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Abstract

Perioperative bleeding (PB) is associated with increased patient morbidity and mortality, and 

results in substantial health care resource utilization. To assess bleeding risk, a routine practice in 

most centers is to use indicators such as elevated values of the International Normalized Ratio 

(INR). For patients with elevated INR, the routine therapy option is plasma transfusion. However, 

the predictive accuracy of INR and the value of plasma transfusion still remains unclear. Accurate 

methods are therefore needed to identify early the patients with increased risk of bleeding. The 

goal of this work is to apply advanced machine learning methods to study the relationship between 

preoperative plasma transfusion (PPT) and PB in patients with elevated INR undergoing 

noncardiac surgery. The problem is cast under the framework of causal inference where robust 

meaningful measures to quantify the effect of PPT on PB are estimated. Results show that both 

machine learning and standard statistical methods generally agree that PPT negatively impacts PB 

and other important patient outcomes. However, machine learning methods show significant 

results, and machine learning boosting methods are found to make less errors in predicting PB.
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Introduction

Bleeding in patients undergoing surgical procedures is a serious and relatively common 

complication that has been found to be associated with increased health care resource 

utilization, morbidity, and mortality. Although the origin of bleeding during surgery may be 

due to multiple factors, surgical factors and pre-existing abnormalities of the hemostatic 

system represent the principal causes of significant perioperative hemorrhage. [1] Excessive 

bleeding, reoperation for bleeding, and the need for transfusion of blood products are 

common both during and shortly after some types of surgical procedures. In spinal surgery, 

for example, between 30% and 60% of patients require allogeneic blood transfusion. [2] 

Reoperation for bleeding and administration of blood products are associated with 

postoperative complications including transfusion-associated lung injury (TRALI). [3] 

Despite the known negative effect on immunomodulation and increased risk of postoperative 

complications and mortality, various studies have shown large variability in the use of blood 

products among different centers, and even among individual anesthesiologists within the 
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same center. [4, 5] For example, the number of red blood cell (RBC) units transfused 

annually in the US alone is about 14 million. Cost-wise, at an estimated cost of $761 per unit 

of RBC, this amounts to $10.5 billion in health care expenditures. [4] Therefore, strategies to 

minimize the need for allogeneic blood transfusions and perioperative bleeding 

complications are of great interest.

A key step to reduce the need for transfusion of allogeneic blood product is to assess patients 

who might bleed pre-transfusion. This might involve the identification of patients with 

impaired hemostasis and increase bleeding risk. However, our ability to predict these 

adverse events, typically estimated with a combination of patient- and procedure-related 

factors, [6] is incomplete. For patient-related factors, substantial emphasis is often placed on 

preoperative screening tests, such as the international normalized ratio (INR): a major driver 

for decisions about preoperative plasma transfusion. [7]

Fresh frozen plasma infusions are commonly used to improve coagulation or clotting and are 

the main therapy option for patients with elevated INR. A large proportion of the plasma 

components are transfused in the perioperative environment, [7,8] however, they are 

frequently administered prophylactically in the absence of significant active bleeding. This 

practice persists despite a growing body of literature questioning its efficacy. [8, 9] 

Moreover, plasma transfusions are increasingly recognized as important contributors to 

transfusion-related complications, including allergic reactions, TRALI, and transfusion-

associated circulatory overload (TACO). [3, 10]

The goal of this study is to apply advanced machine learning methods to study the effect of 

preoperative plasma transfusion (PPT) on perioperative beeding (PB). The study is built on 

recent work described in Jia et al. [11] Based on propensity score matching estimated via 

standard statistical methods, Jia et al showed that PPT does not improve PB complications 

for patients with high INR scores. Generalized linear models such as logistic regression or 

linear regression are frequently used to estimate the propensity scores and models for the 

outcome. However, parametric models require assumptions regarding the functional form, 

distribution of the variables, and variable selection. If any of these assumptions are incorrect, 

the derived causal relationship may be misleading. Contrary to statistical approaches, 

machine learning methods can estimate complex relationships between the outcome and 

observed variables producing consistent estimates of the propensity scores and hence more 

reliable causal relationships.

