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The advent of automatic tracing and reconstruction technology has led to a surge in the number of neurons 3D reconstruction data
and consequently the neuromorphology research. However, the lack of machine-driven annotation schema to automatically detect
the types of the neurons based on their morphology still hinders the development of this branch of science. Neuromorphology is
important because of the interplay between the shape and functionality of neurons and the far-reaching impact on the diagnostics
and therapeutics in neurological disorders. This survey paper provides a comprehensive research in the field of automatic neurons
classification and presents the existing challenges, methods, tools, and future directions for automatic neuromorphology analytics.
We summarize the major automatic techniques applicable in the field and propose a systematic data processing pipeline for
automatic neuron classification, covering data capturing, preprocessing, analyzing, classification, and retrieval. Various techniques

and algorithms in machine learning are illustrated and compared to the same dataset to facilitate ongoing research in the field.

1. Introduction

1.1. Motivation. Neurons are the building blocks of the
nervous system. They exchange information to control the
entire body. Therefore, deciphering the complex functions
of neurons is fundamental to our ultimate understanding
of memorization, logical thinking, and learning abilities. It
is reported that there are 86 billion neurons in the human
brain [1]. Every neuron is composed of three basic parts:
the dendrite, the cell body, and the axon. But they vary
in the number of dendrite branches, size, and shape. These
variations lead to the different functionalities of particular
neuron types. All neurons belong to at least one of the
three basic types: (1) sensory neurons which receive external
stimuli and convert them to internal impulses that are
transmitted to the brain, (2) interneurons that convey these
signals between neurons, and (3) motor neurons that pass the
signals from the brain to different organs. Despite this general
classification, there are neurons which have not been well-
defined in neuroscience [2].

Neuroscientists have verified that there is a relationship
between the form and structure of neurons, their function-
ality, and underlying connectivity [3-5]. Neuromorphology
is a multidisciplinary research field which involves various

scientific domains including biology, chemistry, computer
science, and machine learning. This field studies the neu-
ral systems form, function, connectivity, physiology, and
molecular properties [5-7]. They have also corroborated that
neurons’ morphology differs based on the different species,
regions in the living body, cell functions, and developmental
stages [6]. Despite the extensive research in this field, a
general agreement about all the neuron types has not yet been
reached.

The convoluted shape of neurons, coupled with their
subtle structural differences between types, exposes a new
challenge for researchers in recent years. The advent of
new technologies such as bright field microscopy, confocal
2-photon microscopy, and automatic and semiautomatic
neuron tracing has facilitated and accelerated the process of
3D neurons images reconstruction and it has allowed the
number of neural images to grow exponentially. Therefore, to
understand and explore this complicated data, it is necessary
to automate the neuron classification process to keep up with
the increasing amount of accumulated data.

Most of the efforts in the past decades mainly have
depended on human endeavors to manually classify the neu-
rons. However, in recent years neuroscientists have started
using artificial intelligence and machine learning techniques
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to automatically subdivide the neuromorphological space [8-
15].

1.2. Transition to Automated Neuron Classification. Due to
the importance of the neuromorphology along with the
burdensome task of manual classification, different lines
of research have evolved, which exploit computational
approaches for automatic neuron classification. The impor-
tance of the neuron morphology, the laboriousness, and the
considerable cost of the current manual process leads to
the development of a repository named Neuromorpho.org.
This is a public dataset, lumping together many of the
available neurons’ morphology research data along with the
corresponding publications. It has been established online
to provide an easy access platform for sharing the valuable
results of labor intensive research on neurons from various
sources. This database is growing steadily to become a
complete reference of neuronal morphology studies. It is
composed of tens of thousands of 3D cell images with
the corresponding metadata and related papers from 140
laboratories worldwide [24]. The full procedure of the dataset
establishment has been provided in [16, 25].

1.3. Challenges of Automated Neuron Classification. Although
the emergence of the Neuromorpho.org is promising for
further breakthroughs in the field, the disparate sources of
data, different experimental conditions, divers levels of recon-
struction completeness, and lack of metadata information
lead to a discrepancy in the results. However, a new course
of action has started to address these issues by providing
adequate standards for reporting metadata and details of
digital reconstruction. This research initiative has prompted
to refine and complete the metadata information in the
Neuromorpho website [26, 27]. Additionally, a consistent
terminology for effective data sharing and communication
has been established to unify the experiments’ results [28].
Due to the lack of consistent terminology for data sharing
and effective communication standard, Neuroscience Infor-
mation Framework has recently assembled a comprehensive
lexicon to cover the neuroscience domain and proposed a
unified terminology [28, 29].

As explained in the following section, the neurons’
image acquisition and reconstruction process are not only
prolonged but also vulnerable to human bias and judgment
[29]. Therefore defining a stringent guideline and sharing
the acquired data with enough comprehensive metadata will
significantly help this line of research. In addition, a part of
the metadata sometimes acts as a confounding variable that
should be taken into account in analyzing information from
different sources.

The 3D nature of the neuron’s image also hampers the
application of many popular methods and techniques of
pattern recognition, image detection, and classification. For
instance, deep learning which is an emerging field of research
can be exploited normally for 2D images but some challenges
should be addressed to effectively apply it on 3D images.

