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Abstract: Epidemiological evidence reveal a very close association of malignancies with chronic
inflammation as a result of persistent bacterial infection. Recently, more studies have provided
experimental evidence for an etiological role of bacterial factors disposing infected tissue towards
carcinoma. When healthy cells accumulate genomic insults resulting in DNA damage, they may
sustain proliferative signalling, resist apoptotic signals, evade growth suppressors, enable replicative
immortality, and induce angiogenesis, thus boosting active invasion and metastasis. Moreover, these
cells must be able to deregulate cellular energetics and have the ability to evade immune destruction.
How bacterial infection leads to mutations and enriches a tumour-promoting inflammatory response
or micro-environment is still not clear. In this review we showcase well-studied bacteria and
their virulence factors that are tightly associated with carcinoma and the various mechanisms and
pathways that could have carcinogenic properties.
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1. Introduction

Genetic alterations that are inherited or acquired during a person’s lifetime can lead
to errors in cell division and uncontrolled growth. External factors leading to these genetic
mutations largely include exposure to radiation, smoking, and infectious microorgan-
isms such as viruses, bacteria, and parasites. Data from the Global Cancer Observatory
(GLOBOCAN) attribute 2.2 million (13%) new cancer cases to 10 carcinogenic pathogens.
The International Agency for Research on Cancer (IARC) has classified these carcinogens
under six viruses (Epstein—Barr virus, human papillomavirus, hepatitis virus B, hepatitis
virus C, human herpesvirus type 8 and human T cell lymphotropic virus type 1), one
bacterium (Helicobacter pylori) and three parasites (Opisthorchis viverrine, Clonorchis sinensis,
and Schistosoma haematobium). These classifications do not include the pathogens such
as the human immunodeficiency virus that results in immunosuppression and enhances
the carcinogenic action of viruses and probably bacteria. While only one bacterium has
so far been included to the IARC’s list of carcinogenic pathogens, many other bacteria
have been discovered to have carcinogenic effect. In this review we will shed light into
all the known cancer-associated bacterium (Table 1, Figure 1) and discuss the factors and
pathways that the pathogens activate to boost malignancies. The bacterial infection can con-
tribute to carcinoma by favouring inflammatory processes and the release of carcinogenic
bacterial effectors.
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Table 1. Overview of bacteria associated with carcinoma.

Bacteria Potential Hallmarks of Cancer and Other Associated
Pathologies Type of Carcinoma Associated

Helicobacter pylori Increase proliferation signalling [1–3] Gastric cancer [1–3]

Escherichia coli(pks+ve strain) Genomic instability (DNA damage), tumour-promoting
inflammation, and increased cell proliferation [4–6] Colorectal cancer [4–6]

Streptococcus bovis Increase proliferation signalling Colorectal cancer [7,8]

Salmonella enterica (serovar
Enteritidis and Typhi)

Increased cell proliferation, transformation, and
tumour-promoting inflammation [9–11]

Colorectal cancer and gallbladder
carcinoma [9–11]

Fusobacterium nucleatum Increased cell proliferation, avoid immune destruction, and
tumour-promoting inflammation [12,13]

Colorectal cancer (potentially oral,
head, neck, oesophageal, cervical,
and gastric cancer tissues) [12,13]

Enterotoxigenic Bacteroides
fragilis (ETBF)

Increased cell proliferation and tumour-promoting
inflammation [14–16] Colorectal cancer [14–16]

Enterococcus faecalis Genomic instability, tumour-promoting inflammation, and
increased cell proliferation [17] Colorectal cancer [17]

Clostridium septicum Myonecrosis [18,19] Potential involvement in colorectal
cancer [19]

Neisseria gonorrhoeae DNA damage [20], Genomic instability Prostate cancer [21,22] and bladder
cancer [23]

Mycobacterium tuberculosis Tumour metastasis and avoiding immune
destruction [24,25] Lung cancer [24,25]

Chlamydia trachomatis and
Chlamydia pneumoniae

Increased cell proliferation, tumour-promoting [26–28]
inflammation [29], genomic instability [30], and evasion of

apoptosis [31], evade immune system [32]

