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Abstract

Background: Recent years have witnessed the development of several k-mer–based approaches aiming to predict
phenotypic traits of bacteria on the basis of their whole-genome sequences. While often convincing in terms of predictive
performance, the underlying models are in general not straightforward to interpret, the interplay between the actual
genetic determinant and its translation as k-mers being generally hard to decipher. Results: We propose a simple and
computationally efficient strategy allowing one to cope with the high correlation inherent to k-mer–based representations
in supervised machine learning models, leading to concise and easily interpretable signatures. We demonstrate the benefit
of this approach on the task of predicting the antibiotic resistance profile of a Klebsiella pneumoniae strain from its genome,
where our method leads to signatures defined as weighted linear combinations of genetic elements that can easily be
identified as genuine antibiotic resistance determinants, with state-of-the-art predictive performance. Conclusions: By
enhancing the interpretability of genomic k-mer–based antibiotic resistance prediction models, our approach improves
their clinical utility and hence will facilitate their adoption in routine diagnostics by clinicians and microbiologists. While
antibiotic resistance was the motivating application, the method is generic and can be transposed to any other bacterial
trait. An R package implementing our method is available at https://gitlab.com/biomerieux-data-science/clustlasso.
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Introduction

Antimicrobial resistance (AMR) is a global healthcare problem,
and rapid diagnostics are needed to select the right treatment, to
follow the route to cure, and to monitor and prevent community-
and hospital-acquired outbreaks of infections. Next-generation
sequencing is a disruptive technology that is, potentially, able
to supplant or even replace the current plethora of diagnos-
tic tests with a single, most probably well-affordable and faster
solution. Inferring the antibiotic resistance profile from a bac-
terial genome is challenging. However, good results have been
obtained for several species [1–7], including Klebsiella pneumo-
niae [8]. Su et al. [9] discussed the challenges of next-generation
sequencing–based antibiotic susceptibility testing (AST) and

provided a comprehensive review of the current state of the art
in this field.

Early approaches relied on the detection of known resistance
markers to claim resistance, a strategy sometimes referred to as
“direct association analysis” [10]. While effective when the ge-
netic bases of antibiotic resistance are well known, which is the
case for instance for most antibiotic resistance mechanisms in
the highly clonal species Mycobacterium tuberculosis [11, 12] and
Salmonella typhi [13], this approach is hindered by several limi-
tations. First and foremost, it intrinsically relies on prior knowl-
edge of the precise nature of the resistance determinants, which
may not be available for all species and drugs. Second, it is not
able to account for the fact that these markers can have different
levels of predictive power [14, 15], that they can act in a multi-
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factorial fashion through epistasis [16, 17], or that resistance can
result from the accumulation of several different mutations [18,
19]. Last but not least, it is hazardous to predict susceptibility
when no marker is detected because the resistance marker may
be novel and databases incomplete.

Building AMR prediction models is now more and more ad-
dressed from the supervised machine learning (ML) standpoint:
given a set of genomes with associated reference phenotypes
(provided by phenotypic AST methods [20]), one seeks a predic-
tion rule allowing inference of the resistance or susceptibility of
a novel strain from genomic features.

While ML methods are also hindered by a completeness lim-
itation because the set of genomes may not be representative of
the genomic diversity of the whole species, they have the ability
to identify novel markers or marker combinations in situations
where no or limited prior knowledge is available and hence are
becoming more popular in this context. Even for M. tuberculosis,
where the antibiotic resistance knowledge is probably among
the most thorough and complete, recent studies showed that
performance of direct association strategies can still be signif-
icantly improved by ML models [10, 17].

A great variety of ML strategies have been explored, taking
into account several parameters. First, regarding the nature of
the genomic features considered: supervised ML models can in-
deed operate from known markers like the ones involved in di-
rect association strategies, offering the possibility of discover-
ing more complex and multivariate marker combinations bet-
ter predicting resistance phenotypes [3, 10, 17], or directly us-
ing the raw sequences represented as k-mers [4, 8, 21–23]. The
latter approach offers several advantages: it does not require
prior knowledge about the underlying resistance mechanisms,
allows the capture of various types of genomic determinants (in-
cluding the acquisition of genes or point mutations), and does
not require the genomes to be aligned to a common reference,
which may be hard to define for some species, especially the
less clonal ones [24, 25]. Second, regarding the type of ML algo-
rithms, boosting algorithms [4, 8, 21], penalized regression mod-
els [10, 17, 23], decision trees [26], random forest [10, 27], neural
networks [17], and set cover machines [22, 26] have already been
successfully deployed in this context. While each algorithm has
its own merits and shortcomings, several studies reported com-
parable global performance for various algorithms, with spe-
cific variations by drug and microbial species [10, 17, 28]. Finally,
different kinds of antibiotic susceptibility information can be
considered: either discrete when the objective is to distinguish
susceptible from resistant (or non-susceptible) ones [10, 17, 21,
22], or continuous, where one seeks to predict the minimum
inhibitory concentration (MIC) of the antimicrobial agent itself
[3, 4, 8].

A critical challenge for the adoption of such predictive
ML models by clinicians and microbiologists resides in their
level of interpretability and, ultimately, clinical action-driving
ability. While the notion of interpretability is ill defined, a
natural requirement for the end-user would be to achieve
the prediction from a limited number of genomic features
that can be easily and unambiguously interpreted as actual
genetic determinants [25, 26]. This challenge is particularly
important in using k-mer–based representations, for several
reasons.