1.4. Contribution and Organization of the Paper. This sur-
vey paper provides an extensive organized overview of

Computational Intelligence and Neuroscience

computational methods in neuromorphology. Most of the
papers on neuromorphology are written by neuroscientists
and lack a comprehensive explanation of data processing
steps; all are filled with technical expressions and definitions
from that field. However Vasques et al. recently reviewed
most of the morphological classification research and they
have briefly provided a review on methods, materials, and
machine learning algorithms in neuromorphology [30]. In
contrast, this survey approaches the neuromorphology from
a new point of view with a broader spectrum and attempts to
provide a user-friendly review for scientists in different fields
to understand the type of ongoing research, opportunities,
and challenges in the field. It explains the entire process of
neurons classification from scratch and elaborates the way
of image retrieval. A comprehensive pipeline which precisely
presents the steps of neurons classification from capturing
raw data to defining the final neurons’ type is provided in
Section 2. Section 3 explains state-of-the-art neurons retrieval
algorithms. Section 4 presents and compares computational
results and the last chapter provides conclusions, discussion,
and future directions.

2. Neuron’s Mining Pipeline

In this section, a pipeline for the neuron mining is proposed.
The steps are shown in Figure 1. Every step will be explained
in depth as follows.

2.1. Data Acquisition. The advent of Golgi’s staining tech-
nique in the late 19th century revolutionized the understand-
ing of the brain. This technique uses light microscopy to
envision neuronal tissues. Since then a number of new and
promising methods have been invented which helps scientists
to understand brain functions.

Constructing a well-defined 3D image of a neuron is a
time-consuming and labor intensive process. Neuron stain-
ing and labeling, as the first steps of this process, can be
conducted via different methods depending on the exper-
iment design and preparation forms. Immunolabeling of
cellular proteins, bulk extracellular loading, tracer injection,
and genetic labeling which mark neurons intrinsically and
intracellular are the most well-known techniques of staining
[31].

Visualization, as the next step, is carried out via opti-
cal techniques to acquire high-resolution neuronal images.
Bright field microscopy and confocal 2-photon microscopy
are the most popular visualization techniques which are used
to prepare the neurons’ images for tracing.

Due to the neurons’ complex morphology and convoluted
cell preparation process, captured images have some degree
of noise, corruption, and obscurity. Tracing, which is an
intensive process of reconstructing the digitized image, has
evolved during the years to address the aforementioned prob-
lems. In the past, it has been performed by hand and camera
lucida but nowadays it is mostly done semiautomatically.
However, the tracing results are still incomplete because
of the imperfect staining, tissue sectioning, and low image
resolution. Many research groups are currently working on
the visualization and reconstruction techniques to provide
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TABLE 1: A short list of tracing software and toolkits.

Software/Toolkit Web Address Availability Reference

Neurolucida http://www.mbfbioscience.com Commercial ~ Halavi et al. [16]

Neuron]* https://imagej.net/Neuron] Open Source ~ Meijering [17]

Simple Neurite Tracer”

https://imagej.net/Simple_Neurite_Tracer

Open Source Longair et al. [18]

Sholl Analysis* https://imagej.net/Sholl_Analysis Open Source  Ferreira et al. [19]
NeuronStudio http://research.mssm.edu/cnic Open Source Rodriguez et al. [20]
Vaa3D http://www.alleninstitute.org/what-we-do/brain-science/research/products-tools/vaa3d/ Commercial ~ Peng et al. [21]
FARSIGHT http://farsight-toolkit.org Open Source  Luisi et al. [22]
NeuronCyto http://neuroncyto.bii.a-star.edu.sg/ Open Source Yu et al [23]
Aivia https://www.drvtechnologies.com Commercial N/A

Imaris http://www.bitplane.com/imaris-for-neuroscientists Commercial N/A
*Image] plugin.
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FIGURE 1: Neuron’s mining pipeline.

higher quality 3D images via automatic methods but human
intervention is still an inseparable part of the process [21,
32]. A number of different types of popular tracing software
and tools are provided in Table 1. A comprehensive detail
on the visualization techniques and tools can be found in
(17, 33, 34].

2.2. Feature Extraction. For processing and quantitative anal-
ysis of reconstructed images, neurons features should be
extracted. L-measure is one of the recent types of software
that executes the morphometric calculation. This is free soft-
ware and is designed to calculate more than 30 morphometric
features from a neuronal reconstructed file in a wide range of
formats [35]. There are some other types of alternative soft-
ware for feature extraction such as Cvapp [36], Neurolucida
Explorer [37], Neurphology] [38], and NeuronLand which
can be used based on the need [39]. Some important neural
features which can be extracted by L-measure are shown in
the Figure 2 [40]. A detailed description of the features has
been represented in [35].

2.3. Data Preprocessing. Since real-world data tends to be
noisy, incomplete, and inconsistent, data preprocessing is
necessary prior to further analysis. To achieve reliable
results in the quantitative analysis, some validation, curation,
and standardization steps should be performed which are
considered as preprocessing. Preprocessing is specifically
essential when the dataset is an amalgamation from different
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FIGURE 2: Neuron’s features.

research laboratories. Different preprocessing steps are briefly
explained below.

2.3.1. Normalization. Data preprocessing is a fundamental
building block of data mining. The core of preprocessing
is standardization and statistical adjustment of the data.
Normalization can considerably improve the classification
accuracy of a number of the models. The data are not
always expressed in similar units and magnitude, so data
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pretreatment considering certain criteria is essential prior
to data analysis [41]. One of the popular methods of stan-
dardization is z-score scaling, which involves subtracting the
mean from all values and dividing by the standard deviation
[42-46].

