleotide

l +

(δxGT
lm < 15Å)(1− f is_nucleotide

l )

# Compute mean, avoiding self term

7: lddt = mean
l ̸=m

(clmϵlm)/mean
l ̸=m

(clm)

8: return 1− lddt
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Algorithm 28 Weighted Rigid Align

def weighted_rigid_align({x⃗l}, {x⃗GT
l }, {wl}) :

# Mean-centre positions

1: µ⃗← mean
l

(wlx⃗l)/mean
l

(wl)

2: µ⃗GT ← mean
l

(wlx⃗
GT
l )/mean

l
(wl)

3: x⃗l ← x⃗l − µ⃗

4: x⃗GT
l ← x⃗GT

l − µ⃗GT

# Find optimal rotation from singular value decomposition

5: U, V ← svd(
∑

l wlx⃗
GT
l ⊗ x⃗l)

6: R← UV

# Remove reflection

7: if det(R) < 0 then

8: F ←

 1 0 0
0 1 0
0 0 −1


9: R← UFV

10: end if

# Apply alignment

11: x⃗
align
l = Rx⃗l + µ⃗

12: return stop_gradient(x⃗align
l )

4 Auxiliary heads

4.1 Mini diffusion rollout

Several of the heads require predicted coordinates, therefore at training time we do a short rollout of the Diffusion
Module from pure noise with 20 steps (Main Article Fig. 2c). No gradients are applied to this mini-rollout.

4.2 Chain permutation and symmetry resolution

The assignment of names (chain-ids, like ‘A’, ‘B’, ‘C’, ...) to chains with identical sequences in a physical structure is
arbitrary, and every permutation of these names is equally correct. The same applies to multiple ligands of the same
type. It is very likely that AlphaFold will use a different permutation than the authors who deposited the ground truth
in the PDB. To compare a predicted structure to the ground truth in the confidence head (subsubsection 4.3.1) or to
create the noised version of the ground truth for diffusion training (subsection 3.7), the ground truth chains must be
renamed such that they match the predicted structure. We use the method described in [18] section 7.3 “Multi-Chain
Permutation Alignment” to find a good assignment of the predicted chains to the ground truth chains. The predicted
structure used for this alignment is the output of the mini-diffusion rollout (subsection 4.2). The same method is applied
to ligands as well, with the extension that ligands covalently bonded to polymer chains will be permuted in sync with
the corresponding chains. This is achieved by grouping all covalently bonded components together and assigning them
the same entity id.

Finally, we resolve atom naming ambiguities within each chemical component (ligand/residue): we generate permu-
tations (up to 1000) using RDKit and permute the ground truth such that it has minimal RMSD to the prediction.

4.3 Model confidence prediction

The model is trained to predict three confidence metrics, a per-atom confidence, predicted local distance difference
(pLDDT), a pairwise atom-atom aligned error (PAE), and a pairwise atom-atom distance confidence, predicted distance
error (PDE). It is also trained to predict whether an atom is experimentally resolved. The confidence losses are only
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applied for the PDB training set (i.e. it is not applied for any of the distillation sets), with a further filter that the
resolution of the ground truth structure is between 0.1 and 4. The details of the confidence head and losses are outlined
below.

4.3.1 Predicted local distance difference test (pLDDT)

The per atom confidence is trained to predict a version of LDDT that takes into account distances from all atoms to
polymer residues (e.g. for a ligand atom the confidence only takes into account interactions between the ligand atom
and proteins/nucleic acids, no intra-ligand terms are included), it is defined for atom l as:

lddtl =
∑
m∈R

1

4

∑
c∈{0.5,1,2,4}

dlm < c (8)

Where dlm is the distance between atom l and atom m in the mini-rollout prediction (subsection 4.1), l encompasses
all atoms and the set of atoms m ∈ R is defined as:

• Atoms such that the distance in the ground truth between atom l and atom m is less than 15 Å if m is a protein
atom or less than 30 Å if m is a nucleic acid atom.

• Only atoms in polymer chains.

• One atom per token - Cα for standard protein residues and C1′ for standard nucleic acid residues.

The single embedding (si) in the confidence head (Algorithm 31) is linearly projected into [Nmax_atoms_per_token, 50]
values, where Nmax_atoms_per_token is the maximum number of atoms per token. This gives per atom confidences with 50
bins between 0 and 1 and probabilities pbl obtained via a softmax. The loss is then defined as:

Lplddt = −
1

Natom

∑
l

50∑
b=1

lddtbl log p
b
l (9)

A single value of pLDDT per-atom is obtained by taking the expectation across the 50 binned probabilities. Here
lddtbl denotes a binned version of lddtl, i.e. lddtbl is 1 if lddtl falls within bin b and 0 otherwise.

4.3.2 Predicted aligned error (PAE)

It is useful to have a pairwise confidence between atoms, to determine confidence of interfaces or specific interactions
between atoms. To this end we follow AlphaFold 2 and predict a pairwise alignment error (PAE), an estimate of the
error of one token when aligned according to the frame of another.

We associate a reference frame to each token i using a set of three atoms which we denote as (ai, bi, ci). Let
Φi = (a⃗i, b⃗i, c⃗i) denote the coordinates of these frame atoms. An atom position x⃗ is expressed in a basis defined by
Φi according to Algorithm 29, which takes b⃗i as its origin and applies to x⃗ a rotation defined by Φi. To compute an
aligned error eij between frame i and token j, Φi and Φtrue

i are built from the predicted and ground truth frame atom
coordinates for token i, and representative token atom coordinates from the prediction x⃗j and ground truth x⃗true

j are
expressed in the bases of Φi and Φtrue

i , respectively. The error eij is then defined as the Euclidean distance between
these two alignments. See Algorithm 30 for pseudocode.

The atoms (ai, bi, ci) used to construct token i’s frame depend on the chain type of i: Protein tokens use their residue’s
backbone (N,Cα,C), while DNA and RNA tokens use (C1′,C3′,C4′) atoms of their residue. All other tokens (small
molecules, glycans, ions) contain only one atom per token. The token atom is assigned to bi, the closest atom to the
token atom is ai, and the second closest atom to the token atom is ci. If this set of three atoms is close to colinear (less
than 25 degree deviation), or if three atoms do not exist in the chain (e.g. a sodium ion), then the frame is marked as
invalid. The PAE head does not train on invalid frames, nor do ranking and confidence metrics consider them.

When computing the alignment error we use the predicted coordinates taken from the mini-rollout structure.
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Algorithm 29 Express coordinates in frame

def expressCoordinatesInFrame(x⃗,Φ) : x⃗ ∈ R3

# Extract frame atoms

1: (a⃗, b⃗, c⃗) = Φ a⃗, b⃗, c⃗ ∈ R3

2: w⃗1 = (a⃗− b⃗)/
∥∥∥a⃗− b⃗

∥∥∥
3: w⃗2 = (⃗c− b⃗)/

∥∥∥c⃗− b⃗
∥∥∥

# Build orthonormal basis

4: e⃗1 = (w⃗1 + w⃗2)/
∥∥w⃗1 + w⃗2

∥∥
5: e⃗2 = (w⃗2 − w⃗1)/

∥∥w⃗2 − w⃗1

∥∥
6: e⃗3 = e⃗1 × e⃗2

# Project onto frame basis

7: d⃗ = x⃗− b⃗

8: x⃗transformed = concat(d⃗ · e⃗1, d⃗ · e⃗2, d⃗ · e⃗3)
9: return x⃗transformed x⃗transformed ∈ R3