Cervical cancer [26–28] and
lung cancer

Mycoplasma hyorhinis Cell immortality, invasion, and increased cell
proliferation [33,34]

Prostate cancer, gastric carcinoma,
oesophageal cancer, lung cancer,

and breast cancer [33,34]
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1.1. Helicobacter pylori

H. pylori is a Gram-negative bacterium, that has established lifelong colonization
in the stomach of two-thirds of the world’s population with the highest prevalence in
Africa [35]. According to the GLOBOCAN database, H. pylori is responsible for 36.8% of
gastric cancers out of the estimated 2.2 million cancers attributed to infections [36]. From
the 850,000 non-cardia gastric cancer cases worldwide in 2018, 89% of the total incidence
are attributable to H. pylori infections, whereas around 73% of the non-Hodgkin lymphoma
of gastric location are attributable to H. pylori infections [36]. Furthermore, H. pylori is the
only bacterium classified as a group 1 carcinogen by IARC.

As a result of both intra and intergenomic diversification, H. pylori strains have shown
to appear with a broad genetic diversity [37]. Certain strain-specific proteins such as
vacuolating cytotoxin A (VacA) and cytotoxin-associated gene A (CagA) are shown to
have increased risk towards carcinoma [38–41]. VacA is a channel forming toxin capable of
inducing vacuoles into epithelial cells and has long been associated with the development
of gastric inflammation [38]. While the exact oncogenic mechanisms have not yet been
established, potential pathways have been suggested: VacA was found to cause apoptosis
in gastro-epithelial cells leading to increased cell proliferation or a possible entry point for
other carcinogens into the gastric mucosa [38]. VacA can activate the phosphoinositide
3-kinase (PI3K/AKT) pathway, resulting in the inhibition of glycogen synthase kinase
3 beta (GSK3β) via phosphorylation, with the subsequent dissociation of the GSK3β/β-
catenin complex [42].

CagA is shown to have a direct oncogenic effect and its expression can lead to atrophic
gastritis and gastric cancer [43]. The bacterium uses type IV secretion system (T4SS) to
inject CagA into gastric epithelial cells; the protein undergoes tyrosine phosphorylation
by the proto-oncogene tyrosine protein kinase (SRC) at the EPIYA phosphorylation motif
(Glu-Pro-Ile-Tyr-Ala amino acid sequence). Phosphorylated CagA activates SHP-2 (SRC
homology region 2 domain-containing phosphatase-2), a tyrosine phosphatase and known
oncoprotein, which potentially activates β-catenin, Janus kinases/signal transducer and
activator of transcription proteins (JAK/STAT) [44] and nuclear factor like kappa B (NF-
kB) [45] pathways resulting in targeted transcriptional upregulation of genes involved in
carcinogenesis [46]. c-Src inactivation induced by CagA leads to tyrosine dephosphoryla-
tion of an actin binding protein, cortactin, thus rearranging the actin cytoskeleton [47,48].
Cortactin expression promotes the migration, invasion, and proliferation of cells in vitro
and in vivo, conferring malignancy [49,50]. Recently, Helicobacter was reported to upregu-
late cortactin in a CagA and JNK-dependent pathway which might partially explain the
mechanism of Helicobacter driven carcinogenic process [51] (Figure 2).

CagA activates the extracellular signal-regulated kinases/mitogen-activated protein
kinase (ERK/MAPK) pathway through SHP2, resulting in morphological changes in the
epithelium called hummingbird phenotype in a Ras-independent manner [52]. CagA also
interacts with the E-cadherin/β-catenin complex resulting in nuclear accumulation of
β-catenin leading to transdifferentiation of gastric epithelial cells [53]. The bacteria can
induce the epithelial-to-mesenchymal transition (EMT) mediated by Snail, a transcriptional
repressor of E-Cadherin expression, in gastric epithelial cells by GSK3β depletion [54]. The
tumour suppressor TP53 undergoes proteasomal degradation leading to DNA damage in
the presence of CagA [55]. Most interestingly, the transgenic expression of CagA in mice
induces gastrointestinal and hematopoietic neoplasms, revealing the direct carcinogenic
potential of the protein [41].