2.3.2. Missing Value Treatment. Missing values occur when
there is no data value for some variables or features in the
dataset. It is common and also a complicated phenomenon
that should be addressed with an appropriate approach prior
to the classification or clustering as many algorithms are
unable of handling data with missing values. Most of the
statistical packages ignore incomplete samples. However,
invalid statistical results may be achieved as a consequence of
the elimination of critical information. This method is called
Listwise or Case Deletion.

A similar approach to Listwise is Pairwise deletion, which
deletes or keeps the data point based on the pair scores and
the application of the features in the calculation. For instance,
if a sample has the value of x1,x3,x4 and y features and it
misses the value of x2 and x5, the sample point is kept and
when the pairs of xI and y are needed in a calculation but if y
and x5 or y and x2 are needed this sample point is discarded.

Replacing the missing value simply by zero or with
attribute mean value is another way of handling unavailable
values. It can be more precise if instead of attribute mean, the
missing value is replaced by the mean of all samples belonging
to the same class. However, this method can be misleading
when the variable has large variance [47].

A more scientific approach for addressing missing values
suggested the following procedure: calculating the missing
value percentage and if it is less than 5% of the whole values,
it can be neglected; otherwise two tests of MAR (missing at
random) and MCAR (missing completely at random) should
be performed to give enough confidence about whether the
missing data occurred randomly or if it happened based
on some corresponding situation that makes those data
gathering hard. If this test becomes false, it is clear that
missing data happens based on some specific situation and is
systematic. Therefore using an inference method to calculate
the missing values can be helpful otherwise unavailable values
can not be predicted easily so Listwise Deletion or Mean
Substitution can be applied based on the condition [48-50].

A better way for prediction of less biased data is applying
the data mining algorithm for probable value prediction.
Regression, Bayesian inference, decision trees, and clustering
algorithms can be used for inferring missing values.

Regressing the missing variable based on the other
independent variable is a simple solution. Regression model
works well for imputation of the missing value when there
is a strong relationship between missing variables and other
independent variables.

Single and multiple imputations using expectation max-
imization are modern techniques of missing value comple-
tion. Expectation maximization, which is a kind of maximum
likelihood approach, iteratively imputes the missing value
based on the relationship among whole sets of variables. It
adds some degree of random error to reflect uncertainty to
the imputation. The algorithm will stop when the imputed
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variable is stabilized [51]. The propensity score method,
regression modeling, and a collection of techniques called
Markov chain Monte Carlo are used for data imputation.
A group of well-established imputation methods such as
Matrix Factorization, Singular-Value Decomposition (SVD),
and K-Nearest Neighbor (KNN) have been implemented in
statistical and analytical software packages such as MVA in R
and Fancyimpute in Python.

2.3.3. Data Unification and Consolidation. As mentioned ear-
lier, the Neuromorpho dataset is an amalgamation of data
from neurons research labs. Therefore it is not surprising
that there are discrepancies in the naming of the same value
in the dataset. For example, neonate developmental stages
are referred by different names like “embryonic”, “infant”,
“neonatal”, and “fetal” in different datasets. It is required to
consolidate this data using common nomenclature prior to
processing.

2.3.4. Address Imbalanced Dataset. Imbalanced classes are
those that have majority values in one type (more than
90%) and the remaining in the others. Accuracy is not an
appropriate metrics for the classification performance in
these datasets. In order to have a correct understanding of
the classification performance, it is recommended to calculate
F-measure, precision, and recall in the future research.
Oversampling and undersampling also are popular tech-
niques that sometimes are used to address imbalanced data
[52].

2.3.5. Exclusion of Confounding Variable. While experi-
mental condition, staining model, imaging resolution, and
all other empirical details dramatically affect some of the
parameter calculations, feature selection should not be done
blindly. Polavaram et al. claimed that axonal morphologic
features and branch diameter are extremely dependent on
the experimental conditions so they excluded them from the
pool of features prior to analysis [46]. Different preparation
mechanisms, shrinkage during tissue processing, and slicing
artifacts all impact the neuron’s images. Scrupulous attention
to these details improves the classification accuracy.

2.3.6. Dimensionality Reduction. Reducing the feature space
by obtaining a set of uncorrelated variables is a popular
technique in big data analysis. The remaining features should
be selected carefully to exhibit the original data variability.
Reduction of the attribute space to enhance the classification
performance and reduce the process time is the main goal
of this technique. When the dimension is reducible to
two, data visualization is possible which provides a better
understanding of data distribution [53, 54].

Principle Component Analysis (PCA) is the most well-
known technique of dimensionality reduction in neuro-
science studies. This method transforms a large set of features
to a smaller set in a way that remaining set represents the
original variance in the data. In other words, PCA identifies
the most dominant features among the entire set and solve
the curse of dimensionality which improves the classification
accuracy [55].
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Costa et al. applied PCA and canonical analysis on
a massive dataset of 6000 neurons from Neuromorpho
database to decrease the 20 extracted features to only two,
which explained most of the data variability. Their result
shows that cells with similar types, region, and species tend
to form a cluster together and also these clusters become
more substantial after applying PCA. But there is not enough
evidence to answer comparative questions such as “whether
the neurons of interrelated species have same morphological
traits because of same habits or coexistence” or “how a
neurons morphology evolved in a species” [40].

Polavaram et al. used L-measure software to extract
more than 100 features from the data which is captured
from Neuromorpho.org. They applied PCA to identify the
most important morphological parameters which help to
perform structural classification. Their results corroborate
that while direct assessment of large-scale heterogeneous
dataset can not uncover meaningful patterns, by applying
PCA as an effective feature space reduction, capturing the
relationship between metadata and clusters become feasible.
They also reported that among specific cell types and animal
species there are some morphological differences that are not
sensitive to the origin laboratory [46]. There are multiple
pieces of research which have adopted PCA in different
datasets in a similar style [56, 57].