Algorithm 30 Compute alignment error

def computeAlignmentError({x⃗i}, {x⃗true
i }, {Φi}, {Φtrue

i }, ϵ = 1e−8 Å
2
) :

1: ˆ⃗xij = expressCoordinatesInFrame(x⃗j ,Φi)

2: ˆ⃗xtrue
ij = expressCoordinatesInFrame(x⃗true

j ,Φtrue
i )

3: eij =
√
∥ˆ⃗xij − ˆ⃗xtrue

ij ∥2 + ϵ

4: return {eij}

To predict the alignment error, the pair embedding (zij) in the confidence head (Algorithm 31) is linearly projected
into 64 distance bins b, and probabilities pbij are obtained via a softmax. There are 64 bins equally spaced from 0Å
to 32Å in 0.5Å increments. During training the final bin also captures larger errors. The prediction targets are the
alignment errors eij . The loss is then defined as:

Lpae = −
1

N2
token

∑
i,j

64∑
b=1

ebij log p
b
ij (10)

Here ebij denotes a binned version of eij , i.e. ebij is 1 if eij falls within bin b and 0 otherwise.
A single value of PAE per token-pair is obtained by taking the expectation across the 64 binned probabilities:

PAEij =

64∑
b=1

∆b p
b
ij (11)

where ∆b are the distance bin centers.
We also use the probabilities pbij to compute pTM, an estimate of the TM-Score [30] as well as an ipTM, an interfacial

variant that only considers (i, j) pairs from different chains. For full description of pTM and ipTM we refer the reader
to Sec. 1.9.7 of [1] and Sec. 7.9 of [18], respectively. As previously, we find pTM and ipTM to be useful as confidence
metrics (main text Figure 4) and for sample ranking (subsection 5.9).

4.3.3 Predicted distance error (PDE)

In addition to an alignment error, the model is also trained to predict the error in absolute distances between atoms.
The pair embedding (zij) in the confidence head (Algorithm 31) is linearly projected into 64 distance bins b, and

probabilities pbij are obtained via a softmax. There are 64 bins equally spaced from 0Å to 32Å in 0.5Å increments.
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During training the final bin also captures larger errors. The prediction targets eij are defined as eij = |dpred
ij − dgtij |,

where dpredij is the distance between representative token atoms i and j in the mini-rollout prediction (subsection 4.1),
and dgtij is the corresponding distance in the ground truth. The loss is then defined as:

Lpde = −
1

N2
token

∑
i,j

64∑
b=1

ebij log p
b
ij (12)

Here ebij denotes a binned version of eij , i.e. ebij is 1 if eij falls within bin b and 0 otherwise.
A single value of PDE per token-pair is obtained by taking the expectation across the 64 binned probabilities.

PDEij =
64∑
b=1

∆b p
b
ij (13)

where ∆b are the distance bin centers.

4.3.4 Experimentally resolved prediction

The single embedding (si) in the confidence head is linearly projected into per-atom values (in the same way as subsub-
section 4.3.1) with 2 bins. Then a softmax is used to predict whether the atom is resolved in the ground truth (yl), and
loss defined as:

Lresolved = − 1

Natom

∑
l

2∑
b=1

ybl log p
b
l (14)

4.3.5 Confidence head architecture

The pLDDT, PAE, PDE and experimentally resolved outputs are projected from the same head, the architecture of this
head is outlined in Algorithm 31. The pairwise distance between the representative atoms for each token are extracted,
and combined with the single ({si}) and pair ({zij}) embeddings from the network trunk. lrep(i) provides the flat-atom
index l of the representative atom for the given token i. During training, a stop gradient is applied to the single and pair
embeddings and predicted structure.

Algorithm 31 Confidence head

def ConfidenceHead({sinputs
i }, {si}, {zij}, {x⃗pred

l }, Nblock = 4) :

1: zij += LinearNoBias(s
inputs
i ) + LinearNoBias(s

inputs
j )

# Embed pair distances of representative atoms:

2: dij =
∥∥∥x⃗pred

lrep(i)
− x⃗

pred
lrep(j)

∥∥∥
3: zij += LinearNoBias(one_hot(dij ,vbins = [33⁄8 Å, 51⁄8 Å, . . . , 213⁄8 Å]))

4: {si}, {zij} += PairformerStack({si}, {zij}, Nblock)

5: p
pae
ij = softmax(LinearNoBias(zij)) p

pae
ij ∈ Rbpae

6: p
pde
ij = softmax(LinearNoBias(zij + zji)) p

pde
ij ∈ Rbpde

7: p
plddt
l = softmax(LinearNoBiastoken_atom_idx(l)(si(l))) p

plddt
l ∈ Rbplddt

8: presolved
l = softmax(LinearNoBiastoken_atom_idx(l)(si(l))) presolved

l ∈ R2

9: return {pplddt
l }, {ppae

ij }, {p
pde
ij }, {presolved

l }

4.4 Distogram prediction

The model is also trained to predict binned distances between all pairs of tokens (a distogram). This head and loss
are identical to AlphaFold 2 [1], where the pairwise token distances use the representative atom for each token: Cβ for
protein residues (Cα for glycine), C4 for purines and C2 for pyrimidines. All ligands already have a single atom per
token.
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5 Training and inference

5.1 Structure filters

For both training and inference, standard crystallization agents (Table 9) are removed from the structure. Bonds for
structures with homomeric subcomplexes lacking the corresponding homomeric symmetry are also removed – e.g. if a
certain bonded ligand only exists for some of the symmetric copies, but not for all, we remove the corresponding bond
information from the input. In consequence the model has to learn to infer these bonds by itself.

5.2 Training stages

Training occurs in four stages with differences highlighted in Table 6. We train a randomly initialized model first with a
sequence crop size of 384, and then fine tune from the stage one weights at a crop size of 640, followed by a second fine
tuning stage with crop size 768. In the first stage of fine tuning, smooth lddt loss was turned off and the weight of the
disordered protein PDB distillation set was reduced, but now with unmasked diffusion loss on non-protein chains in that
distillation set. For the second stage of fine tuning, in addition, transcription factor distillation sets were turned on and
the weight of the disordered protein PDB distillation set was increased back to its original level. Protein residues from
the DNA motif distillation set with predicted probability of being experimentally resolved lower than 0.9 were treated
as unresolved residues. In the third, final fine-tuning stage, we trained the PAE head while removing all structure-based
losses (diffusion and distogram) from training and increased the maximum number of chains to 50. All other settings
were kept as in the previous fine-tuning stage.

The model trained for PoseBusters was trained similarly to the primary model, but without PDB structures released
after 2021-09-30, without RNA MSA or RNA distillation sets, and without the predicted experimentally resolved filter
on the DNA motif distillation set during fine tuning.

Table 6 Training stages

Initial training Fine tuning 1 Fine tuning 2 Fine tuning 3

Sequence crop size Ntoken 384 640 768 768
Parameters initialized from Random Initial training Fine tuning 1 Fine tuning 2
Sampling weight for disorder PDB distillation 0.02 0.01 0.02 0.02
Train on transcription factor distillation sets False False True True
Masked diffusion loss for non-protein in disorder
PDB distillation

True False False False

Train structure and distogram True True True False
Train PAE head False False False True
Diffusion batch size 48 32 32 32
Training samples (·106) ≈20 ≈1.5 ≈1.5 ≈1.8
Training times (days on 256 A100s) ≈10 ≈3 ≈5 ≈2
Polymer-ligand bond loss weight 0 1 1 1
Max number of chains 20 20 20 50

5.3 Loss

The details of the losses from each module are given in the relevant sections, these are then combined into the final loss:

Lloss = αconfidence · (Lplddt + Lpde + Lresolved + αpae · Lpae) + αdiffusion · Ldiffusion + αdistogram · Ldistogram (15)

Where αconfidence = 10−4, αdiffusion = 4, αdistogram = 3 · 10−2 and αpae = 0 for all except for the final training stage,
where it is set to 1.