Other proteins that are associated with H. pylori, which increases the risk of gastric
cancer, are the outer membrane proteins (OMPs) such as blood-group antigen-binding
adhesin (BabA) and outer inflammatory protein A (OipA). BabA binds to human Lewis(b)
surface epitopes, which results in increased levels of specific cytokines causing cell prolifer-
ation. OipA activates β-catenin through binding of epidermal growth factor receptor and
activation of PI3K-AKT signalling [56,57] (Figure 2). The eradication of H. pylori, in both
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healthy individuals and individuals with gastric neoplasia, reduces the incidence of gastric
cancer and hence the mortality from gastric cancer [58].

Pathogens 2021, 10, x FOR PEER REVIEW 4 of 21 
 

 

induces gastrointestinal and hematopoietic neoplasms, revealing the direct carcinogenic 
potential of the protein [41].  

Other proteins that are associated with H. pylori, which increases the risk of gastric 
cancer, are the outer membrane proteins (OMPs) such as blood-group antigen-binding 
adhesin (BabA) and outer inflammatory protein A (OipA). BabA binds to human Lewis(b) 
surface epitopes, which results in increased levels of specific cytokines causing cell prolif-
eration. OipA activates β-catenin through binding of epidermal growth factor receptor 
and activation of PI3K-AKT signalling [56,57] (Figure 2). The eradication of H. pylori , in 
both healthy individuals and individuals with gastric neoplasia, reduces the incidence of 
gastric cancer and hence the mortality from gastric cancer [58]. 

 
Figure 2. Oncogenic pathways activated by H. pylori: VacA can cause apoptosis, resulting in increased cell proliferation or 
serve as a possible entry point for other possible carcinogens. CagA enters the cell through T4SS and is phosphorylated 
by Src, causing it to activate SHP-2, resulting in cellular morphological changes. Additionally, CagA can stabilize β-
catenin, resulting in increased cell proliferation. Outer membrane protein BabA binds to human Lewis (b) surface epitopes 
[59,60], thus increasing specific proinflammatory cytokines like CXCL1 [61], that might boost cell proliferation [62]. Outer 
membrane protein OipA binds to EGFR, leading to activated PI3K-AKT signalling and increased β-catenin. 

1.2. Salmonella enterica and Salmonella typhi  
Salmonella, a Gram-negative bacterium from the Enterobacteriaceae family of which 

subspecies Salmonella Enteritidis (S. Enteritidis) and Salmonella Typhi (S. Typhi) have been 
associated with an increased risk of colon cancer [63] and gallbladder carcinoma, 

Figure 2. Oncogenic pathways activated by H. pylori: VacA can cause apoptosis, resulting in increased cell proliferation or
serve as a possible entry point for other possible carcinogens. CagA enters the cell through T4SS and is phosphorylated by
Src, causing it to activate SHP-2, resulting in cellular morphological changes. Additionally, CagA can stabilize β-catenin,
resulting in increased cell proliferation. Outer membrane protein BabA binds to human Lewis (b) surface epitopes [59,60],
thus increasing specific proinflammatory cytokines like CXCL1 [61], that might boost cell proliferation [62]. Outer membrane
protein OipA binds to EGFR, leading to activated PI3K-AKT signalling and increased β-catenin.