In contrast to aforementioned studies, one study was not
able to find meaningful improvement in the classification by
applying PCA. In this experiment 67 morphological features
of mouse frontal, visual, and somatosensory cortex were
measured and cluster analysis was performed two times, one
time, without applying PCA and another time after applying
it, to compare the dimensionality reduction effect in the
data. This experiment displays no obvious difference between
those two runs rather than some cells rearrangement [44]. It
suggests that while PCA has rendered promising results in
several bioscience studies it is not practical [40, 46, 56-58].

PCA attempts to reduce the reconstruction error by
the best transformation, so in the data with nonlinear
dependencies, it can not consider higher order relations.
Furthermore, PCA compresses the attributes and makes a
new combined attribute; thus the contribution of original
features in classification is not easily interpretable. These are
two major drawbacks of this method which highlights the
need for other dimensionality reduction methods [59].

2.3.7. Feature Selection. As mentioned in the previous part,
some extracted features are not necessarily informative in
model creation. Redundant or irrelevant features decrease
processing speed and mislead the algorithm [60]. A proper
collection of most significant attributes can boost the classi-
fication performance. Feature selection mostly is done prior
to application of machine learning in order to speed up the
model training time, make a simpler, easily interpretable
model and enhancing the generalization power of the model
61, 62].

There is a variety of feature selection techniques such as
filter, wrapper, and embedded method. They rank the features
based on their importance and then pick an appropriate
subset of features based on different approaches.

Filter method selects variables regardless of the model
and only evaluates the intrinsic importance of the individual
features. It ignores potential interactions between the subsets’
elements and suppresses the least interesting variables. This
method is effective in computation time and is robust to
overfitting. Overfitting is a modeling error which occurs
when a function is too closely fit to the training data points so
this complex model fails to perform well in the training set.
However this technique does not consider the relationships
between variables so it tends to select redundant variables
[63]. In contrast to filter method, Wrapper considers the
probable interaction between subsets’ feature but it also has
the risk of overfitting and it takes significant computation
time to complete [64]. Embedded method is a combination
of the both aforementioned methods. This algorithm takes
advantage of its own variable selection process and performs
feature selection and classification repeatedly until it reaches
the best performance [65].

The authors of [66] sought to rank the contribution of
features in the classification of the Axonal Projections neu-
rons. For this purpose, they repeat the classification process
multiple times and leave one feature out in each run. The
amount of error growth demonstrates the importance of the
leave out feature. Repeating this technique for each feature,
all the features were ranked based on their importance.

To consider the feature interactions and correlations, Sun
et al. demonstrated the performance of their novel feature
selection algorithms on the neurons’ morph repository. In
their Binary Matrix Shuftling Filter (BMSF) algorithm, a
matrix with the same column size of the original feature
set and a subset of rows (samples set) are selected. Cells in
each row are randomly assigned zero and one, representing
absence or presence of that feature, where the total number
of zero and one is equal to each row. Obtaining a reduced
training set with this shuffling technique, the accuracy of
SVM on the selected subset is measured via tenfold cross val-
idation. Classification accuracy is calculated multiple times
in the shuftled subset. Each time one column cell content is
triggered while remaining part of the matrix left untouched to
see whether that feature improves or degrades the accuracy.
In former case, the feature will be kept in the final selected
subset; otherwise it will be excluded. This step will be repeated
until no more change happens in the final subset. They
applied the algorithm coupled with Support Vector Machine
(SVM), Back Propagation Neural Network, and Naive Bayes
and reported the highest performance of their proposed
feature selection technique [67].

2.4. Unsupervised Learning. Defining the hidden structure
of the data, without any prior knowledge, is called unsu-
pervised learning. A great amount of unlabeled data is
fed to the algorithm and clustered data is achieved as an
output. Clustering is the most popular unsupervised learning
method which has been widely used in discrimination of
unlabeled data so far. The majority of published research in
automatic neuron classification has applied Ward’s method,
K-means, affinity propagation clustering, or a combina-
tion of those. Several samples are briefly reviewed in this
section.



One of the conventional and widespread clustering meth-
ods in neuron classification is Ward’s method. Main proper-
ties of the algorithm which make it popular are listed here: (1)
most of the members of a group have common features, (2)
each feature is visible in a large number of members, and (3)
there is no need for all the members to have all the features
[68]. This algorithm has the bottom-up strategy which means
it starts from the leaves, groups close features together based
on the overall largest similarity, and then makes a new cluster.
It gradually follows this grouping technique in different levels
of the tree until reaching a common root at top of the tree.

Tsiola et al. after applying PCA employed Ward with
Euclidean metric for distance measurements on their own
prepared dataset of 158 images of primary visual cortex
neurons in mouse. They focused on dendrite and somatic
shape. Five classes of cell emerged, including large pyramidal
neurons, polarized nonpyramidal neurons, and short pyra-
midal neurons [45].

Despite the popularity of this approach among many
neuroscientists, Ward’s method has a major drawback. There
is no chance for changing a data point which is assigned to
a cluster after going up in the tree and recognizing a better
cluster for that point [43, 44, 56, 69-76].

Researchers have exploited the K-means algorithm to
address the aforementioned deficiency of Ward’s method.
Comparing their result with Ward, they proved that K-means
has superiority in neurons discrimination.

K-means clustering has a reverse approach in comparison
to Ward which performs top down. The number of desired
clusters is defined in advance and the algorithm dynamically
corrects the assignment of neurons to the different groups by
calculating the inner similarity of the members [77, 78].