First, k-mers covering conserved genomic regions are redun-
dant, and while they can be easily detected and filtered [29],
they define groups of equivalent k-mers, which are not always
straightforward to interpret as genomic determinants [21–23,
26]. Second, k-mers may not be specific of a given genomic re-

Table 1: Dataset constitution

Antibiotic
Training Test

NS S NS S

Amikacin 346 1,319 191 160
Aztreonam 1,426 216 250 10
Cefepime 961 608 235 53
Cefoxitin 976 667 319 138
Ceftazidime 1,529 136 457 125
Ciprofloxacin 1,461 201 471 137
Imipenem 504 1,160 259 301
Meropenem 524 1,134 297 86

Piperacillin/tazobactam
1,228 432 382 146

Tetracycline 928 737 273 155

This table provides the number of susceptible (S) and non-susceptible (NS)
strains available in the training and test dataset for the various antibiotics con-
sidered. Note that a limited number of susceptible strains is available in the test

dataset for aztreonam, and to a lesser extent cefepime and meropenem.

gion and hence may be hard to annotate. This is especially the
case for short k-mers, e.g., when k = 8 or k = 10 [4, 8]. Last but not
least, the k-mer–based representation of genomes intrinsically
leads to very high-dimensional feature spaces, with strongly cor-
related variables. Using k = 31 for instance, and depending on
the bacterial species considered, it is common to end up work-
ing with 105−106 (non-redundant) k-mers, many of which are
observed in almost the same sets of genomes, hence bringing al-
most the same information regarding the phenotype being stud-
ied.

We propose to rely on the adaptive cluster lasso (ACL) [30], an
extension of Bühlmann et al. [31] tailored to the high-dimension
setting by means of a prior screening of variables. We imple-
mented in an R package a simple and efficient ACL-inspired
strategy able to cope with the very high-dimensional and strong
correlations of k-mer–based representation, leading to sparse
and interpretable genomic signatures. This approach compared
favorably to the standard lasso on a systematic validation study
focusing on K. pneumoniae. It provided a comparable level of per-
formance while offering better interpretability of the genomic
determinants involved in the models. We could identify known
and potentially novel resistance determinants from the cor-
responding k-mer signatures, which allowed the extraction of
meaningful scientific insights.

Methods
Datasets

Training dataset
We gathered the assembled genomes, provided as contigs, of
1,665 strains to develop MIC prediction models for K. pneumo-
niae [8]. This set of genomes defines our training dataset. We
focused on the 10 clinically most relevant antibiotics (listed in
Table 1), which belong to 7 different antibiotic classes. The ref-
erence MICs were cast into resistant, susceptible, and interme-
diate according to the Clinical and Laboratory Standards Insti-
tute breakpoints. The intermediate and resistant strains were
finally merged into a common category to define a binary classi-
fication problem aiming to distinguish susceptible (S) from non-
susceptible (NS) strains. Table 1 provides the number of S/NS
phenotypes available for each selected drug.
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k-merization of the training dataset
The k-merization was computed from the contigs of all train-
ing genomes, using the DBGWAS software [25], with a k-mer size
of 31 and filtering patterns with a minor allele frequency (MAF)
<1%. As discussed in previous studies [22, 25], k = 31 is a safe
default choice, offering good predictive performance while pre-
serving the specificity of the k-mers to particular genomic loci,
which is key to annotating them properly. DBGWAS allows for the
deduplication of the strictly equivalent k-mers by compacting
overlapping non-branching paths of k-mers into unitigs, thanks
to the use of a compacted de Bruijn graph (cDBG) (Fig. 1A).
DBGWAS stores the profiles of presence/absence of each unitig
in the training genomes in a matrix V such that Vi, j = 1 if the
jth unitig is present in the ith input genome and Vi, j = 0 oth-
erwise (Fig. 1B1). Each vector V., jis then transformed according
to its allele frequency: if its allele frequency exceeds 0.5, mean-
ing that it is observed in >50% of the panel genomes, it is in-
verted as Vi, j = |1 − Vi, j| so that its MAF corresponds to its av-
erage value. This transformation renders identical 2 originally
complementary vectors. Keeping only the unique patterns then
leads to an optimal reduction of the number of features, without
modifying the intrinsic statistical signal (Fig. 1B2). These unique,
MAF-filtered patterns define the final variant matrix X, where
Xi, j = 1 if the jth pattern is found in the ith genome, and 0 oth-
erwise. This process is described in detail in Jaillard et al. [25].
The DBGWAS files describing the cDBG are kept for the further in-
terpretation of the genomic signatures, allowing visualization of
the unitigs of the selected patterns within their genomic envi-
ronment.

In practice we carry out this k-merization process for each
antibiotic separately, processing solely the strains that have
been phenotypically tested. The output of this k-merization step
is a sparse variant matrix X with, e.g., in the case of the cefoxitin
antibiotic, N = 1,643 rows for the N cefoxitin-phenotyped strains
of the training panel and p = 1,234,397 columns representing the
p distinct patterns of presence/absence retained by DBGWAS. As
discussed by Jaillard et al. [32], this offers a drastic reduction of
the amount of information to store because the matrices based
on k-mers and unitigs involve 85,623,165 and 3,396,675 columns,
respectively. The matrix X is binary because DBGWAS only encodes
the presence or absence in the genomes. It is sparse as only
∼13% of the values are not null.

Test dataset
To validate the predictive performance of the models, we built
an independent test dataset involving 634 strains, including
114 strains from our bioMérieux collection (NCBI Bioproject PR-
JNA449293 and PRJNA597427) and 520 strains from the PATRIC
database (https://www.patricbrc.org/). Such strains were mostly
from the USA, the UK, Serbia, Greece, and other European coun-
tries, and the MICs were obtained with either agar dilution, broth
microdilution, or VITEK 2 (bioMérieux, Marcy l’Étoile, France)
(see Supplementary Section S1). Table 1 provides the number of
S/NS phenotypes available in the test dataset.