5.4 Optimization

For training we use the Adam [31] optimizer with parameters β1 = 0.9, β2 = 0.95, ϵ = 10−8. The base learning rate
is 1.8 ·10−3, which is linearly increased from 0 over the first 1,000 steps. The learning rate is then decreased by a factor
of 0.95 every 5 · 104 steps.

The model is trained with a batch size of 256, and we apply gradient clipping if the global norm is greater than 10.
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5.5 Dropout

Dropout is applied during training in the MsaModule (Algorithm 8), in the Pairformer stack (Algorithm 17) and in the
template embedder (Algorithm 16). See the respective algorithms for the dropout rates.

5.6 Inference Setup

For inference, we use an exponential moving average of the trained parameters [32] with the decay rate of 0.999.
Structures are inferenced without any cropping.

5.7 Model selection

For model selection during training stages, performance over a validation set was tracked during training, with all
structures in the validation set released after 2021-09-30 and before 2023-01-13 (the maximum release date of training
date structures was 2021-09-30). Details of the construction of the validation set are given in subsection 5.8.

A single model selection metric was computed from single chain, interface and full complex scores as follows:

1. Scores were computed for all five samples across all low homology chains and interfaces in the validation set
structures, as well as certain full complex metrics.

2. Scores were aggregated across samples via arithmetic mean of top1 (top-ranked) and top5 (best-of-5) predictions,
according to global PDE ranking:

gPDE =

∑
ij pijPDEij∑

ij pij
, (16)

where the weight pij is the probability of contact of token pair i, j under the distogram (i.e. the sum of distogram
probabilities corresponding to distogram bins under 8Å).

3. A final scalar was computed via a weighted mean across score types (see Table 7 for weights and description of
metrics below), averaged over all targets.

For each interface (chain pair) type and single chain type, LDDTs (local distance difference test) [33] were aggre-
gated. For each pair of low homology chains, interface LDDT was calculated from distances between atoms across
different chains in the interface. Intra-chain LDDTs were calculated from distances within a single low homology
chain. Nucleic acid LDDTs (intra-chains and interface) were calculated with an inclusion radius of 30 Å compared to
the usual 15 Å used for proteins, due to the larger size of nucleotides compared to amino acids. An additional metric,
unresolved protein RASA (relative solvent accessible surface area) [34] was calculated for unresolved protein residues
in our evaluation set.

Table 7 Weighting of accuracy metrics for model selection

Metric Initial training Fine tuning

Protein-protein interface LDDT 20 20
DNA-protein interface LDDT 10 10
Protein-RNA interface LDDT 10 2
DNA-ligand interface LDDT 5 5
Ligand-protein interface LDDT 10 10
Ligand-RNA interface LDDT 5 2
Protein intra-chain LDDT 20 20
DNA intra-chain LDDT 4 4
RNA intra-chain LDDT 16 16
Ligand intra-chain LDDT 20 20
Modified residue intra-chain LDDT 10 0
Unresolved protein RASA 10 10
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5.8 Validation set

The validation set for model selection during training was composed of a all low homology chains and interfaces from
a subset of all PDB targets released after 2021-09-30 and before 2023-01-13, with maximum length 2048 tokens.

The process for selecting these targets was broken up into two separate stages. The first was for selecting multimers,
the second for selecting monomers. Multimer selection proceeded as follows:

1. Take all targets released after 2021-09-30 and before 2023-01-13 and remove targets with total number of tokens
greater than 2560, more than one thousand chains or resolution greater than 4.5, then generate a list of all interface
chain pairs for all remaining targets.

2. Filter to only low homology interfaces, which are defined as those where no target in the training set contains
two chains with high homology to the chains involved in the interface, where high homology here means >
40% sequence identity for polymers or > 0.85 tanimoto similarity for ligands. Additionally filter out interfaces
involving a ligand with ranking model fit less than 0.5 or with multiple residues.

3. Assign interfaces to clusters as per subsubsection 2.5.3, other than for polymer-ligand interfaces which use cluster
ID (polymer_cluster, CCD-code) and sample one interface per cluster.

4. Take the following interface types only, possibly reducing number of clusters by sampling a subset of clusters
(number of samples given in brackets if reduced): protein-protein (600), protein-DNA (100), DNA-DNA (100),
Protein-ligand (600), DNA-ligand (50), ligand-ligand (200), protein-RNA, RNA-RNA, DNA-RNA, RNA-ligand.

5. Take the set of all PDB targets containing the remaining interfaces with a final additional restriction of max total
tokens 2048 and make the set of scored chains and interfaces equal to all low homology chains and interfaces in
those targets.

6. Manually exclude a small set of targets (11 in our case) where alignment for scoring took too long to be practical
for generating validation scores during experiments.

Monomer selection proceeded similarly:

1. Take all polymer monomer targets released after 2021-09-30 and before 2023-01-13 (can include monomer poly-
mers with ligand chains) and remove targets with total number of tokens greater than 2560 or resolution greater
than 4.5

2. Filter to only low homology polymers.

3. Assign polymers to clusters as per subsubsection 2.5.3.

4. Sample 40 protein monomers and take all DNA and RNA monomers.

5. Add a final additional restriction of max total tokens 2048 and make the set of scored chains and interfaces equal
to all low homology chains and interfaces in the remaining targets.

6. Manually exclude a set of RNA monomers (8 in our case) that all come from one over represented cluster.

The end result was 1,220 PDB targets containing 2,333 low homology interfaces and 2,099 low homology chains.

5.9 Confidence measures and sample ranking

5.9.1 Alignment-based confidence measures

To capture confidence from an alignment perspective we employ pTM and ipTM, PAE-based predictors that have been
developed previously [1, 18]. The pTM is a predictor of TM-Score [30], an alignment-based measure of structural
accuracy (see Sec. 1.9.7 of [1] for original description). For a given set of tokens D, the pTM is computed as

pTM(D) = max
i∈D

has_frame(i)

1

|D|
∑
j∈D

Nbins∑
b=1

pbij

 1

1 +
(

∆b
d0(|D|)

)2

 . (17)

Here pbij is the PAE probability of error bin b for token j aligned to frame i, ∆b are the associated error bin centers, and
Nbins is the number of bins (see subsubsection 4.3.2 for PAE description). The has_frame notation indicates that invalid
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frames are not considered when computing pTM (see subsubsection 4.3.2 for description of invalid frames). Finally,
the factor d0(N) = 1.24 3

√
maximum(N, 19)− 15− 1.8 is the TM-score normalization constant.

With the above equation we can compute multiple confidence measures: for a whole-structure confidence we compute
a whole complex pTM, where D includes all tokens. For single chain confidence we compute a "chain pTM", where D
is restricted to tokens in the chain of interest.

The ipTM (originally described in [18]) is an interface variant of pTM that only considers interactions between
different chains,

ipTM(D) = max
i∈D

has_frame(i)

1

|D-chain(i)|
∑

j∈D-chain(i)

Nbins∑
b=1

pbij

 1

1 +
(

∆b
d0(|D|)

)2

 , (18)

where D-chain(i) is the subset of D excluding all tokens in the chain of token i. We compute a full structure ipTM by
evaluating Equation 18 on a set D containing all tokens. We also compute a "chain pair ipTM" confidence, where D is
restricted to the set of tokens within a pair of chains defining the interface.