Badea et al. separated adult mouse retina cells based
on the multidimensional feature space using K-means. They
applied Ward as well to compare the results. Authors coupled
molecular composition and physiological properties; for
example, they linked receptive field size and connectivity to
the ON and OFF pathways of the neurons with the morpho-
logical features like arbor area and stratification, arbor area
and stratification within the inner plexiform layer, branching,
density, and radiality of the dendrites to make a diverse
set of features. One of the disadvantages of their research,
as they also explicitly mentioned, is that, by considering a
conservative cut-off for defining the number of clusters, they
may suppress some crucial clusters [79]

The main concern of the authors who used Ward and
K-means is that all the features have the same rate and
importance in the classification process. This application
neglects the fact that some features in clustering are more
important than others. For example, the stratification level
in the IPL has significant importance in comparison to other
features, so considering it in the same way as other features
may cause unfit clustering [79].

Other researchers like Kong et al. also used K-means algo-
rithm as an appropriate tool for clustering. They explained
the shape of a series of 219 retinal ganglion cells in the
mouse. In contrast to same neuron types in the monkey,
cat, and rabbit, mouse ganglion cells are less distinctive and
pose a serious challenge for identifying subtypes [80]. Each
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3D image from the neurons was mapped to 42 quantitative
features. By eliminating the redundant and uninformative
features at the first screening, 26 features were achieved. Then
a correlation matrix for the feature sets was created to identify
highly related features. Keeping this group of features leads
to a high dimensional space with no extra information for
classification. The authors avoided human intervention for
weighting the features. After empirical experiment based on
the correlation matrix and sinuhe analysis, three most sig-
nificant features were produced which are branching density,
stratification depth, and the extent of dendrites [3]. Chunwen
et al. also used clustering coupled with PCA. The main
difference of this method with similar experiments is that
they used the extracted dataset from the Neuromorpho.org
website and they defined a naming schema based on the
morphologies of each type of neurons [81].

In contrast to most of the neurons, some neurons pertain
to more than one type rather than having a strict membership
to a particular group. Batagglia et al. referred to the former
cell type as archetypal and to the latter cell type as atypical
[82]. They proposed a fuzzy clustering algorithm to eftectively
identify the membership degree of atypical neurons to the
main archetype. The fuzzy theory was invented by [83]
in order to describe indefinite phenomena with a precise
alphabet. Batagglia et al. used the same dataset as [43] and
had the same approach; however, they focused on clustering
the atypical cells. In their fuzzy clustering scheme, one neuron
can belong to more than one class type with a different
degree of membership. The sum of all membership degrees
for a neuron in normalized form should be equal to 1.
When one neuron is completely matched with one class, its
membership degree is 1 and when it does not belong to a
class, its degree is 0. In a study by Ristanovic et al. large sets of
dentate nucleus morphology and topology were qualitatively
and quantitatively analyzed. Seven features were extracted
from the 2D images of neurons and were classified manually
into four different groups. To verify findings and to show
the consistency of the proposed classification schema, they
applied T-test and ANOVA test [84].

Authors of [85] explored affinity propagation clustering
on the dataset of 337 interneurons and compared it with
the Ward algorithm. Results obviate a slightly better perfor-
mance of affinity propagation in comparison to the Ward.
The dataset was comprised of 20 electrophysiological and
67 morphological features. Considering only the shape of
the neurons, 10 clusters appeared and by considering the
physiological features, 36 clusters appeared. By combining all
the features and applying the affinity propagation algorithm,
8 clusters with an accuracy of 77% were achieved.

A study that approaches the problem from a relatively
dissimilar perspective has been done by DeFelipe, Lopez et al.
[86, 87]. A taxonomic solution based on axonal arborization
patterns was presented. Six axonal morphological features
were defined to categorize GABAergic neurons which are less
controversial cell types. After defining six features clearly,
an interactive web-based system was created to allow 42
neuroscientists to ascribe the categories of the neurons in 320
images based on those features. The image repository was
a collection of interneurons images of different parts of the
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cerebral cortex of human, monkey, cat, rabbit, rat, and mouse.
A Bayesian network model was created to analyze different
experts’ answers. In order to ensure that the agreements
were not accidental, Fleisss pi and Cohens kappa index were
calculated. Eventually, an automatic clustering algorithm
separated the dataset and output clusters corroborated the
correctness of the community consensus.

There are multiple research findings for automatic clas-
sification and clustering of neurons based on other features
(neuromorphological, electrophysiological, and molecular),
which have used similar approaches [6, 70].

2.5. Supervised Learning. In spite of the sheer amount of
labeled data, most of the researches in classification of the
Neuromorpho space have used unsupervised machine learn-
ing techniques so far. However, these days public available
databases like Neuromorpho.org proliferate the application of
supervised methods. As it is often found that supervised tech-
niques can perform comparatively better than unsupervised,
this line of study progressed toward using labeled datasets
[88].

Guerra et al. utilized supervised classification instead
of unsupervised clustering in order to reap the benefits of
prior knowledge in the field. They attempted to distinguish
neocortical pyramidal cells from interneurons in a total of 327
samples. They compared the accuracy of Decision Tree, Naive
Bayse, Multilayer Perception, Logistic Regression, and k-
Nearest Neighbors algorithms with an unsupervised method.
Additionally, they applied some dimensionality reduction
techniques, like PCA, and feature subset selection to reduce
the features number [88]. Their final dataset consists of 128
samples of pyramidal cells and 199 samples of interneu-
rons from mouse neocortex with 64 extracted features and
Apical Dendrites as the label set. A comparison of the
outcomes proves the superiority of the supervised classifi-
cation approach and the effectiveness of the dimensionality
reduction and feature extraction methods in this specific
morphological task.