Unlike the standard statistical analyses in Jia et al, [11] this work investigates the causal 

relationship between PPT and PB by making use of modern machine learning algorithms to 

obtain consistent and reliable relationships. The relationship between PPT and other 

secondary outcomes such as intraoperative RBC transfusion (Intra-RBC), blood loss, Re-

operation for bleeding (Re-OP), need for ICU care, ICU length of stay (ICU-LOS), hospital 

length of stay (LOS), and mortality are also studied. Different from the approach in Jia et al, 

[11] the analyses in this study are geared towards designing advanced techniques to identify 

early patients who might bleed during or after a surgical operation. In particular, in the 

interesting case where potential non-bleeding patients are identified, a more conservative 

practice can be adopted in which PPT is administered not only based on elevated INR, but 
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on accurate predicted individual need for PPT. The presented work is an initial step towards 

achieving this larger goal. In this light, the problem is studied under the framework of causal 

inference by estimating the causal effect of the treatment (in this case PPT). Thus, estimates 

of the average treatment effect for those who received PPT can be used to quantify the 

independent association of PPT with PB. The computed average treatment effect can be 

regarded as a form of attributable risk, comparing the overall risk of bleeding to the risk of 

bleeding for those who received PPT. [12] Large values can be interpreted as increased risk 

of bleeding.

Although machine learning methods have been applied extensively in healthcare, to the best 

knowledge of the authors, their use for estimating the causal treatment effect of blood 

product transfusion has not been investigated. Thus, besides being one of the first works on 

the application of machine learning for blood transfusion, this paper strives to study PPT on 

several important patient outcomes in the context of causal inference by computing robust 

estimates of the average effect of PPT that can be used to answer questions like “what and 

how big is the effect of PPT on patient outcomes?”

Data Structure and Parameter of Interest

This study is based on an observational comparative effectiveness research analysis using a 

cohort design described in Jia et al [11] that was approved before initialization and this study 

followed all guidelines for strengthening and reporting of observational studies.

The structure of the data used in this study has the typical structure of causal inference. The 

observations for each patient are given by (X, Y, Z) where Z ∈ {0,1} is the treatment 

indicator with Z=1 if patient was treated or Z=0 if patient was not treated. X is a vector of 

baseline covariates that records information specific to each patient prior to treatment. Y is 

the outcome variable such as perioperative bleeding, with Y = 1 if bleeding or Y = 0 if no 

bleeding. Y can also be continuous, such as in LOS.

In observational studies the vector of covariates X could be related to both the potential 

outcome of interest Y and the treatment administered Z. Since Z and Y are affected by X, Z 
is therefore not independent of Y. Since X can affect both the probability of treatment and 

the probability of the outcome it is referred to as confounders. Ignoring the potential 

confounding effects of patient characteristics may lead to biased estimation of the treatment 

effect. [13] Thus, it is vital in observational studies to address potential bias due to 

confounding. Unbiased estimates of the parameters of interest can be obtained after 

controlling for observed characteristics, for example with propensity scores (PS) estimated 

via parametric regression methods. [14] However, unbiased estimates can only be obtained if 

the regression models are correctly specified. To minimize bias due to model 

misspecification, machine learning methods have been employed recently to find the best-

fitting model for the data, thus producing consistent estimates of the propensity scores. 

These methods have been shown in numerous simulation studies to be able to reduce bias 

due to model misspecification. [15, 16]
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To define the parameter of interest, the problem is viewed under the potential outcome 

framework first introduced by Rubin [17] and the recent population intervention model 

proposed in Hubbard and Van Der Laan. [18] The potential outcome model defines the effect 

of the possible levels of treatment Z = 1 or Z = 0 for each patient and allows for the 

consideration and estimation of what would have happened if a patient receives a particular 

treatment, possibly contrary to what the patient actually received. This counterfactual 

procedure allows for the definition of summary measures that quantify the effect of the 

treatment. Figure 2 illustrates the potential outcome modeling procedure. The general 

procedure is to use a model to estimate the outcome of interest had the entire population 

been treated or not treated and compare the two estimates.