5.9.2 Clashes

We sometimes employ a clash penalty in ranking (see subsubsection 5.9.3), whereby structures with heavily clashing
polymer chains are down-weighted. The number of clashes between two chains is defined as

clashes(A, B) =
∑
i∈A

∑
j∈B

dij < 1.1Å

where dij is the distance between atom i and atom j. A structure is marked as having a clash (has_clash) if for any
two polymer chains A, B in the prediction clashes(A, B) > 100 or clashes(A, B)/min(NA, NB) > 0.5 where NA is the
number of atoms in chain A. See subsubsection 5.9.3 for how this is used when ranking predictions.

5.9.3 Sample ranking

Sample ranking of the recent PDB evaluation set uses a combination of pTM, ipTM, and pLDDT-based summaries. The
ranking depends on whether the metric is single-chain (e.g. protein intra) or an interface (e.g. DNA-protein), as well as
on the chain types being scored:

1. Full complex ranking is similar to [18] according to a weighted average of the full-complex pTM and ipTM. We
also include terms that penalize predictions with lots of clashes, and very slightly up weight predictions with more
disorder (as defined by the relative solvent accessible surface area) to further reduce issues with hallucinations.
(subsubsection 5.9.1)

0.8 · ipTM + 0.2 · pTM + 0.5 · disorder − 100 · has_clash. (19)

Where disorder is defined as 1
NP

∑
i∈P (rasai > 0.581), P being the set of all protein atoms. The rasa metric,

and associated cutoff 0.581 were chosen based on previous work on predicting disorder with AlphaFold [34].

2. Ranking of single-chain metrics (e.g. protein intra) is according to the chain pTM (see subsubsection 5.9.1),
where the token subset is restricted to members of the chain.

3. Interface metrics (e.g. protein-protein) are ranked according to a bespoke ipTM aggregate representing the two
chains in the interface. We first compute a [Nchains, Nchains] matrix M of chain pair ipTM values (see subsubsec-
tion 5.9.1) for all chain pairs in the prediction. For each chain c ∈ [A,B] in our interface we then compute its
average interaction with all other chains: R(c) = mean

ij
(Mij) restricted to i = c or j = c, i ̸= j, and chain i

having at least one valid frame. Finally, we rank according to

1

2

[
R(A) +R(B)

]
(20)

Interfaces containing a small molecule, ion, or bonded ligand chain are ranked differently. Denoting this chain as
C∗, the interface is ranked according toR(C∗) only.

4. Modified residue scores are ranked according to the average pLDDT of the modified residue.

Sample ranking during the model selection phase was performed differently from above. See subsection 5.7 for details.
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5.10 Inference Time

Example inference times using 10 trunk recycles on 16 NVIDIA A100 GPUs are shown in Table 8. This includes only
GPU wallclock time, and MSA construction, data processing, compilation, and post-processing is not included.

Table 8 Inference time in seconds by complex size, using 16 A100

Number of tokens Inference time (seconds)

1024 22
2048 71
3072 126
4096 228
5120 347

6 Evaluation

6.1 Recent PDB evaluation set

The recent PDB evaluation set construction started by taking all 10,192 PDB entries released between 2022-05-01 and
2023-01-12, a date range falling after any data in our training set which had a maximum release date of 2021-09-30.
Each entry in the date range was expanded from the asymmetric unit to Biological Assembly 1, then two filters were
applied:

• Filtering to non-NMR entries with resolution better than 4.5 Å, leaving 9,636 complexes.

• Filtering to complexes with less than 5,120 tokens under our tokenization scheme (see subsection 2.6), leaving
8,856 complexes.

For each complex we generated a list of all individual entities and a list of all entity pairs where the minimal distance
between heavy atoms in the two entities was less than 5 Å and at least one entity in the pair was a polymer. The
procedures for determining homology and clusters for these entities and interfaces are described in later sections.

Predictions on the recent PDB set were made on the full post-assembly complex, but crystallization aids (Table 9)
were removed from the complex for prediction and scoring, along with all bonds for structures with homomeric sub-
complexes lacking the corresponding homomeric symmetry.

Not every entity and interface was included:

• Peptide-peptide interfaces, peptide monomers and modified residues within peptides (where a peptide here is
defined as a protein with less than 16 residues) were not included in scoring as their homology to the training set
was not determined.

• The system can predict other entities like DNA/RNA hybrids, Peptide Nucleic Acids (PNA) and (D) polypeptides,
but these entities and interfaces involving them were not scored as they are too rare to get meaningful results on.

• Eight structures were removed from the test set as matching predicted chains to ground truth chains took too long,
due to large numbers of individual entities in the structure.

• Four structures were removed from the set for technical reasons - three where all chains had fewer than 4 residues
and one with bad metadata in the source file.

• Eleven ligand-protein or ion-protein interfaces failed to score due to RMSD calculation errors.

In addition to the full evaluation set described in the section above we create a “low homology” subset that is filtered
on homology to this training set.

Evaluation is done either on individual chains, or on specific interfaces extracted from the full complex prediction.
For intra-chain metrics, we keep polymers that have less than 40% sequence identity to the training set. Here we define
sequence identity as the percent of residues in the evaluation set chain that are identical to the training set chain. For
interface metrics the following filters are applied:
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• Polymer-polymer interfaces: If both polymers have greater than 40% sequence identity to two chains in the same
complex in the training set, then this interface is filtered out.

• Peptide-polymer: For interfaces to a peptide (<16 residues), the similarity of the non-peptide entity has to be
novel (less than 40% sequence identity to anything in the training set).

6.2 Evaluation set clustering

The evaluation data was clustered to allow for redundancy reduction. Individual polymer chains were clustered at a
40% sequence similarity clustering for proteins with more than 9 residues and 100% similarity for nucleic acids and
protein with less than or equal to 9 residues. Ligands, ions, and metal entities were clustered according to CCD identity
(only used for Main Article Fig. 4). When assigning a cluster ID to an interface:

• Polymer-polymer interfaces are given a cluster ID of (polymer1_cluster, polymer2_cluster).

• Polymer-ligand interfaces are given a cluster ID of the polymer_cluster only.

• Polymer-modified_residue interfaces are given a cluster ID (polymer_cluster, CCD-code).

6.3 Evaluation metrics

The evaluation procedure compares a predicted structure to the corresponding ground truth structure. If the complex
contains multiple identical entities, the optimal assignment (maximising LDDT) of the predicted units to the ground
truth units is found by either an exhaustive search over all permutations (for groups up to 8 members) or a simulated an-
nealing optimization (for larger groups). After the chain assignment is found, the assignment in local symmetry groups
of atoms in ligands is solved by exhaustive search over the first 1000 per-residue symmetries as given by RDKit [25].

We measure the quality of the predictions with DockQ, LDDT (local distance difference test) [33] or pocket-aligned
RMSD (root mean square deviation). For nucleic-protein interfaces we measure interface accuracy via interface LDDT
(iLDDT), which is calculated from distances between atoms across different chains in the interface. Nucleic acid
LDDTs (intra-chains and interface) were calculated with an inclusion radius of 30 Å compared to the usual 15 Å used
for proteins, owing to their larger scale.