After creating 400 pairs of image stacks from a pool of
motor neurons in the Drosophila larvae and converting them
to 2D images in the lab, Chang et al. partitioned neurons
based on their three main morphological parts, soma, axon,
and dendrite. Neurons were annotated manually into five
separate subtypes. Chang et al. applied their proposed algo-
rithm named “hNNRF-T: Hidden Neural Network Random
Field” to classify the dataset. The input of the Neural Network
is the morphology features from different neuron parts,
the hidden layer is a sigmoid nonlinear function, and the
output is the energy which controls the interactions in the
hidden conditional random field. They tested Support Vector
Machine (SVM) with Gaussian kernel, a Logistic Regression
Model, and a Gaussian Mixture Model (GMM) on the dataset
and compared outcomes to demonstrate the superiority of
their model. The accuracy of the proposed method shows
the higher performance of the hNNREF in the classification
of their specific sample set of neurons. While the method of
converting 3D images to 2D by preserving the whole content
of the image is inspiring, there is not enough evidence to
prove that this method outperforms all of the state-of-the-art

algorithms in a more general dataset like Neuromorpho.org
[89]. Zhao and Plaza have proposed a method in which
electron microscopy images of drosophila optic medulla are
fed into the segmentation part while labeled field output is
the input of the skeletonization part. This skeletonization part
converts the binary image to a skeletonized model, which
is a 3D neuron-shaped using the TEASAR method. Differ-
ent skeletons based on different inputs were provided and
compared with a set of predefined skeletons. Features were
then calculated. After a pairwise matching between different
feature sets as a signature of each image, a similarity matrix
was made. Then in the final step, they applied the affinity
propagation clustering algorithm and K-Nearest Neighbor
classification on the normalized similarity matrix. Different
classes of the most similar neurons emerged as the desired
result. The authors proposed their idea that the location of
the branches determines the types of the neurons. They also
tried to implement a detection algorithm based on the branch
density. Although the accuracy of their method is high in the
provided dataset, it is not comparable with other algorithms
which have been applied in public dataset. The dataset was
created manually in their laboratory and a specific alignment
was needed to achieve an acceptable result, which was a major
drawback of their proposed method [90].

Recently, Sun et al. exploited a Support Vector Machine
(SVM) paired with their proposed method of Binary Matrix
Shuftling Filters for Feature Selection (BMSF). BMSF is a
feature selection technique (mentioned in the feature selec-
tion section) which is coupled with a classifier to define
the neural space boundaries. They also coupled their BMSF
methods with other state-of-the-art classification algorithms
and compared the classification accuracy of those methods
including Back Propagation Neural Network (BPNN), SVM
recursive feature elimination (SVM-RFE), and Naive Bayes,
with and without their proposed feature selection technique
to prove the effectiveness of the proposed method. [67].

Jiang et al. classified the neurons’ space based on their
morphological features. Acquiring the neuron’s images from
neuromorpho.org and extracting 20 features per neuron’s
image, they applied PCA to reduce the feature space to only
four features. By employing a back propagation algorithm,
they classified the space into various subtypes which have
different functionalities including Purkinje, motor pyramidal
sensory neurons, and interneurons [91].

2.6. Multilabel and Multiclass Classification. In some of the
classification problems multiple classes should be predicted
rather than binary division of the space. Furthermore, not
only classes are more than one but also there are more
than one label for different classes. This kind of problems
is considered multiclass multilabel classification. Neuron’s
morphology classification can fall in this category [92].
Fernandez et al. compared several state-of-the-art mul-
tilabel classifiers on the Neuromorpho.org dataset in order
to detect gender, species (rat, human, mouse, and elephant),
developmental stage, area of the neocortex (fronto-insula,
anterior cingulate, motor, somatosensory, entorhinal, occip-
ital lobe, frontopolar, multiple, frontal lobe, insular cortex,
precentral gyri, postcentral gyri, and media prefrontal cortex
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perirhinal), cell type level one (interneuron or principal cell),
and cell type level two (stella, pyramidal, basket or bitufted,
neurogliaform, and containing cell). They formulated this
multilabel classification problem and introduced Class Bridge
decomposable Multidimensional Gaussian Classifier (CB-
MGC). The model is a variation of the Bayesian network
classifiers and outperforms all the state-of-the-art multiclass,
multilabel algorithms. They reported their results with the
performance measures like hamming score and exact match.
Based on the aforementioned metrics, their proposed algo-
rithm shows higher performance [93].

The presented experiments and research were some of the
most significant efforts that have been done toward automatic
classification of the neuron space. Although most of them
apply the methods in a locally created dataset, the idea can
be exploited and applied in a large enough public dataset to
derive a more general conclusion about the performance and
feasibility of the automatic classification.

3. Neuron’s Retrieval Methods

The deluge of online neuron 3D images has led to an
increasing demand for exploring, identifying, analyzing, and
retrieving image data. This trend stimulated research seeking
to develop an efficient high-speed retrieval algorithm for
looking into datasets and satisfying neuroscientists questions
and needs.