Coping with highly correlated genomic features

Logistic regression is a widely used generalized linear model ad-
dressing binary classification problems. In our case, it consists
of building a linear function defined for a strain represented by
a vector x ∈ {0, 1}p as:

f (x) = β0 +
∑p

j=1
β j x j , (1)

where p corresponds to the number of distinct patterns iden-
tified by DBGWAS and x encodes their presence/absence in the
strain genome. To estimate the model coefficients and simul-
taneously select a limited number of patterns from a training
panel of n strains, one can rely on the L1 or lasso penalty and
consider the following optimization problem:

β̂ = arg min
β∈Rp+1

∑n

i=1
L

(
yi , f (Xi,.)

) + λ
∑p

j=1
|β j |,

where yi = 0 if the ith strain, stored in the ith row of the
training matrix X, is susceptible and 1 otherwise. The func-
tion L is the logistic loss function, which quantifies the dis-
crepancy between the true phenotypes yi of the strains and
the predictions f(Xi, .) obtained by the model. The λ param-
eter achieves a trade-off between this empirical error and
the lasso regularization term and is usually optimized by
cross-validation.

The feature selection ability of the lasso penalty is no-
toriously unstable in the presence of strong correlation be-
tween features. This is particularly the case using k-mer–based
representations, making it difficult to derive meaningful in-
terpretations from the features selected by the model, and
their associated coefficients. We propose a simple and efficient
3-step strategy to identify sparse and interpretable genomic
signatures.

Screening step
In this step, we “screen” features. For this purpose, we first fit a
standard lasso-penalized regression model on the original fea-
ture matrix X for several values of the regularization parameter
λ, and extract the set of features that are selected at some point
on this regularization path. Formally, letting (λ1, ..., λm) be the m
values of the considered grid of λ, and B the p × m matrix con-
taining the model coefficients obtained by Equation 1, we define
a set a of “active features” as follows:

a = {
i ∈ [1, . . . , p], such that max(|Bi,.|) > 0

}
,

and let pa = |a| be their number. Because the lasso cannot select
more features than there are observations, we typically end up
with pa on the order of N (i.e., 103 in our case). We then extract the
features that are strongly correlated to the active ones from the
entire feature matrix. For this purpose, we compute a pa × p ma-
trix G containing the pairwise correlations between the pa active
features identified beforehand and the p original ones. Formally,
Gi, j = cor(X.,ai , X., j ), where “cor” is the standard Pearson corre-
lation between vectors of MAF patterns across the genomes and
is a classical criterion to quantify linkage disequilibrium (LD) be-
tween genomic features [33]. Because we rely on binary variables
encoding the presence/absence of features in the genomes, Gi, j

quantifies the extent to which features i and j co-occur in the
genomes. Because pa is typically � p (on the orders of 103 vs 106

in our case), computing this matrix is much easier than comput-
ing the entire p × p correlation matrix. Finally, we extract the set
e of features that are strongly correlated to ≥1 active feature as
follows:

e = {
i ∈ [1, . . . , p], such that max(G.,i ) > s1

}
,

where the hyperparameter s1 controls the minimum level of cor-
relation required and is referred to as the “screening threshold.”
This operation defines a set of pe = |e| features, called the set of

https://www.patricbrc.org/
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Figure 1: k-merization of the training genomes. Illustration of the DBGWAS process of k-merization and variant matrix construction. In this example, the 5 genomes differ
only by one nucleotide (“C” in green for 2 genomes and “A” in red for 3 genomes). This SNP is then captured in the processing: each nucleotide variant corresponds to a
distinct path in the cDBG (A2), however their corresponding complementary patterns are merged in the final matrix (B3). Refer to Jaillard et al. [25] for further details.

“extended features.” Obviously, we have pa ≤ pe ≤ p. In our con-
text, we typically end up with a few thousand extended features,
hence pa < pe � p.

Clustering step
While the screening step identifies a limited number of fea-
tures deemed sufficiently correlated to the features identified
by a standard lasso, the second step aims to explicitly de-
fine groups, or “clusters,” of strongly correlated variables. We
rely for this purpose on a bottom-up agglomerative cluster-
ing procedure, as suggested by Bühlmann et al. [31]. More pre-
cisely, we first define a pe × pe distance matrix D between ex-
tended features, defined as Di, j = |1 − cor(X.,ei , X.,e j )|. This ma-
trix is then used to carry out a hierarchical clustering, imple-
mented in R by the hclust function, using a minimum link-
age criterion. The resulting dendrogram is finally cut at a
height of 1 − s2, the second hyperparameter s2, called the
“clustering threshold,” controlling the level of within-cluster
correlation.

Learning step
Finally, we summarize each identified cluster as a new com-
posite variable, defined as the average of the original variables

defining the cluster, and carry out a standard lasso at the cluster
level. Because in our case the original variables encode the pres-
ence/absence of a given DBGWAS pattern in the genomes, these
composite variables correspond to the proportion of patterns in-
volved in a cluster that are present/absent in the genomes. Fig. 2
summarizes this 3-step method.

Model selection

Our approach involves 3 hyperparameters that must be opti-
mized for each antibiotic: the screening and clustering thresh-
olds s1 and s2 used to build the clusters of correlated variables,
and the regularization parameter λ involved in the final cluster-
level lasso model. We relied on the glmnet software [34] to fit the
lasso models involved in both the screening and learning steps.
We used the default heuristic proposed by the software to define
the grids of candidate values for the regularization parameters.