If not stated differently, the pocket-aligned RMSD is computed as follows: the pocket is defined as all heavy atoms
within 10 Å of any heavy atom of the ligand in the ground truth structure. In ligand-protein interfaces the Cα atoms
within the pocket are used to align the predicted structure to the ground truth structure by least squares rigid alignment,
and then RMSD is computed on all heavy atoms of the ligand. In ligand-nucleic chain interfaces all heavy atoms are
used for the alignment due to the larger spacing of the backbone atoms and the more rigid structure inside.

We used three categories of evaluation metrics:

1. Complex level metrics (e.g. full complex LDDT score). For these we used the prediction with the highest whole
complex confidence over the 5 model seeds.

2. Individual entity metrics (e.g. intra-chain LDDT). For these we used the prediction with the highest entity confi-
dence for the entity being evaluated.

3. Interface metrics (e.g. pocket-aligned RMSD for ligand-protein interfaces). For these we used the prediction with
the highest interface confidence for the interface being evaluated.

6.4 Aggregation of scores

To avoid the overrepresentation of similar polymer chains or interfaces that were deposited under different PDB codes,
we cluster those together (see subsection 6.2) and aggregate the individual scores such that each cluster gets the same
weight. For mean values this is achieved by first computing the mean value per-cluster and then averaging over clusters.
For median values and other percentiles we weight each sample by 1/(Nci), where Nci is the size of the cluster the
sample belongs to, and compute a weighted percentile.

6.5 Baselines

As part of our ligand accuracy evaluation, we ran docking onto AlphaFold-Multimer v2.3 structures with AutoDock
Vina 1.1 [35, 36], using Gypsum-DL [37] and Propka [38] for ligand and protein preparation. The pocket used for
docking onto the AlphaFold structures was determined after a rigid alignment with the ground truth structures. We
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verified the performance of our docking protocol by recovering the published accuracy on ground truth structures from
the PoseBusters set [39]. All other reported baseline numbers in the ligand section are from published literature.

For benchmarking performance on nucleic acid structure prediction, we report baseline comparisons to an existing
machine learning system for protein-nucleic acid and RNA tertiary structure prediction, RoseTTAFold2NA [40]. We
run the open source RF2NA [41] with the same multiple sequence alignments (MSAs) as were used for AlphaFold 3
predictions. For comparison between AlphaFold 3 and RF2NA, a subset of our recent PDB evaluation set targets are
chosen to meet the RF2NA criteria (<1000 total residues and nucleotides). Also as RF2NA was not trained to predict
systems with DNA and RNA, this analysis was limited to targets with only one nucleic acid type. Note, that AlphaFold
3 is capable of predicting systems with any combination of protein, DNA, RNA, and ligands.

As an additional baseline for RNA tertiary structure prediction, we evaluate AlphaFold 3 performance on CASP15
RNA targets that are currently publicly available (R1116/8S95, R1117/8FZA, R11263, R1128/8BTZ, R1136/7ZJ4,
R1138/[7PTK/7PTL], R1189/7YR7, and R1190/7YR6). We compare top-1 ranked predictions, and where multiple
ground truth structures exist (R1136) the prediction is scored against the closest state. We display comparisons to
RF2NA as a representative machine learning system and AIchemy_RNA2 as the top performing entrant. Both the
RF2NA (CASP15 entry BAKER) and AIchemy_RNA2 predictions were downloaded from the CASP website.

Independent work on RoseTTAFold All-Atom [42] was concurrently released that performs structure prediction
across a wide range of biomolecular systems. This system is not available for baselining at the time of writing, but
the RoseTTAFold All-Atom paper indicates their accuracy is below specialist predictors in almost all categories. The
RoseTTAFold All-Atom PoseBusters benchmark score was included since it uses a comparable methodology.

7 Differences to AlphaFold 2 and AlphaFold-Multimer

AlphaFold 3 differs in a number of ways from the previous versions of AlphaFold. A non-exhaustive list of key differ-
ences is discussed below.

Centrally, AlphaFold 3 is capable of modeling general molecules; in order to achieve this, we changed the inputs to
allow specifying e.g. ligands and modified residues and the way coordinates are represented in the model.

In AlphaFold 2, the protein structure was internally represented by associating a rigid body frame to each amino acid
(relating the Cα atoms) and the side chains were parameterized by χ-angles. These representations together were used
to deduce the coordinates of all the atoms in the amino acid.

That approach was handcrafted for proteins and does not generalize naturally to arbitrary molecules – therefore, in
AlphaFold 3 we instead model the system as a collection of atoms, which each have independent global coordinates
without any rigid constraints between them. The model learns to respect the chemical structure of the molecules as a
result of training, not because the output space is parameterized to enforce it.

In order to allow for efficient computation, we group atoms into tokens. For standard nucleic acids and standard
amino acids, tokens correspond to entire residues or nucleotides; for others, each token corresponds to a single heavy
atom.

Further, in contrast to AlphaFold 2 and much other recent work, the structure prediction part of the model is not
equivariant under spatial transformations. In fact, we employ very limited spatial inductive bias, simply embedding the
positions with a single matrix multiplication.

To predict the structure, we employ a generative diffusion-based head, that proceeds by simply adding Gaussian noise
to the atom coordinates and training the head to remove the noise, driven by a simple MSE loss. Other than a bond loss
to enforce the locations of bonded ligands and glycans (see Equation 5), no violation or clash losses are applied. The
relax postprocessing step is rarely needed when using AlphaFold 3.

While we no longer use rigid frames for the core prediction task, we do use frames for the PAE confidence head
(subsubsection 4.3.2). This frame construction is largely the same as AlphaFold 2, with exceptions that now we have
frames for non-protein entities as well and that the frames are constructed via a different combination of the atom
position vectors (compare Algorithm 28 to Algorithm 21 of [1]).

Furthermore, we simplified the core pieces of the architecture. For the main trunk of the model, we moved to a new
simplified architecture called “Pairformer” and we removed the MSA representation from the core part of the model
and instead replace it with a single representation. As a direct consequence, there is also no column-wise attention.

In Pairformer, we removed the outer product mean that the Evoformer had, meaning there is no information flow from
the single to the pair representation. We also simplified the Evoformer stack. The Evoformer stack from AlphaFold 2
operated over both the MSA and residue pairs, and is now replaced with a Pairformer stack that operates over just the
token pairs.

3Downloaded from https://predictioncenter.org/casp15/TARGETS_PDB/R1126.pdb

https://predictioncenter.org/casp15/TARGETS_PDB/R1126.pdb
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In AlphaFold-Multimer, unpaired MSA sequences across chains were presented to the network in a block-diagonal
fashion. In AlphaFold 3 these “unpaired” sequences are presented in a dense fashion - so that the network sees many
more MSA sequences per-chain.

Lastly, we replaced the ReLU activation in the model’s transition blocks function by SwiGLU, which has been
observed to yield better results [28]. ReLU is present in the atom attention (Algorithm 5).

When it comes to data, we introduced new distillation sets, and the data gets clustered and re-balanced at the interface
level, as opposed to just clustered at the individual chain level. For the protein monomer distillation set, we removed
the restrictions on the pLDDT being above 80 and the length of the protein being above 200 residues.

8 Supplemental Results

8.1 Selected examples

In Main Article Fig. 3 we highlight examples of predicted macromolecular complexes that are now possible with AF3,
spanning a range of targets and molecule types, varying in size, complexity, and function.

• Protein-RNA complex: Human 40S ribosomal subunit is a large complex with >7,000 residues, critical to the
initiation of human protein synthesis. eIF1A and eIF5B proteins remodel the complex to orient the Met-tRNAi

Met

into a conformation compatible with ribosomal subunit joining. AF3 is able to predict the full ≈7,600 residue
complex (Main Article Fig. 3a). The eIF1A protein interaction with the ribosomal subunit, as well as the eIF5B
intra-residue interactions, are modelled correctly. The complex is composed of a set of 43 chains, each of which
has high sequence identity to the training set, but represents a novel combination of them as a whole (PDB ID =
7TQL).