Considering this demand, Costa et al. implemented
software named NBLAST. This software provides various
functionalities to search and retrieves neuron images in
a database and it has the capability of defining the well-
matched type for a neuron based on its image. NBLAST is
also capable of detecting two different images of the same
neuron, and it can differentiate neurons of two highly similar
types. NBLAST decompose the neurons’ images into small
segments, and by applying log-likelihood score matrices it
defines the matches in the dataset. This algorithm makes a
hierarchical clustering by applying Ward and affinity propa-
gation method and groups the neurons’ images based on the
features similarity. It provides a ranked list of possible similar
neurons which makes the search faster and more efficient
[94]. However, assigning a huge feature vector to each image
of atremendous database leads to considerable response time.

While search speed is an important issue, a group of
researchers aimed at tackling this problem by exploiting the
hashing concept. In an image hashing search, each image
is converted to a binary code which needs far less space
to be kept in the memory and is easier to be explored.
Although Weiss et al. proved that finding the best codewords
is an NP-hard problem they proposed a novel formulation
for redressing the issue, called Spectral Hashing (SH) [95].
Several other efficient encoding schemes were proposed to
improve searching performance in big image databases such
as Neuromorpho.org. Considering that neuron image repos-
itory is a giant dataset, researchers apply hashing concept to
provide the fast searching capability [96, 97].

Traditional metrics like Euclidean distance for calculat-
ing the similarity between high volume of 3D images are
inefficient so Li et al. implemented a new idea for rapidly
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searching and retrieval in large-scale 3D space of the neuronal
databases. They proposed an efficient asymmetric binary
coding function to implement a high-speed maximum inner
product search (MIPS). This algorithm not only saves more
space as a result of the compact representation of each image
by 32 bits but also speeds up the search time among huge
databases, like Neuromorpho.org, by an order of 30 times.
They compared their algorithm with the different state-of-
the-art algorithms, like Anchor Graph Hashing (AGH) [98],
Spectral Hashing (SH) [95], and Iterative Quantization (ITQ)
[99], to demonstrate its superiority. In brief, their proposed
algorithm first extracts the images features and then applies
the maximum inner product search to find the best binary
coding function. After getting the best function, it converts
each image into 32-bit binary code. At the retrieval time,
it converts the query image to binary code with the same
function and uses an inner product search to find the most
similar images in the dataset. In their later work, they added
two extra steps to improve the efficiency of the algorithm.
After feature extraction, they grouped features into different
hierarchies to create the similarity matrix. And also after
maximum inner product search, an asymmetric optimization
is applied and two coding functions are generated [100, 101].

Several retrieval techniques have been adopted for large-
scale medical image analytics which also have the potential
to be applied for mining the neuromorphological space. For
instance, Zhang et al. represented the histopathological image
data by various features such as image histograms, bag of
words, local texture, and shape. They used these huge feature
vectors to find similarities among different clinical cases. To
improve search speed in the high dimensional feature space,
they applied kernelized and supervised hashing methods as
a scalable query method. They validated their method on the
cell-level analysis of thousands of breast tissue images [102,
103]. Although the histopathological image data is relatively
different from neuromorphological image data, the idea of
applying kernel and changing the space can be applied for
neuronal space. A summary of applied machine learning
techniques in the neuron’s morphology research is provided
in Table 2.

4. Morph Is Not Enough

Neuroscientists recently agreed that neuron classification
cannot be satisfying unless considering multimodal infor-
mation of neurons rather than only morphological features
[28]. Following this fact, Karagiannis et al. classified a
group of neurons based on physiological, molecular, and
morphological features. They selected the Neuropeptide Y
(NPY) neurons which have three distinctive subtypes with
different sets of properties. They extracted some morpholog-
ical properties such as orientation of major axis relative to the
radial axis and laminar location. They also took into account
the electrophysiological and molecular properties such as first
spike amplitude and NPY marker to have a comprehensive
pool of neuron’s features. The authors aimed at clustering the
neurons based on the mentioned attributes into three main
types: bipolar, tufted, and multipolar. They applied the Ward
clustering technique and they demonstrate that more robust



Computational Intelligence and Neuroscience

TABLE 2: Machine learning techniques for neuron classification.

ML Technique Algorithm
Ward
K-Mean
PCA

Affinity Propagation

Unsupervised Techniques

Fuzzy Set Clustering

Feature Selection
Neural Network
Hidden Neural Network Random Field
SVM + Binary Matrix Shuffling Filters
Multiclass Classification

Supervised Techniques

Ward + Affinity Propagation
Retrieval Techniques Binary Hashing Search

Maximum Inner Product

clustering schema is achievable by considering wide variety of
neuron’s features rather than only morphology [43]. Several
other studies have classified neurons based on different
combinations of morphological, physiological, and molecular
properties using unsupervised clustering algorithms with
a relatively similar approach [6, 56, 66, 70, 104-106]. All
the aforementioned studies attempt to demonstrate that a
comprehensive diverse feature set leads to a more accurate
classification results.

5. Computational Methods Validation
and Comparison

To this part, most of the distinguished studies and research
in Neuromorpho space have been reviewed. Following the
proposed pipeline, in this section, we try to classify the public
Neuromorpho database and present the outcomes.

As the first step, we download a large portion of the
neurons’ images from different categories in the Neuronor-
pho.orgsite. A pool of neurons composed 0f 16647 drosophila,
173 human, 1181 mice, 6426 rats, 184 monkeys, 300 giraffes,
302 C. elegans, 360 chimpanzees, 127 crickets, 143 humpback
whales, 95 elephants, and 60 minke whales samples are
collected. Features of each image have been extracted with the
help of L-measure. Afterward data has been cleaned, missing
values were replaced by zero, and naming was standardized
and preprocessed, and at the end a group of classifiers such as
Random Forest, Decision Tree (J48), K-Nearest Neighbors,
Logistic Regression, and Naive Bayse have been applied to
classify the data. The accuracy of each algorithm considering
different label sets is provided in the Table 3.