The screening and clustering thresholds were both system-
atically set to 0.95 on the basis of preliminary experiments (see
Supplementary Section S2), and we relied on a 10-fold cross-
validation procedure to optimize the regularization parameter
involved in the final cluster-level lasso model. For this purpose,
we first split the training dataset into 10 folds, stratified by se-
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Figure 2: Three-step process. Illustration of the proposed 3-step procedure.

quence type and phenotype. This cross-validation strategy al-
lows us to assess the impact of regularization on the predictive
performance and feature selection ability of the model, in the
absence of genetic drift between the training and test folds. We
emphasize, however, that it may lead to an optimistic estimation
of the predictive performance, which must not be considered as
an estimate of the generalization of the model. The actual gen-
eralization of the model is subsequently estimated from the in-
dependent test set, using a model trained from the entire train-
ing set and the value of the regularization parameter optimized
according to the following procedure.

For each of the 10 folds, nine-tenths of the training dataset
were used to screen variables and identify clusters. The final
cluster-level lasso model was then fit and applied to the held
out strains (the test fold), for each candidate value of the regular-
ization parameter. Our model selection strategy aimed to simul-
taneously maximize its sensitivity and specificity, respectively
defined as the fractions of correctly classified non-susceptible
and susceptible strains. For this purpose, a receiver operating
characteristic (ROC) curve was built for each candidate regular-
ization parameter after completion of the cross-validation pro-
cedure, and the point closest to the optimal one (defined by a
true-positive rate of 1 and a false-positive rate of 0) was used
to define the optimal sensitivity/specificity trade-off. Following
Hicks et al. [28], we refer to the average of the (optimal) sensi-
tivity and specificity as balanced accuracy (bACC). Finally, we
selected the sparsest model that allowed maximization of the
bACC up to 1 point, in order to reduce the risk of overfitting. In
practice, this cross-validation procedure was repeated 3 times
and the selection was based on average bACC values obtained
across the 3 repetitions. Supplementary Fig. S5 illustrates this
model selection strategy.

Interpretation of the predictive signature

We use the DBGWAS software to interpret the genomic signa-
tures, based on the cDBG built during the k-merization step. The
unitigs defining the patterns involved in the final model are vi-
sualized within their neighborhood in the cDBG, which repre-

sents their genomic environment and hence provides insight on
the type of variant involved, typically a plasmid-based acquired
gene vs a local mutation (single-nucleotide polymorphism [SNP]
or indel) in a chromosomal region.

Evaluation of the computational requirements

We evaluate the computational requirements of the standard
lasso and cluster-lasso procedures by measuring the time and
memory required to compute a regularization path involving 100
values of the regularization parameter. For the standard lasso,
this simply amounts to calling the glmnet function of the glmnet
R package, using the variant matrix provided by DBGWAS. For the
cluster-lasso procedure, this amounts to:

i. making the same call to glmnet to identify the set of active
variables,

ii. computing the pa × p correlation matrix G to identify the set
of extended features,

iii. building the clusters of correlated variables, and
iv. making a second call to glmnet, using the variant matrix de-

fined at the cluster level.

This procedure is repeated 5 times for each drug, using a sin-
gle Xeon E5-2690-V3 CPU.

Results
Cross-validation results

Table 2 provides the results obtained in terms of cross-validation
performance and support size of the models. The predictive per-
formance is measured by the area under the ROC curve (AUC)
and bACC. Additional performance indicators are provided in
Supplementary Table S1. The support size of a model is defined
as the number of features it involves, which, respectively, corre-
sponds to individual or clusters of DBGWAS patterns, for the lasso
and cluster-lasso strategies. We also report the overall number
of unitigs involved, which is only slightly higher than the num-
ber of features for the lasso and corresponds to unitigs in total
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Table 2: Cross-validation results

Antibiotic
Lasso Cluster-lasso

bACC AUC Support Unitigs bACC AUC Support Unitigs

Amikacin 92.7 95.4 16 22 (4) 92.3 95.7 11 93 (36)
Aztreonam 76.7 81.9 31 45 (3) 76.9 82.3 28 425 (125)
Cefepime 74.0 80.4 53 65 (3) 73.6 79.8 34 385 (111)
Cefoxitin 82.4 88.7 134 155 (5) 82.2 88.6 171 1,052 (221)
Ceftazidime 91.6 95.8 51 69 (5) 90.7 95.3 43 863 (185)
Ciprofloxacin 95.6 98.6 25 27 (2) 95.5 98.6 35 422 (139)
Imipenem 93.1 93.6 10 10 (1) 92.7 93.4 7 241 (194)
Meropenem 91.7 94.0 8 8 (1) 91.4 93.5 3 164 (159)

Piperacillin/tazobactam
81.6 89.6 127 144 (4) 81.5 89.0 120 1,220 (226)

Tetracycline 83.0 88.5 181 198 (3) 82.9 87.7 109 640 (104)

This table summarizes the cross-validation results obtained by the lasso and cluster-lasso strategies for the 10 antibiotics, in terms of balanced accuracy (bACC), AUC,
support size, overall number of unitigs involved, and maximal number of unitigs associated with a single pattern or cluster (in parentheses).

LD. In contrast, this overall number is markedly higher for the
cluster-lasso strategy, because of the pattern clustering.

Both strategies show similar performance in terms of both
bACC and AUC, confirming that taking into account, or not, the
correlation between features has a limited impact in terms of
predictive performance. We also note that the model support is
often slightly smaller with cluster-lasso (for 8 of 10 drugs), sug-
gesting that several features selected separately with the lasso
ended up merged in a single cluster by the cluster-lasso. As ex-
pected, the overall number of unitigs involved in a cluster-lasso
model is significantly larger. Interestingly, it is not evenly dis-
tributed across its features. In the meropenem model, for in-
stance, 159 of the 164 unitigs defining the model features are as-
sociated with a single feature, suggesting that it corresponds to
the presence of a gene, as confirmed in the interpretation anal-
ysis depicted in the next section.