• PTM: Proteins harboring heparan sulfate (HS) chains play crucial roles in tissue homeostasis and signal trans-
duction. Exostosin-like 3 (EXTL3) is a glycosyltransferase forming a homocomplex responsible for HS chain
synthesis initiation. EXTL3 has 9.4% sequence identity to the training set. AF3 correctly predicts (Main Article
Fig. 3b) the protein homocomplex and two N-glycans on each of the protomers (bonded glycan accuracy: 0.99 Å
mean pocked-aligned RMSD, where the pocket is defined only using residues from the bonded protein chain,
PDB ID = 7AU2).

• Antibody-antigen: Mesothelin (MSLN) is a cell-surface protein that is a popular target for antibody-based ther-
apies. A new antibody binding to a section of the juxtamembrane region inhibits MSLN shedding and results in
more active CAR-T therapies. No similar sequences could be found for the antigen (residues 584-598 of MSLN),
the antibodies have 88% (Fab heavy chain) and 97% (Fab light chain) sequence identity to the training set. AF3
predicts (Main Article Fig. 3c) the antibody-antigen interaction to high accuracy (0.82 DockQ, PDB ID = 7U8C).

• Integral membrane protein: Wnt signalling is essential for adult tissue homeostasis, and requires palmitoleoyla-
tion by PORCN, an endoplasmic reticulum-resident membrane-bound O-acyltransferase. AF3 correctly predicts
(Main Article Fig. 3d) the PORCN complex with LGK974 and the WNT3A peptide, providing a structural
rationale for the mechanism of action of the clinical stage molecule (PDB ID = 7URD).

• Unique fold: Natural products containing an aziridine ring exhibit antitumor activities. The AziU3/U2 protein
complex catalyses the formation of aziridine rings at a novel catalytic site formed by a complex with a novel
fold. AF3 correctly predicts (Main Article Fig. 3e) this novel protein complex bound to the substrate (PDB ID =
7WUX).

• Allosteric site: PI5P4Kγ is a lipid kinase expressed to regulate cellular levels of the PI5P substrate and the
PI(4,5)P2 product, implicated in cancer and immunological disorders. AF3 correctly predicts (Main Article
Fig. 3f) the novel allosteric binding mode of a novel inhibitor (PDB ID = 7QIE).

In Extended Data Fig. 6 we considered ligand docking cases studies chosen from the PoseBusters set. Here we com-
pare AF3 ligand pose predictions to the best Vina or Gold docking poses reported in the PoseBusters paper [39], using
the pocket-aligned ligand heavy atom RMSD (ligand RMSD). The three examples selected have AF3 ligand RMSD
< 2 Å, and the best docking ligand RMSD > 3 Å. We measure ligand Tanimoto similarity using RDKit v.2023_03_3
Morgan fingerprints (radius 2,2048 bits)

• Notum is a serine hydrolase enzyme that catalyses the delipidation of Wnt proteins, and a well-established drug
target. While Notum has 99% sequence identity to the training set, the ligand (ARUK3004556) is novel, originally
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discovered by a virtual screen, not sharing the Murcko scaffold with any Notum ligand in the PDB, and maximum
Tanimoto similarity to any ligand in the training set less than 0.4. AF3 predicts the docked ligand (Extended Data
Fig. 6a) substantially better than both Gold and Vina docking tools as presented in the PoseBusters benchmark
(AF3 ligand RMSD = 1.0 Å, best docking ligand RMSD = 5.2 Å, PDB ID = 8BTI).

• An ethanolamine derivative, HEHEAA, is a potent effector of PipR-mediated gene regulation in plant-associated
bacteria. The first step in the response to HEHEAA is the binding to the AapF protein. It is a relatively novel
protein (28% sequence identity to the training set), while the maximum Tanimoto similarity of HEHEAA to any
ligand in the training set is 0.43. AF3 predicts the docked ligand (Extended Data Fig. 6b) substantially better
than the best docking algorithm (AF3 ligand RMSD = 1.4 Å, best docking ligand RMSD = 5.4 Å, PDB ID =
7KZ9).

• Galectin-3 is a protein that binds β-galactosides through carbohydrate-recognition domains, and a well-known
human drug target. This protein has 91% sequence identity to the training set, and while the ligand (compound
22) shares the core with a known scaffold, the phenyl-1,2,4 triazole side chain is novel. AF3 predicts a more
accurate ligand pose (Extended Data Fig. 6c) than the best docking algorithm (AF3 ligand RMSD = 0.30 Å,
Best docking ligand RMSD = 7.2 Å, PDB ID = 7XFA).

9 Appendix: CCD code and PDB ID tables

Table 9 Crystallization aids
SO4, GOL, EDO, PO4, ACT, PEG, DMS, TRS, PGE, PG4, FMT, EPE, MPD, MES, CD, IOD

Table 10 Ligand exclusion list
144, 15P, 1PE, 2F2, 2JC, 3HR, 3SY, 7N5, 7PE, 9JE, AAE, ABA, ACE, ACN, ACT, ACY, AZI, BAM, BCN, BCT, BDN, BEN, BME, BO3, BTB, BTC, BU1, C8E, CAD, CAQ, CBM, CCN, CIT, CL, CLR,
CM, CMO, CO3, CPT, CXS, D10, DEP, DIO, DMS, DN, DOD, DOX, EDO, EEE, EGL, EOH, EOX, EPE, ETF, FCY, FJO, FLC, FMT, FW5, GOL, GSH, GTT, GYF, HED, IHP, IHS, IMD, IOD, IPA, IPH,
LDA, MB3, MEG, MES, MLA, MLI, MOH, MPD, MRD, MSE, MYR, N, NA, NH2, NH4, NHE, NO3, O4B, OHE, OLA, OLC, OMB, OME, OXA, P6G, PE3, PE4, PEG, PEO, PEP, PG0, PG4, PGE, PGR,
PLM, PO4, POL, POP, PVO, SAR, SCN, SEO, SEP, SIN, SO4, SPD, SPM, SR, STE, STO, STU, TAR, TBU, TME, TPO, TRS, UNK, UNL, UNX, UPL, URE