With the goal of reducing bleeding risk and optimization of plasma transfusion, this work is 

interested in studying for from those who received PPT, what would have happen if they did 

or did not receive PPT. Thus, measures like the average treatment effect for the treated 

(ATT) or the average treatment effect for the control (ATC) is of interest. ATC is defined as ε 

= E [E[Y | Z = 0, X] − E[Y], where E denotes the expectation with respect to X (see [18, 19] 

for more details). ATC can be regarded as a type of attributable risk, since it compares the 

overall mean of the outcome to the mean of the population of interest average over strata of 

X.

Estimation Methods

Assuming no other unobserved variables are present, the relationships between the observed 

variables are shown graphically in Figure 1. From the graphical representation, the 

factorized data likelihood can be written as:

Node Z in Figure 1 is of great interest in causal inference as the goal is to determine what 

happens to the outcome when some intervention is done on Z. The probability g(Z | X) = Pr 

(Z | X) represents the propensity or the causal disposition of the treatment to produce or 

create some outcome. Qz(X) is the outcome model which represents the mean value of the 

outcome Y given Z and X. With the factorized data likelihood, different approaches can be 

used to answer the question “what and how big is the effect of PPT on PB ?”

For a meaningful measure of treatment effect, two robust estimation methods are considered 

for estimating the parameter ψ: Double Robust (DR) and Targeted Maximum Likelihood 

(TMLE) Estimation. More in-depth treatment of these estimators can be found in [18, 19].

Doubly Robust Estimator

The Doubly Robust (DR) estimator for ATC is derived in [18, 19] and given by
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Where I is the indicator function, ĝ(Z = 0 | X) and Q̂
0(X) are estimates of g(Z = 0 | X) and 

Q0(X) respectively.

Doubly robustness means that ψDR is a consistent estimate of the causal treatment effect 

when either ĝ or Q̂
0 is a consistent estimate of g and Q0 respectively.

Targeted Maximum Likelihood Estimator (TMLE)

From the definition of the DR estimator, the occurrence of g in the denominator shows that 

the estimator may blow up when ĝ is not well-bounded. For some patients where estimates 

of g is close to zero, ψDR may be unstable. The lack of boundedness in ĝ is a violation of 

one of three identifying assumptions: namely, the positivity or experimental treatment 

assumption (ETA) that requires 0 < g(Z | X) < 1. See [19] for a more thorough discussion of 

these assumptions.

To solve this problem, the Targeted Maximum Likelihood Estimator (TMLE) was proposed 

in [20]. Like DR, TMLE is also double robust and locally efficient. The technical details of 

this estimator are beyond the scope of this paper and the interested reader is referred to the 

cited reference for more details.

Machine Learning Methods

Traditionally, the estimation of the functions g or Q0 is performed using generalized linear 

models such as logistic regression or ordinary least squares. However, these parametric 

approaches are prone to model misspecification. An alternative and more attractive approach 

is to employ machine learning methods. Machine learning aims to infer the true relationship 

between the outcomes and covariates through a learning procedure. Bias in the estimates 

resulting from model misspecification can thus be reduced.

This work makes aggressive use of six machine learning methods: Support Vector Machine 

(SVM), Neural Networks Using Model Averaging (NNET), AdaBoost (Stochastic gradient 

boosting), randomForest (RF), random k-nearest neighbor (rKNN), and Generalized Boosted 

Regression Models (GBM). A comprehensive review of these supervised learning 

techniques can be found in. [21] rKNN is a recent algorithm that builds multiple k-nearest 

neighbor classifiers or regression models and combines them using a similar strategy as in 

the RF algorithm.