Finally, Fig. 3 provides a graphical representation of the lasso
and cluster-lasso signatures obtained for ceftazidime, which are
of moderate complexity. The heat map shows the correlation be-
tween the patterns involved in one signature and/or the other,
and highlights the 8 major clusters identified by the cluster-lasso
strategy (clusters including >10 patterns). While all the patterns
defining a cluster have by construction a similar level of predic-
tive power, the lasso model usually selected a single one of them.
There is an exception for the third cluster, shown in green in the
zoomed area of Fig. 3, where 2 patterns were selected as distinct
features of the lasso model.

By explicitly reconstructing and providing these clusters of
correlated features to the learning algorithm, the cluster-lasso
strategy leads to a more meaningful characterization of the ge-
netic determinants involved, as we describe below.

Model interpretation

We focus on 2 drugs to illustrate the improved interpretability
offered by cluster-lasso signatures: meropenem, where the in-
terpretation is straightforward; and cefoxitin, which is among
the signatures of highest support. Additional results obtained
for the remaining drugs are deferred to Supplementary Section
S5.

As shown in Table 2, the lasso and cluster-lasso meropenem
models involve 8 and 3 features, respectively. As shown in
Fig. 4B, each lasso feature corresponds to a single unitig, while
the cluster-lasso signature involves a large cluster of unitigs (159

of the 164 involved). Fig. 4A shows the magnitude of the model
coefficients. It reveals that the cluster-lasso signature is essen-
tially driven by a single prominent feature, while 4–5 features of
the lasso signature have a non-negligible weight. The major fea-
ture of the cluster-lasso signature corresponds to the large clus-
ter of correlated patterns, and the DBGWAS visualization (Fig. 4C)
shows that the corresponding unitigs are organized as a long
linear path in the cDBG. This suggests that this cluster corre-
sponds to an entire gene. The annotation provided by DBGWAS

shows the gene to be the Class A β-lactamase blaKPC. The DBGWAS

visualization obtained for the lasso signature indicates that 3 of
the 8 features—features 1, 2, and 4—are also co-located in a re-
gion of the cDBG annotated as blaKPC. The fact that the lasso se-
lected these specific unitigs within the blaKPC gene suggests that
the resistance determinants involved are SNPs or indels. While
the gene-level annotation is the same as that obtained with the
cluster-lasso, the interpretation of the signature in terms of ge-
netic variants is therefore radically different. A closer look at
the lasso signature reveals that the 3 blaKPC features are actually
strongly correlated: they are often observed together. Unsurpris-
ingly, they belong to the largest cluster involved in the cluster-
lasso signature, and interestingly, their cumulative weight is ap-
proximately equal to that of the cluster-lasso feature (3.4 instead
of 3.3). By explicitly detecting that these features are correlated,
and merging them into a single feature, together with additional
correlated features not even involved in the lasso signature, the
cluster-lasso leads to a more meaningful interpretation of the
underlying prediction model, in 2 aspects. First, it captures the
true nature of the genomic determinant involved: the presence
of the blaKPC gene, as opposed to mutations within the gene. Sec-
ond, it assesses the overall contribution of the gene presence in
the decision rule, while, in the lasso signature, this contribution
is shared by several distinct yet correlated features.

Likewise, Fig. 5 presents the DBGWAS analysis of the lasso and
cluster-lasso signatures obtained for cefoxitin. We focused on
the 2 first subgraphs provided by the software, which represent
the 2 genomic neighborhoods of the most important patterns
or clusters of patterns involved in the models. The subgraphs
are indeed ordered according to the maximal absolute value
of model coefficients among all patterns or clusters involved
in the subgraph. While DBGWAS identifies the same resistance
genes in both methods (the efflux pump ompK36 and blaKPC),
the nature of the underlying resistance determinants cannot be
deduced from the lasso signature. The ompK36-annotated sub-
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Figure 3: Correlation within features selected in the signatures. This heat map shows the correlation matrix built from the features selected by the lasso and the
cluster-lasso (identified by the orange and blue bars shown above the heat map, respectively) for ceftazidime. The corresponding values of model coefficients are

represented by green bars. The 8 major clusters (involving >10 patterns) of the cluster-lasso signatures are identified by a dedicated color ranging from red to grey. A
zoom of the top left side of the figure allows a better reading of the colored bars for the major clusters 1, 3, 7, and 8.
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Figure 4: Interpretation of the meropenem signatures. This figure provides a detailed comparison of the lasso (left) and cluster-lasso (right) signatures. (A) Absolute

value of the coefficients of the models. (B) Number of unitigs involved in the features of the models. (C) Visualization of the first subgraph obtained by DBGWAS for each
signature. Nodes of the graphs correspond to unitigs of the cDBG built by DBGWAS from the training panel of genomes, as illustrated in Fig. 1 and detailed in [25]. Colors
identify which unitigs of the graphs in (C) are related to which features of the models in (A) and (B).

graph obtained for the cluster-lasso signature (top right panel of
Fig. 5) involves 2 clusters gathering 9 unitigs (clusters 1 and 3)
and presents a topology attributable to a local polymorphism:
a complex bubble, with a fork separating susceptible (blue) and
resistant (red) strains, as described in [25]. The corresponding
lasso subgraph, shown in the top left panel, includes 4 pat-
terns (Patterns 1, 2, 32, and 56) each having its proper value
of model coefficient, represented by 4 shades of colors ranging
from blue to red. These distinct model coefficient values can
lead to wrong conclusions regarding the individual importance
of the corresponding unitig sequences. Indeed, aligning these
unitigs with annotated ompK36 sequences reveals that Features