Table 11 CCD codes defining glycans
045, 05L, 07E, 07Y, 08U, 09X, 0BD, 0H0, 0HX, 0LP, 0MK, 0NZ, 0UB, 0V4, 0WK, 0XY, 0YT, 10M, 12E, 145, 147, 149, 14T, 15L, 16F, 16G, 16O, 17T, 18D, 18O, 1CF, 1FT, 1GL, 1GN, 1LL, 1S3, 1S4,
1SD, 1X4, 20S, 20X, 22O, 22S, 23V, 24S, 25E, 26O, 27C, 289, 291, 293, 2DG, 2DR, 2F8, 2FG, 2FL, 2GL, 2GS, 2H5, 2HA, 2M4, 2M5, 2M8, 2OS, 2WP, 2WS, 32O, 34V, 38J, 3BU, 3DO, 3DY, 3FM,
3GR, 3HD, 3J3, 3J4, 3LJ, 3LR, 3MG, 3MK, 3R3, 3S6, 3SA, 3YW, 40J, 42D, 445, 44S, 46D, 46Z, 475, 48Z, 491, 49A, 49S, 49T, 49V, 4AM, 4CQ, 4GC, 4GL, 4GP, 4JA, 4N2, 4NN, 4QY, 4R1, 4RS,
4SG, 4UZ, 4V5, 50A, 51N, 56N, 57S, 5GF, 5GO, 5II, 5KQ, 5KS, 5KT, 5KV, 5L3, 5LS, 5LT, 5MM, 5N6, 5QP, 5SP, 5TH, 5TJ, 5TK, 5TM, 61J, 62I, 64K, 66O, 6BG, 6C2, 6DM, 6GB, 6GP, 6GR, 6K3,
6KH, 6KL, 6KS, 6KU, 6KW, 6LA, 6LS, 6LW, 6MJ, 6MN, 6PZ, 6S2, 6UD, 6YR, 6ZC, 73E, 79J, 7CV, 7D1, 7GP, 7JZ, 7K2, 7K3, 7NU, 83Y, 89Y, 8B7, 8B9, 8EX, 8GA, 8GG, 8GP, 8I4, 8LR, 8OQ, 8PK,
8S0, 8YV, 95Z, 96O, 98U, 9AM, 9C1, 9CD, 9GP, 9KJ, 9MR, 9OK, 9PG, 9QG, 9S7, 9SG, 9SJ, 9SM, 9SP, 9T1, 9T7, 9VP, 9WJ, 9WN, 9WZ, 9YW, A0K, A1Q, A2G, A5C, A6P, AAL, ABD, ABE, ABF,
ABL, AC1, ACR, ACX, ADA, AF1, AFD, AFO, AFP, AGL, AH2, AH8, AHG, AHM, AHR, AIG, ALL, ALX, AMG, AMN, AMU, AMV, ANA, AOG, AQA, ARA, ARB, ARI, ARW, ASC, ASG, ASO, AXP, AXR,
AY9, AZC, B0D, B16, B1H, B1N, B2G, B4G, B6D, B7G, B8D, B9D, BBK, BBV, BCD, BDF, BDG, BDP, BDR, BEM, BFN, BG6, BG8, BGC, BGL, BGN, BGP, BGS, BHG, BM3, BM7, BMA, BMX, BND,
BNG, BNX, BO1, BOG, BQY, BS7, BTG, BTU, BW3, BWG, BXF, BXP, BXX, BXY, BZD, C3B, C3G, C3X, C4B, C4W, C5X, CBF, CBI, CBK, CDR, CE5, CE6, CE8, CEG, CEZ, CGF, CJB, CKB, CKP,
CNP, CR1, CR6, CRA, CT3, CTO, CTR, CTT, D1M, D5E, D6G, DAF, DAG, DAN, DDA, DDL, DEG, DEL, DFR, DFX, DG0, DGO, DGS, DGU, DJB, DJE, DK4, DKX, DKZ, DL6, DLD, DLF, DLG, DNO,
DO8, DOM, DPC, DQR, DR2, DR3, DR5, DRI, DSR, DT6, DVC, DYM, E3M, E5G, EAG, EBG, EBQ, EEN, EEQ, EGA, EMP, EMZ, EPG, EQP, EQV, ERE, ERI, ETT, EUS, F1P, F1X, F55, F58, F6P,
F8X, FBP, FCA, FCB, FCT, FDP, FDQ, FFC, FFX, FIF, FK9, FKD, FMF, FMO, FNG, FNY, FRU, FSA, FSI, FSM, FSW, FUB, FUC, FUD, FUF, FUL, FUY, FVQ, FX1, FYJ, G0S, G16, G1P, G20, G28,
G2F, G3F, G3I, G4D, G4S, G6D, G6P, G6S, G7P, G8Z, GAA, GAC, GAD, GAF, GAL, GAT, GBH, GC1, GC4, GC9, GCB, GCD, GCN, GCO, GCS, GCT, GCU, GCV, GCW, GDA, GDL, GE1, GE3, GFP,
GIV, GL0, GL1, GL2, GL4, GL5, GL6, GL7, GL9, GLA, GLC, GLD, GLF, GLG, GLO, GLP, GLS, GLT, GM0, GMB, GMH, GMT, GMZ, GN1, GN4, GNS, GNX, GP0, GP1, GP4, GPH, GPK, GPM, GPO,
GPQ, GPU, GPV, GPW, GQ1, GRF, GRX, GS1, GS9, GTK, GTM, GTR, GU0, GU1, GU2, GU3, GU4, GU5, GU6, GU8, GU9, GUF, GUL, GUP, GUZ, GXL, GXV, GYE, GYG, GYP, GYU, GYV, GZL,
H1M, H1S, H2P, H3S, H53, H6Q, H6Z, HBZ, HD4, HNV, HNW, HSG, HSH, HSJ, HSQ, HSX, HSY, HTG, HTM, HVC, IAB, IDC, IDF, IDG, IDR, IDS, IDU, IDX, IDY, IEM, IN1, IPT, ISD, ISL, ISX, IXD,
J5B, JFZ, JHM, JLT, JRV, JSV, JV4, JVA, JVS, JZR, K5B, K99, KBA, KBG, KD5, KDA, KDB, KDD, KDE, KDF, KDM, KDN, KDO, KDR, KFN, KG1, KGM, KHP, KME, KO1, KO2, KOT, KTU, L0W, L1L,
L6S, L6T, LAG, LAH, LAI, LAK, LAO, LAT, LB2, LBS, LBT, LCN, LDY, LEC, LER, LFC, LFR, LGC, LGU, LKA, LKS, LM2, LMO, LNV, LOG, LOX, LRH, LTG, LVO, LVZ, LXB, LXC, LXZ, LZ0, M1F, M1P,
M2F, M3M, M3N, M55, M6D, M6P, M7B, M7P, M8C, MA1, MA2, MA3, MA8, MAB, MAF, MAG, MAL, MAN, MAT, MAV, MAW, MBE, MBF, MBG, MCU, MDA, MDP, MFB, MFU, MG5, MGC, MGL, MGS,
MJJ, MLB, MLR, MMA, MN0, MNA, MQG, MQT, MRH, MRP, MSX, MTT, MUB, MUR, MVP, MXY, MXZ, MYG, N1L, N3U, N9S, NA1, NAA, NAG, NBG, NBX, NBY, NDG, NFG, NG1, NG6, NGA, NGC,
NGE, NGK, NGR, NGS, NGY, NGZ, NHF, NLC, NM6, NM9, NNG, NPF, NSQ, NT1, NTF, NTO, NTP, NXD, NYT, OAK, OI7, OPM, OSU, OTG, OTN, OTU, OX2, P53, P6P, P8E, PA1, PAV, PDX, PH5,
PKM, PNA, PNG, PNJ, PNW, PPC, PRP, PSG, PSV, PTQ, PUF, PZU, QDK, QIF, QKH, QPS, QV4, R1P, R1X, R2B, R2G, RAE, RAF, RAM, RAO, RB5, RBL, RCD, RER, RF5, RG1, RGG, RHA, RHC,
RI2, RIB, RIP, RM4, RP3, RP5, RP6, RR7, RRJ, RRY, RST, RTG, RTV, RUG, RUU, RV7, RVG, RVM, RWI, RY7, RZM, S7P, S81, SA0, SCG, SCR, SDY, SEJ, SF6, SF9, SFU, SG4, SG5, SG6, SG7,
SGA, SGC, SGD, SGN, SHB, SHD, SHG, SIA, SID, SIO, SIZ, SLB, SLM, SLT, SMD, SN5, SNG, SOE, SOG, SOL, SOR, SR1, SSG, SSH, STW, STZ, SUC, SUP, SUS, SWE, SZZ, T68, T6D, T6P,
T6T, TA6, TAG, TCB, TDG, TEU, TF0, TFU, TGA, TGK, TGR, TGY, TH1, TM5, TM6, TMR, TMX, TNX, TOA, TOC, TQY, TRE, TRV, TS8, TT7, TTV, TU4, TUG, TUJ, TUP, TUR, TVD, TVG, TVM, TVS,
TVV, TVY, TW7, TWA, TWD, TWG, TWJ, TWY, TXB, TYV, U1Y, U2A, U2D, U63, U8V, U97, U9A, U9D, U9G, U9J, U9M, UAP, UBH, UBO, UDC, UEA, V3M, V3P, V71, VG1, VJ1, VJ4, VKN, VTB,
W9T, WIA, WOO, WUN, WZ1, WZ2, X0X, X1P, X1X, X2F, X2Y, X34, X6X, X6Y, XDX, XGP, XIL, XKJ, XLF, XLS, XMM, XS2, XXM, XXR, XXX, XYF, XYL, XYP, XYS, XYT, XYZ, YDR, YIO, YJM, YKR,
YO5, YX0, YX1, YYB, YYH, YYJ, YYK, YYM, YYQ, YZ0, Z0F, Z15, Z16, Z2D, Z2T, Z3K, Z3L, Z3Q, Z3U, Z4K, Z4R, Z4S, Z4U, Z4V, Z4W, Z4Y, Z57, Z5J, Z5L, Z61, Z6H, Z6J, Z6W, Z8H, Z8T, Z9D,
Z9E, Z9H, Z9K, Z9L, Z9M, Z9N, Z9W, ZB0, ZB1, ZB2, ZB3, ZCD, ZCZ, ZD0, ZDC, ZDO, ZEE, ZEL, ZGE, ZMR