Experiments

This section describes the experimental setup: the study population, covariate balancing, and 

variable importance.
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Study Population

To be considered for this study, patients must meet the following criteria: age ≥ 18 years, 

noncardiac surgery and an INR ≥1.5 in the 30 days preceding surgery. See Jia et al [11] for 

more details on the selection criteria and data source.

Between January 1, 2008, and December 31, 2011, a total of 155,492 patients aged ≥ 18 

years underwent noncardiac surgery at the participating institution. Of them, 14,743 had an 

INR measured within 30 days of the index surgical procedure, with 1,234 having an INR ≥ 

1.5. This latter group comprised the study population.

Baseline patient demographics include age, weight, gender, and American Society of 

Anesthesiologists Physical Status I–V classifications (ASA). Disease conditions included 

myocardial infarction, congestive heart failure, cerebrovascular disease, dementia, chronic 

pulmonary disease, connective tissue disease, diabetes mellitus, tumor, etc. Preoperative 

laboratory test results included INR, hemoglobin, creatinine, albumin, and activated partial 

thromboplastin time. Preoperative medications such as aspirin, clopidogrel, and heparin 

were also included in the models.

Covariate Balancing and Variable Importance

In causal inference, the models do not have to only fit the data well, but also represent (and 

hence balance) the features of patients who received PPT and patients who did not. Thus an 

initial investigation using RF was performed to determine if there are confounding 

covariates in the study population. See Jia et al [11] for the results from standard univariate 

and multivariate statistical approach in balancing the data.

First, RF variable importance measure was used to identify features that are statistically 

associated with PPT (results not shown). The method described in Luz Calle et al [22] was 

used to estimate p-values. Then a robust Covariate Balancing Propensity Score (CBPS) 

method [23] was applied to estimate propensity scores by maximizing the average treatment 

effect (ATE). The estimated propensity scores were then used in a non-parametric matching 

algorithm described in Ho [24] to pair patients who received PPT to patients who did not. 

Table 1 shows, under the covariate balancing columns, the RF permutation variable 

importance p-values based on the Gini impurity measure for the adjusted and unadjusted 

covariates. Similarly to the results in Jia et al, [11] the RF variable importance identified 

many between-group differences. However, after performing CBPS, the all non-significant 

p-values under the Adjusted column of Table 1 indicates that the propensity score matching 

was effective in addressing covariate imbalance.

Second, the same RF permutation variable importance measure was again applied to the 

CBPS balanced data to identify statistical relevant predictors of perioperative bleeding. The 

last column of Table 1 shows that Clopidogrel, Peptic Ulcer, Chronic Renal Failure, and 

Creatinine are significant risk factors for bleeding at the 5% significance level.
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Results

This section presents the main results: Estimates of treatment effect of preoperative plasma 

transfusion on perioperative bleeding and other important patient outcomes. For each 

estimation method described in section 3, the g and Qz functions are estimated using the six 

machine learning methods. For comparison with standard regression methods, g is also 

estimated with logistic regression (LR) while Qz is estimated with LR or linear regression 

depending on whether the outcome is binary or continuous.

For each method, the parameter estimate, standard error, and significance represented by two 

sided p-value are reported. All computations were performed using a modified version of the 

R statistical package multiPIM, [25] a causal inference approach to variable importance 

analysis. The standard 5-fold cross-validation training procedure was followed for all 

experiments.

Table 2 presents estimates of ψ, the average treatment effect of PPT on PB and other 

outcomes for the untreated. Assuming that the ETA assumption hold from Young et al, [19] 

a value of ψ = −0.05 in the table for a binary outcome can be interpreted as: “The effect of 

preoperative plasma transfusion, given that all patients in the population are not transfused, 

is to reduce the risk of the outcome by 5 percentage points”.