Well-matched with previous studies [107], Random For-
est demonstrates an outstanding performance among other
classifiers.

Random Forest is a type of supervised machine learning
algorithm which is ensemble of multiple decision trees. For
each tree in the forest a bootstrap sample of data is taken
to create various input dataset so that each tree will be fit
in a different set of samples. Then the data will be split
based on a selection of random variable. The best split will

iteratively be selected based on the impurity measure. The
whole process will be repeated to build several decision trees
to complete the Random Forest model. Each new data point
will be fed iteratively into all the generated trees and their
outcome result will be averaged to form the final prediction
of the Random Forest. This algorithm achieves the highest
accuracy of over 85% among other classifiers for predicting
the developmental stage, species type, primary cell type, and
gender. However, for predicting secondary and tertiary brain
cells, the performance is still too low due to the great diversity
in the subtypes and shortage of data in each subtype.

The rat, mouse, monkey, human, chimpanzee, and
drosophila sample sets were also classified with the help of
Random Forest classifiers and results are shown in Table 4.

6. Future Directions

Despite different approaches for neuromorphology presented
in this work, there are other promising directions that
should be explored and there are several issues that should
be addressed to get more reliable results. Here we briefly
mentioned the open challenges.

6.1. 3D Image Classification. The majority of the applied al-
gorithms for classification of the neurons have been devel-
oped based on the extracted features by the software like L-
measure, Cvapp, Neuronal, and Neurolucida Explorer [39].
To the best of our knowledge, direct processing of the
3D neurons” images has been never explored in this field.
Applying convolutional neural network and deep learning
techniques for directly processing and extracting the features
of the reconstructed 3D image is a promising direction.

6.2. Enormous Database Retrieval. Although several hashing
ideas have been applied in the neuronal space, still there
are much more potentially effective methods that have not
been examined in this space. Jiang et al. have exploited joint
kernel supervised hashing method with multiple features for
retrieval of the histopathological breast cancer images. To
preserve the data similarity in the hamming distance, kernel
functions were introduced. After feature extraction, they
applied different kernels for individual features and defined a
joint kernel function which linearly combines those kernels.
Afterward a series of hashing function are constructed based
on the joint kernel. A supervised algorithm is applied to
optimize the weights and hashing functions, based on the
provided images’ metadata. Hashing function helps to reduce
the high dimensionality of the feature space and makes a
compact hash code which boosts the search speed [108]. This
research idea has great potential to be applied in neuronal
space.

6.3. Heterogeneity. Traditional neuromorphology research
usually lacks standardization and often fragmented with
multiple formats, prepared with different standards and
various naming schema. Therefore a common data standard
development is an absolute need for achieving more homo-
geneity and consistent results. Confounding variables should
be defined and removed from the dataset. In addition, there
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TABLE 3: Baseline accuracy of different algorithms based on different classes.

Machine Learning Alg Random Forest Decision Tree KNN Linear Reg Naive Bayes
Species 98.19% 96.65% 93.6% 90.42% 78.2
Gender 85.12% 81.11% 82.57% 80.19% 78.2
Primary Cell Type 86.08% 83.67% 79.24% 73.44% 71.7
Primary Brain region 68.43% 61.21% 56.29% 48.07% 24.69
Development 97.47% 96.53% 94.89% 91% 83.08
TaBLE 4: Random forest accuracy based on the different species.

Species Name Rat Mouse Monkey Human Chimpanzee Drosophila
Development 96.2% 97.3% 92.9% 100% 77.8% 99%
Gender 99.3% 99.4% 94% 91.3% 80.8% 79.1%
Primary Cell Type 97.7% 99.3% 98.4% 98.3% 99.8% 83%
Primary Brain Region 97% 96.9% missing 98.8% 1 59%

are problems of missing values and noise issues that should
be addressed prior to the huge datasets classification.

6.4. Generalization. Most of the aforementioned studies
focused on a locally created dataset. Some of them only
studied a part of a public dataset. They applied and tested their
proposed algorithms and methods on a limited incomplete
data and have provided the results independently. These
separate efforts and research, while they are valuable but lack
the generality to induce a fact or reach a conclusion based
on them. A consistent study on a comprehensive dataset is
needed to obviate the semantic dependencies and hidden
rules in a more generalized and complete form. Finding a
high performance and accurate model for classification of
neurons will help to complete the chain of automatic neurons
type detection.

7. Conclusion

This article presents a comprehensive overview of the tech-
niques, pipeline, future directions, and challenges for neuro-
morphology in the big data age, by presenting a structured
analysis of the neuromorphology methods in nearly 100
papers and web articles. We have summarized most of the
important machine learning techniques that have been used
for this purpose so far and we have provided a systematic data
processing pipeline for the automatic neuron morphology.
Automatic classification of the neuron images in the big data
age with the growing speed of the reconstructed neurons
images is an emerging and highly important research field
with potentially significant impact on the neurological disor-
ders diagnostic. The future of this field will benefit from the
exponentially increasing amount of digital neuron image.

Data Availability

The public datasets of neuromorphology is available at
http://neuromorpho.org/. Source code (Python and R scripts)
implementing the methods and the analyses described in
this paper can be requested from Maryamossadat Aghili at
mailto:maghi00l@fiu.edumaghiOOl@fiu.edu.
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