Table 12 Ions
118, 119, 1AL, 1CU, 2FK, 2HP, 2OF, 3CO, 3MT, 3NI, 3OF, 4MO, 4PU, 4TI, 543, 6MO, AG, AL, ALF, AM, ATH, AU, AU3, AUC, BA, BEF, BF4, BO4, BR, BS3, BSY, CA, CAC, CD, CD1, CD3, CD5, CE,
CF, CHT, CO, CO5, CON, CR, CS, CSB, CU, CU1, CU2, CU3, CUA, CUZ, CYN, DME, DMI, DSC, DTI, DY, E4N, EDR, EMC, ER3, EU, EU3, F, FE, FE2, FPO, GA, GD3, GEP, HAI, HG, HGC, HO3,
IN, IR, IR3, IRI, IUM, K, KO4, LA, LCO, LCP, LI, LU, MAC, MG, MH2, MH3, MMC, MN, MN3, MN5, MN6, MO, MO1, MO2, MO3, MO4, MO5, MO6, MOO, MOS, MOW, MW1, MW2, MW3, NA2, NA5,
NA6, NAO, NAW, NET, NI, NI1, NI2, NI3, NO2, NRU, O4M, OAA, OC1, OC2, OC3, OC4, OC5, OC6, OC7, OC8, OCL, OCM, OCN, OCO, OF1, OF2, OF3, OH, OS, OS4, OXL, PB, PBM, PD, PER,
PI, PO3, PR, PT, PT4, PTN, RB, RH3, RHD, RU, SB, SE4, SEK, SM, SMO, SO3, T1A, TB, TBA, TCN, TEA, TH, THE, TL, TMA, TRA, V, VN3, VO4, W, WO5, Y1, YB, YB2, YH, YT3, ZCM, ZN, ZN2,
ZN3, ZNO, ZO3, ZR
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Table 13 Standard residues
ALA, ARG, ASN, ASP, CYS, GLN, GLU, GLY, HIS, ILE, LEU, LYS, MET, PHE, PRO, SER, THR, TRP, TYR, VAL, UNK, A, G, C, U, DA, DG, DC, DT, N, DN

Table 14 Recent PDB test set with nucleic acid complexes
7B0C, 7BCA, 7BJQ, 7EDS, 7EOF, 7F3J, 7F8Z, 7F9H, 7M4L, 7MKT, 7MWH, 7MZ0, 7MZ1, 7MZ2, 7N5U, 7N5V, 7N5W, 7NQF, 7NRP, 7OGS, 7OOO, 7OOS, 7OOT, 7OUE, 7OWF, 7OY7, 7OZZ, 7P0W,
7P3F, 7P8L, 7P9J, 7P9Z, 7PSX, 7PTQ, 7PZA, 7PZB, 7Q3O, 7Q4N, 7Q94, 7QAZ, 7QP2, 7R6R, 7R6T, 7R8G, 7R8H, 7R8I, 7RCC, 7RCD, 7RCE, 7RCF, 7RCG, 7RCU, 7RGU, 7RSR, 7RSS, 7S03,
7S68, 7S9J, 7S9K, 7S9L, 7S9M, 7S9N, 7S9O, 7S9P, 7S9Q, 7SOP, 7SOS, 7SOT, 7SOU, 7SOV, 7SOW, 7SUM, 7SUV, 7SVB, 7SX5, 7SXE, 7T18, 7T19, 7T1A, 7T1B, 7T8K, 7TDW, 7TDX, 7TEA,
7TEC, 7TO1, 7TO2, 7TQW, 7TUV, 7TXC, 7TZ1, 7TZR, 7TZS, 7TZT, 7TZU, 7TZV, 7U76, 7U79, 7U7A, 7U7B, 7U7C, 7U7F, 7U7G, 7U7I, 7U7J, 7U7K, 7U7L, 7UBL, 7UBU, 7UCR, 7UPZ, 7UQ6, 7UR5,
7URI, 7URM, 7UU4, 7UXD, 7UZ0, 7V2Z, 7VE5, 7VFT, 7VG8, 7VKI, 7VKL, 7VN2, 7VNV, 7VNW, 7VO9, 7VOU, 7VOV, 7VOX, 7VP1, 7VP2, 7VP3, 7VP4, 7VP5, 7VP7, 7VSJ, 7VTI, 7WM3, 7WQ5,
7X5E, 7X5F, 7X5G, 7X5L, 7X5M, 7XHV, 7XI3, 7XQ5, 7XRC, 7XS4, 7YHO, 7YZE, 7YZF, 7YZG, 7Z0U, 7Z5A, 7ZHH, 7ZVN, 7ZVX, 8A1C, 8A4I, 8AMG, 8AMI, 8AMJ, 8AMK, 8AML, 8AMM, 8AMN,
8B0R, 8CSH, 8CTZ, 8CU0, 8CZQ, 8D28, 8D2A, 8D2B, 8D5L, 8D5O, 8DVP, 8DVR, 8DVS, 8DVU, 8DVY, 8DW0, 8DW1, 8DW4, 8DW8, 8DWM, 8DZK, 8E2P, 8E2Q, 8EDJ, 8EF9, 8EFC, 8EFK, 8GMS,
8GMT, 8GMU

Table 15 PoseBusters V2 Common Natural Ligands
2BA, 5AD, A3P, ACP, ADP, AKG, ANP, APC, APR, ATP, BCN, BDP, BGC, C5P, CDP, CTP, DGL, DSG, F15, FAD, FDA, FMN, GSH, GSP, GTP, H4B, IPE, MFU, MTA, MTE, NAD, NAI, NCA, NGA,
OGA, PGA, PHO, PJ8, PLG, PLP, PRP, SAH, SFG, SIN, SLB, TPP, UD1, UDP, UPG, URI
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