Overall, all algorithms confirmed that PPT increases the risk of PB and all other considered 

outcomes. However, machine learning methods turn to generate significant results as 

illustrated by the small p-values. The significant results at the 5% level are highlighted. 

Results from machine learning methods show that PPT significantly impacts PB and 

Intraoperative RBC transfusion by 1–2 %, and need for ICU care by 1–7%. While PPT 

negative impacts ICU length of stay, hospital length of stay, and mortality (results not 

shown), the effects are not statistically significant.

The performance measures of the classifiers in predicting PB, assuming the counterfactual 

that no patient was administered PPT, is shown in Table 3. PCC is the percent of cases 

correctly classified (accuracy), AUC is the area under the receiver operating characteristic 

curve, while sens and spec are the sensitivity and specificity, respectively. Standard errors 

are also shown. The overall performance of the classifiers was very good with boosting 

methods tending to show a slightly better performance.

The performance of the two estimators (DR and TMLE) appear to be quite comparable, 

especially for logistic and linear regression. However, as noted earlier, DR may be unstable 

when the estimated propensity scores are close to zero. No such instability was observed for 

the analysis in this paper.

Conclusion and Future Work

This work employed advanced machine learning methods to measure the effectiveness of 

plasma transfusion from observational data. The method applies a causal modeling 

framework that establishes a causal relationship between administering plasma transfusion 

and perioperative bleeding based on two robust estimation procedures. The paper provides 
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meaningful interpretation of the estimation results which are more intuitive to understand 

than estimated coefficients from regression models.

Results from the analysis show that population wise, the action of not administering plasma 

product has the impact of reducing bleeding and positive effects on other patient important 

outcomes. These results are not new, as several authors have derived these results. However 

this paper takes a causal approach based on modern machine learning to quantify in a 

meaningful way the effect of not transfusing. Given that, on average, no plasma transfusion 

reduces the risk of bleeding, an interesting problem warranting further investigation is: “Can 

machine learning methods be used to identify a sub-population for which no plasma 

transfusion increases the risk of bleeding?” This paper is an initial step to answering this 

important question.
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Figure 1. 
Causal Graph and Confounding
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Figure 2. 
Potential Outcome (What If) Model
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Table 1

Random forest variable importance p-values for balanced and unbalanced data and risk factors for bleeding

Covariate Balancing Bleeding

Variables Unadjusted Adjusted Risk Factors

Clopidogrel 0.050 0.950 0.030

Peptic Ulcer 0.673 0.459 0.033

Chronic Renal Failure 0.741 0.094 0.040

Creatinine 0.864 0.218 0.040

PLT 1.000 0.455 0.080

ASA Recoded 0.012 0.589 0.237

Hemiplegia 0.553 0.898 0.263

Coumadin 0.493 0.359 0.321

Peripheral Vascular 0.770 0.838 0.435

Dementia 0.553 0.697 0.465

MI 0.387 0.790 0.466

Age 0.365 0.218 0.474

Cancer 0.864 0.721 0.488

Lymphoma 0.447 0.357 0.512

DM organ damage 0.367 0.545 0.516

Heparin 0.072 0.403 0.559

Aspirin 0.473 0.242 0.565

Hemoglobin 0.679 0.253 0.576

Cancer meta 0.870 0.647 0.602

INR 0.946 0.453 0.616

Connective Tissue Disease 0.176 0.481 0.703

Gender 0.922 0.818 0.724

Leukemia 0.926 0.425 0.796

Cerebrovascular Disease 0.645 0.896 0.806

Pulmonary Disease 0.220 0.118 0.854

Emergency 0.002 0.561 0.872

DM 0.906 0.737 0.920

Procedure categories 0.008 0.541 0.976

Congestive Heart Failure 0.904 0.828 0.982

Liver Disease 0.445 0.224 1.000

Stud Health Technol Inform. Author manuscript; available in PMC 2016 June 09.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ngufor et al. Page 13