2 and 56 both represent the wild type, while Features 1 and 32
align to the insertion of 2 amino acids in the L3 loop, as de-
scribed in Novais et al. [35] (Supplementary Fig. S7). The second
lasso subgraph (bottom left panel of Fig. 5) includes a single fea-
ture of the signature (shown in purple), surrounded by 7 nodes
(shown in grey), among which 2 are annotated as blaKPC. The
node of the signature is however not annotated itself; hence the
subgraph could be interpreted as a local polymorphism in the
promoter region of the blaKPC gene. The cluster-lasso subgraph
shown in the bottom right panel reveals however that this unitig
was selected by the lasso among hundreds of highly correlated
unitigs. They all belong to Cluster 2, which includes the com-
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Figure 5: DBGWAS visualizations for the interpretation of the cefoxitin signatures. This figure presents the 2 first subgraphs obtained by DBGWAS for the lasso and cluster-

lasso signatures. The DBGWAS subgraphs are ordered by decreasing maximal absolute value of model coefficient among all patterns/clusters involved in the subgraph.
Likewise, pattern and cluster identifiers are ordered by decreasing absolute value of model coefficient, meaning for instance that Pattern/cluster 1 has a greater weight
in the model than Pattern/cluster 2. The nodes (unitigs) belonging to patterns/clusters of the signatures are colored by the value of their model coefficients (from
blue to red, indicating negative and positive values, respectively). The grey nodes/unitigs, not involved in the models, represent their genomic neighborhood. The

nodes for which an annotation related to antibiotic resistance was found are surrounded by a black circle. Bold brackets are used in the bottom right subgraph to
highlight these black-circled nodes. This particular subgraph gathers 7 clusters, whose identifiers are reported in the picture. Cluster 2 is the largest one and includes
the blaKPC-annotated nodes. The dashed arrow shows which node of the cluster-lasso blaKPC subgraph corresponds to the one selected by the lasso.

plete blaKPC gene (shown in brackets) and plasmid sequences in
strong LD.

By its ability to leverage correlations between patterns, the
cluster-lasso approach allowed us to identify that the second
causal determinant involved in the cefoxitin model is the blaKPC

gene, which was brought by a plasmid. As was the case for
meropenem, it offers a far better interpretability than the lasso,
which did not even explicitly identify blaKPC in its features, but
only a specific sequence of its direct plasmidic environment.
We emphasize however that this improved interpretability may
have a price in terms of predictive performance. Indeed, corre-
lations between genomic features may be overestimated if the
training dataset is not diverse enough, which may lead to the
reconstruction of oversized clusters. This may for instance be
the case here of the second cluster-lasso cluster, which iden-
tified blaKPC within a specific plasmid, while blaKPC is known

to jump frequently between plasmids [36], many of which may
not have been observed in the training set. Applying this model
to a strain harboring blaKPC in a different plasmidic environ-
ment may therefore fail to activate a sufficient number of pat-
terns of this cluster, which may prevent recognizing the strain as
resistant.

Performance on the test set

Table 3 shows the predictive performance obtained on the test
set by the lasso and cluster-lasso signatures, in terms of sensi-
tivity, specificity, bACC, and AUC.

We first noted that the lasso and cluster-lasso strategies
reached a similar level of bACC for most drugs, although they
did not always achieve the same trade-off in terms of sensitivity
and specificity. We noted however that the confidence intervals
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Table 3: Test set results

Antibiotic
Lasso Cluster-lasso

Sensitivity Specificity bACC AUC Sensitivity Specificity bACC AUC

Amikacin 84.3 74.4 79.3 86.0 77.0 80.0 78.5 86.4
Aztreonam 69.6 80.0 74.8 83.3 67.2 80.0 73.6 82.0
Cefepime 77.0 60.4 68.7 69.1 78.3 54.7 66.5 69.6
Cefoxitin 51.7 92.8 72.2 74.6 55.2 94.2 74.7 76.0
Ceftazidime 77.7 98.4 88.1 94.3 60.8 96.0 78.4 92.8
Ciprofloxacin 91.3 91.2 91.2 96.6 92.1 89.8 90.9 96.7
Imipenem 65.3 99.0 82.2 87.2 65.6 98.3 81.9 85.4
Meropenem 66.0 97.7 81.8 81.1 66.3 97.7 82.0 78.8

Piperacillin/tazobactam
63.1 82.9 73.0 82.7 58.9 87.7 73.3 81.6

Tetracycline 64.8 93.5 79.2 82.4 64.5 94.8 79.7 82.8

This table summarizes the results obtained on the test dataset by the lasso and cluster-lasso models for the 10 antibiotics, in terms of sensitivity, specificity, balanced
accuracy (bACC), and AUC.

of the corresponding sensitivities and specificities largely over-
lapped for all drugs but ceftazidime (Fig. 6 and Supplementary
Fig. S8), indicating that they were not significantly different be-
tween lasso and cluster-lasso, except for 1 drug.

We often observed a serious drop between the predictive
performance estimated by cross-validation and that observed
for the test set: >5 points of bACC for 6 of 10 drugs, and up
to 10 points or more for amikacin, cefoxitin, imipenem, and
meropenem (13.4, 10.2, 10.9, and 9.9 points, respectively). This
suggested that the training dataset taken from Nguyen et al. [8]
could not account for the entire diversity displayed by K. pneumo-
niae. A simple analysis of the strain’s resistomes and sequence
types (ST) using the kleborate software [37] revealed that the
prevalence of several STs and well-known resistance genes was
sometimes very different in the 2 panels. This latter point is il-
lustrated in Fig. 7 for amikacin and imipenem, which had the
largest decrease in performance. Supplementary Section S1 (Fig.
S3) shows the difference in the ST prevalence, highlighting that
the training set involves 2 main STs (ST307 and ST258), which
have a much lesser prevalence in the test dataset. Redesigning
the training and test datasets by shuffling the original ones to
obtain a homogeneous split fixed this generalization issue (Sup-
plementary Section S7). This illustrates that while ML models
can indeed succeed in learning accurate prediction rules, they
fail to generalize when the dataset on which they are trained
does not account for the overall diversity of the bacterial species.