Ta
b

le
 2

Im
pa

ct
 o

f 
pl

as
m

a 
tr

an
sf

us
io

n 
on

 p
er

io
pe

ra
tiv

e 
bl

ee
di

ng
 a

nd
 o

th
er

 im
po

rt
an

t p
at

ie
nt

 o
ut

co
m

es

E
st

im
at

or
O

ut
co

m
e

St
at

is
ti

cs
L

R
SV

M
N

N
E

T
A

da
B

oo
st

R
F

rK
N

N
G

B
M

D
R

PB

ψ
−

0.
01

0
−

0.
01

6
−

0.
01

4
−

0.
01

1
−

0.
00

8
−

0.
01

5
−

0.
02

2

SE
0.

00
5

0.
00

4
0.

00
4

0.
00

4
0.

00
2

0.
00

5
0.

00
6

p-
va

lu
es

0.
18

6
0.

00
0

0.
00

7
0.

03
2

0.
00

8
0.

00
6

0.
00

1

In
tr

a-
R

B
C

ψ
−

0.
01

0
−

0.
01

7
−

0.
01

6
−

0.
01

1
−

0.
00

8
−

0.
01

5
−

0.
02

2

SE
0.

00
5

0.
00

4
0.

00
4

0.
00

4
0.

00
3

0.
00

4
0.

00
6

p-
va

lu
es

0.
18

6
0.

00
0

0.
00

1
0.

04
0

0.
00

9
0.

00
7

0.
00

1

R
e-

O
P

ψ
−

0.
01

4
−

0.
02

7
−

0.
01

7
−

0.
01

4
−

0.
01

3
−

0.
02

2
−

0.
03

1

SE
0.

00
5

0.
00

5
0.

00
5

0.
00

5
0.

00
3

0.
00

5
0.

00
6

p-
va

lu
es

0.
04

9
0.

00
0

0.
00

2
0.

01
9

0.
00

1
0.

00
0

0.
00

0

IC
U

-L
O

S

ψ
−

0.
05

8
−

0.
30

1
−

0.
24

4
−

0.
07

6
0.

01
8

−
0.

20
0

−
0.

17
1

SE
0.

12
1

0.
08

9
0.

12
9

0.
11

3
0.

07
0

0.
09

4
0.

11
8

p-
va

lu
es

1.
00

0
0.

00
1

0.
11

9
1.

00
0

1.
00

0
0.

06
6

0.
29

9

IC
U

-C
ar

e

ψ
−

0.
01

4
−

0.
02

2
−

0.
01

7
−

0.
01

1
−

0.
01

2
−

0.
02

1
−

0.
02

4

SE
0.

00
5

0.
00

4
0.

00
5

0.
00

3
0.

00
3

0.
00

5
0.

00
5

p-
va

lu
es

0.
05

7
0.

00
0

0.
00

2
0.

00
3

0.
00

1
0.

00
0

0.
00

0

T
M

L
E

PB

ψ
−

0.
01

0
−

0.
01

8
−

0.
01

3
−

0.
01

1
−

0.
01

2
−

0.
00

8
−

0.
02

2

SE
0.

00
5

0.
00

4
0.

00
5

0.
00

4
0.

00
3

0.
00

5
0.

00
6

p-
va

lu
es

0.
18

5
0.

00
0

0.
03

1
0.

04
1

0.
00

0
0.

45
9

0.
00

1

In
tr

a-
R

B
C

ψ
−

0.
01

0
−

0.
01

7
−

0.
01

2
−

0.
01

1
−

0.
01

3
−

0.
01

7
−

0.
02

2

SE
0.

00
5

0.
00

4
0.

00
5

0.
00

4
0.

00
3

0.
00

5
0.

00
6

p-
va

lu
es

0.
18

5
0.

00
0

0.
07

6
0.

04
9

0.
00

0
0.

00
2

0.
00

1

R
e-

O
P

ψ
−

0.
01

4
−

0.
02

9
−

0.
02

2
−

0.
01

3
−

0.
01

6
−

0.
00

7
−

0.
03

1

SE
0.