Finally, Table 3 and Supplementary Fig. S9 show an uneven
level of prediction performance among the 10 antibiotics con-
sidered. The best performances were obtained for ciprofloxacin
and ceftazidime, with an AUC ∼95% using either the original
or the redesigned datasets (Supplementary Fig. S9). The poor-
est performances were obtained for 2 β-lactams: cefepime, a
fourth-generation cephalosporin; and the monobactam aztre-
onam. This may be due to a reduced penetrance of their ge-
netic determinants, as described in human genetics [38], be-
cause more complex resistance mechanisms are involved, in-
cluding efflux pumps, gene regulation, or plasmid copy num-
ber [39–41].

Computational requirements

Fig. 8 indicates that while the duration of the cluster-lasso was
on average ∼3 times longer than the lasso (571 vs 180 seconds), it
took only ∼10 minutes to obtain an entire regularization path de-

fined at the cluster level. Optimizing the regularization param-
eter using our cross-validation process therefore took ∼5 hours
on a single CPU. We noted that while the time required by the
lasso was relatively homogeneous across drugs, it was more
variable for the cluster-lasso. This variability was due to the fact
that the lasso used in the first step identified a variable number
of active features, which directly affected the time required to
screen the remaining ones. This is illustrated in Supplementary
Fig. S10.

In terms of memory, we noted that the cluster-lasso proce-
dure led to an overhead of ∼2 GB with respect to the lasso, which
was related to the computation of the correlation matrix G. In
practice, we limited this overhead by computing this matrix by
slices, considering subsets of p′ = 10,000 features and comput-
ing pa × p′ matrices instead of the entire pa × p matrix at once.
Altogether, this led to a computationally efficient procedure, al-
lowing cluster-level signatures to be identified in a few hours, for
a limited memory footprint. We note that it could be straightfor-
wardly parallelized, using several CPUs to compute the various
slices of the correlation matrix G.

Discussion

Representing bacterial genomes using k-mers leads to very high-
dimensional representations with strong correlation structures.
This may hinder a meaningful interpretation of predictive mod-
els built by sparse ML strategies like lasso-penalized regres-
sions [42] or algorithms based on decision trees [43], which are
known to be unstable in this case: when some features are
strongly correlated, they tend to select 1, a or few of them, ar-
bitrarily [44]. This instability may not be an issue in terms of
predictive performance: as long as 1 feature among a group of
correlated ones appears in the model, the prediction may be un-
changed. It may however have a severe impact in terms of inter-
pretability because the features selected by the model may pro-
vide an incomplete or erroneous characterization of the causal
resistance determinant.

We propose a simple and computationally efficient strategy
to cope with the strong correlation structures inherent to k-
mer–based representations, and build sparse and meaningful
genomic signatures. While performing a systematic study on
thousands of strains of K. pneumoniae, our approach compared
favorably to the state of the art, providing indeed a comparable
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Figure 6: Test set results. This figure represents the ROC curves obtained for cefepime, cefoxitin, ceftazidime, and meropenem by the lasso (red) and cluster-lasso (blue)
signatures, as well as their associated sensitivities and specificities, with their 95% confidence intervals.

level of performance, while offering a greater interpretability of
the genomic features involved in the models. On this challeng-
ing genetically flexible bacterial species with significant acces-
sory genome components, this new approach allowed meaning-
ful scientific insights to be extracted from the identified signa-
tures, as further detailed in Section S5 of the Supplementary Ma-
terials.

Central to our approach is a 3-step strategy, where a sparse
ML algorithm is first used to screen features in a generic man-
ner, which are then extended to clusters of strongly correlated
features, ultimately considered as candidate features to be in-
cluded in the final antibiotic resistance prediction model.

In this work both the screening and final learning stages were
based on the lasso-penalized logistic regression model, which is
appealing in this context for several reasons. First and foremost,
it has been shown to be competitive with alternative ML algo-
rithms in several articles (e.g., [10, 17, 26, 45]). The underlying
model is moreover easy to interpret because it combines sev-
eral genomic determinants in a global probabilistic model with
weights modulating their respective effects, hence reflecting the
fact that they can be associated with different levels of resis-
tance. Last but not least, the R package glmnet offers a very ef-

ficient implementation, scaling gracefully to large datasets like
the one involved in this study, as shown in Fig. 8. The princi-
ple of our method is nevertheless generic and could readily be
transposed to other sparse ML algorithms, such as xgboost [4, 8]
or set cover machines [26]. Likewise, it could straightforwardly
be extended to handle MICs or other phenotypic traits, as well
as other types of genomic features (e.g., relying on SNPs instead
of k-mers).

Several alternative strategies could be considered to handle
correlations between k-mers. Most related to our approach are
the elastic-net and the group-lasso strategies, which also rely
on logistic regression—and more generally on generalized lin-
ear models—but with alternative regularization penalties. The
elastic-net penalty combines the lasso and the ridge penalties,
which leads to sparse models with a grouping mechanism: cor-
related features tend to be selected together [46]. This approach
was recently shown to be efficient in the context of bacterial
genome-wide association studies (GWAS), providing increased
statistical power for the identification of genotype-phenotype
associations and accurate prediction rules [47]. As we demon-
strate in Supplementary Section S9, however, it remains limited
in its ability to provide interpretable predictive signatures, for
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Figure 7: Resistome analysis. This figure compares the training and test panels of genomes in terms of predictive performance and resistome constitution for the drugs
amikacin (top) and imipenem (bottom). Left: Predictive performance in terms of sensitivity (sensi), specificity (speci), bACC, and AUC estimated by cross-validation
on the training set and measured on the test set, using the lasso signatures. Right: Comparison of the resistome constitutions. Each kleborate resistance marker is
represented by its prevalence in the resistant strains of the training (x-axis) and test (y-axis) panels.