00
5

0.
00

5
0.

00
5

0.
00

5
0.

00
3

0.
00

5
0.

00
6

p-
va

lu
es

0.
04

7
0.

00
0

0.
00

0
0.

05
0

0.
00

0
1.

00
0

0.
00

0

IC
U

-L
O

S

ψ
−

0.
05

8
−

0.
15

7
−

0.
17

1
−

0.
13

6
−

0.
08

5
−

0.
19

5
−

0.
17

0

SE
0.

12
1

0.
10

5
0.

11
3

0.
10

9
0.

07
1

0.
09

4
0.

11
9

p-
va

lu
es

1.
00

0
0.

26
7

0.
26

3
0.

42
6

0.
45

6
0.

07
5

0.
30

9

Stud Health Technol Inform. Author manuscript; available in PMC 2016 June 09.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ngufor et al. Page 14

E
st

im
at

or
O

ut
co

m
e

St
at

is
ti

cs
L

R
SV

M
N

N
E

T
A

da
B

oo
st

R
F

rK
N

N
G

B
M

IC
U

-C
ar

e

ψ
−

0.
01

4
−

0.
07

7
−

0.
01

9
−

0.
00

8
−

0.
01

5
−

0.
01

9
−

0.
02

5

SE
0.

00
5

0.
00

8
0.

00
5

0.
00

3
0.

00
3

0.
00

4
0.

00
5

p-
va

lu
es

0.
05

5
0.

00
0

0.
00

0
0.

09
9

0.
00

0
0.

00
0

0.
00

0

Stud Health Technol Inform. Author manuscript; available in PMC 2016 June 09.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ngufor et al. Page 15

Ta
b

le
 3

A
cc

ur
ac

y 
m

ea
su

re
s 

fo
r 

pr
ed

ic
tin

g 
pe

ri
op

er
at

iv
e 

bl
ee

di
ng

 if
 p

la
sm

a 
tr

an
sf

us
io

n 
w

as
 n

ot
 a

dm
in

is
te

re
d

C
la

ss
if

ie
r

P
C

C
P

C
C

.s
e

A
U

C
A

U
C

.s
e

se
ns

se
ns

.s
e

sp
ec

sp
ec

.s
e

A
da

B
oo

st
0.

79
2

0.
01

7
0.

86
8

0.
01

6
0.

73
4

0.
03

1
0.

82
4

0.
02

0

G
B

M
0.

79
1

0.
01

7
0.

86
4

0.
01

6
0.

77
2

0.
02

9
0.

80
1

0.
02

1

L
R

0.
78

6
0.

01
7

0.
86

0
0.

01
6

0.
73

4
0.

03
1

0.
81

6
0.

02
0

N
N

E
T

0.
76

7
0.

01
8

0.
85

2
0.

01
6

0.
71

7
0.

03
1

0.
79

6
0.

02
0

R
F

0.
80

8
0.

01
6

0.
86

3
0.

01
6

0.
67

3
0.

03
3

0.
88

4
0.

01
7

rK
N

N
0.

76
5

0.
01

8
0.

84
2

0.
01

7
0.

70
9

0.
03

2
0.

79
6

0.
02

1

SV
M

0.
73

9
0.

01
8

0.
82

3
0.

01
8

0.
73

4
0.

03
0

0.
74

3
0.

02
2

Stud Health Technol Inform. Author manuscript; available in PMC 2016 June 09.


	Abstract
	Introduction
	Data Structure and Parameter of Interest
	Estimation Methods
	Doubly Robust Estimator
	Targeted Maximum Likelihood Estimator (TMLE)

	Machine Learning Methods
	Experiments
	Study Population
	Covariate Balancing and Variable Importance

	Results
	Conclusion and Future Work
	References
	Figure 1
	Figure 2
	Table 1
	Table 2
	Table 3