Figure 8: Time and memory requirements. The box plots represent the variability of the time in seconds (A) and maximum memory in gigabytes (GB) (B) required to
generate a lasso or cluster-lasso regularization path for the 10 antibiotics.
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several reasons. First, while it has the effect of stabilizing the
lasso solution and of simultaneously activating groups of corre-
lated features, these groups are not defined explicitly, which in-
trinsically makes the interpretation of the model difficult. More-
over, while the parameter controlling the trade-off between the
lasso and ridge penalties had a direct effect on the number of se-
lected features, it had little effect on the predictive performance
of the model, thereby making it difficult to optimize objectively.
Finally, we empirically observed that it led to a partial and het-
erogeneous reconstruction of the genomic features obtained by
the cluster-lasso: a significant fraction of the cluster members
were not selected by the elastic-net, and the individual weights
associated to the selected ones greatly varied, although their
level of predictive power was comparable.

The group-lasso penalty leverages pre-defined groups of fea-
tures, ensuring that all features of a given group are either active
or inactive simultaneously [48]. This strategy was for instance
considered in human GWAS, using groups of SNPs defined spa-
tially to account for their LD [49]. Transposing this idea to bacte-
rial genomes is challenging because no such prior information
is available to define groups, as LD can be genome-wide [29]. A
solution could be to identify clusters of correlated k-mers using
agglomerating strategies [31] but is hard to carry out in practice
from the high-dimensional datasets involving 105−106 features
encountered in our application.

Our approach can therefore be seen as a simple and effi-
cient strategy to approximate such a group-lasso process in very
high-dimensional settings. Instead of collapsing groups of cor-
related features into composite variables, a natural extension of
our method would however be to rely on a group-lasso penal-
ized regression defined at the cluster level. Each feature would
then be granted its own weight, which could allow their indi-
vidual predictive power to be better reflected. We empirically
observed that the weight variability within a cluster was very
small, as shown in Supplementary Fig. S14, which therefore in-
dicated that keeping the features separated or averaging them is
essentially equivalent. In practice, we find it easier to explicitly
collapse each cluster to a single composite variable to interpret
the model parameters.

On the practical side, our method involves 2 hyper-
parameters, besides the regularization parameter, to identify
active variables and to build the final model. Although these
so-called screening and clustering thresholds did not have a
strong influence in this study (Supplementary Section S2), they
may be cumbersome to optimize in practice for other applica-
tions. A natural extension to our method would be to consider
re-sampling strategies in the clustering step, in order to iden-
tify stable clusters, whose constitution would be robust to the
precise definition of the clustering threshold [50]. Alternatively,
one could rely on tree-guided lasso penalization to leverage the
entire dendrogram during the final learning step, which would
then simultaneously identify clusters and learn the prediction
model [51].

Regarding AMR prediction, our study performed on K. pneu-
moniae confirms several observations made recently, namely,
that k-mer–based approaches can learn sparse prediction rules
without any prior information and that the level of predictive
performance can vary by antibiotic [26, 28]. Importantly, our
study involved a novel panel of 634 K. pneumoniae strains for the
validation of the prediction models and suggested that the prob-
lem is more challenging than reported in Nguyen et al. [8]. The
results they reported were indeed probably optimistic because
the genome panel they considered did not account for the over-
all genomic diversity of K. pneumoniae as a species because it in-

volved 2 over-represented STs (ST307 and ST258) representing
60% of the isolates (Supplementary Fig. S3). The 634 additional
strains with genomes and phenotypes considered in this study
will help in learning more accurate and generalizable predic-
tion models, as suggested by the preliminary experiments de-
scribed in Supplementary Section S7. Another limitation of the
present study lies in the fact that the phenotypic AST methods
used to define the reference MICs differed between the train-
ing set (which involved the Phoenix technology [Becton Dickin-
son, Franklin Lakes, NJ, USA] only) and the test set (which was
based on agar dilution, broth microdilution, or VITEK 2). Indeed,
AST is notoriously subject to a high level of technical variability
[52], which intrinsically brings noise to the reference labels used
to train and validate supervised ML models. A natural question
therefore arises whether an ML model learned from data pro-
vided by a given AST method will generalize to data provided by
a different AST method. A dedicated study described in Supple-
mentary Section S11 suggests that this issue was not critical on
this dataset, which therefore suggests that the lack of general-
ization observed on the test set is mainly driven by its genomic
heterogeneity with respect to the training set.

Finally, the ML methods developed in this study are avail-
able in a generic R package that can be easily transposed to
other bacterial species, as shown in Supplementary Section S12,
and even other applications, not necessarily involving k-mers or
AMR phenotypes. On the challenging dataset considered in this
study, involving >1,000 strains for >1,000,000 genomic features,
the computational requirements remained limited and the sig-
natures could be identified in a few hours on a standard work-
station. Coupled with the enriched level of intepretability they
offer, we believe that our approach will help define prediction
models amenable to routine diagnostics.

Availability of Source Code and Requirements
� Project name: Cluster Lasso
� Project home page: https://gitlab.com/biomerieux-data-sci

ence/clustlasso
� Operating system: Unix
� License: GNU GPL-v2
� RRID:SCR 018820
� bioTools ID: clustlasso
� Step-by-step procedure for using clustlasso package avail-

able at: https://gitlab.com/biomerieux-data-science/clustla
sso-dbgwas-integration

Availability of Supporting Data and Materials

All the genomes and associated phenotypes involved in this
study are publicly available (data provided in the Supplemen-
tary Material, in genomes info.csv). An archival copy of the code
and supporting data is available via the GigaScience repository,
GigaDB [53].
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