1.2. Salmonella enterica and Salmonella typhi

Salmonella, a Gram-negative bacterium from the Enterobacteriaceae family of which
subspecies Salmonella Enteritidis (S. enteritidis) and Salmonella typhi (S. typhi) have been
associated with an increased risk of colon cancer [63] and gallbladder carcinoma, respec-
tively [10,11,64]. Salmonella enterica infection is known to modulate inflammatory response
of the host leading to DNA damage, increased cell proliferation, and migration leading to
neoplasm and eventually cancer [65,66]. Salmonella effector proteins have been shown to
be associated with colon cancer. The first effector protein is typhoid toxin, a cyclomodulin,
that favours dysbiosis and leads to increased cell survival, risking the development of
inflammatory bowel disease and colon cancer [67,68]. The second effector protein is Avr,
secreted by T3SS and detected in the stool of patients with colon cancer [69]. Avr decreases
inflammation as it suppresses secretion of cytokines such as IL-12, IL-6, IL-20, TNF-α,
and interferon-γ. Avr is shown to directly activate the Wnt/catenin pathway favouring
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tumour formation in intestinal epithelium [70]. The acetyl transferase activity of Avr targets
p53 [71], leading to cell cycle arrest and apoptosis inhibition by depleting the pro-apoptotic
protein Bax [72]. Finally, the effector protein AvrA was found to increase the STAT3 sig-
nalling pathway in colon cancer [73]. STAT3 is a transcription factor, known to increase cell
proliferation and inflammatory regulation and promote tumorigenesis.

Salmonella sp. enters the gall bladder through the bloodstream or the bile [74]. Several
studies have shown the presence of Salmonella enterica, S. typhi, S. paratyphi, S. typhimurium
in tissue biopsies of gall bladder carcinoma [75]. Salmonella has the ability to form biofilms
on gall stones and can persist in the infected tissue [76]. The inflammation caused during
infection may cause immune cell recruitment including macrophages that express COX-
2, an enzyme that is crucial in the development of gastro-intestinal tumors [77,78]. A
study done on murine gallbladder organoids reports that Salmonella enterica was not a
single causal factor, but a part of a multistep process in the development of gallbladder
carcinoma [10]. Overexpression of the proto-oncogene c-Myc and silencing of tumour
suppressor p53, together with the presence of the MAPK and AKT pathways, was necessary
to provoke cellular transformation in the organoids [10]. Salmonella enterica was shown
to activate MAPK and AKT pathways through effector proteins such as SopB, SopE and
SopE2, injected by T3SS into host cells to regulate bacterial uptake and secure intracellular
survival through cell transformation [10] (Figure 3). However, more studies are required to
study which patients are predisposed to Salmonella-induced carcinoma.
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transformation and carcinoma.
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1.3. Escherichia coli

Escherichia coli (E. coli) is a Gram-negative, facultative anaerobe commensal bacteria
found in the gut. Studies have frequently found strong associations between mucosa-
adherent E. coli strains and colorectal cancer (CRC) [79]. Genotoxins are produced by
bacteria as a means of competing with other microbes. The cyclomodulin-positive B2 E. coli
strain possesses the polyketide synthase genetic islands (pks +ve), coding for the bacterial
genotoxin colibactin. This E. coli strain abnormally colonizes the mucosa of colon cancer
patients, promoting low grade inflammation and cell proliferation [80]. Colibactin has
shown carcinogenic properties by inducing double-stranded DNA breaks and cell cycle
arrest [81]. This activates G2-M DNA damage checkpoint pathway where the mismatch
repair proteins MSH2 and MLH1 are effectively depleted in colonic cells through T3SS-
induced effector proteins [81]. Colibactin was shown to promote colon tumour growth
by induing senescence-associated secretory phenotype through increased p53 SUMOyla-
tion [82]. In vitro studies show that the bacteria can alter tumour microenvironment by
inducing the three major hallmarks of cancer: EMT, altering the cancer stem cell population,
and metabolic reprogramming [83]. Most interestingly the etiological role of colibactin in
colorectal carcinoma was evident when the DNA damage signature induced by colibactin
corresponded to mutational hotspots in the genome of colorectal cancer patients [5,84].
Nevertheless, whether an already existing colon cancer creates a favourable environment
for the B2 E. coli to colonize the colonic epithelial cells [82], or whether E. coli is a causal
agent for CRC is still unclear (Figure 4).
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Figure 4. E. coli, through colibactin, caused cell cycle arrest and double-stranded DNA breaks
resulting in genomic instability. Additionally, colibactin was found to increase cell proliferation and
induce tumour-promoting inflammation. Colibactin also resulted in increased p53 SUMOylation
resulting in emergence of senescent cells. Finally, E. coli downregulated mismatch repair proteins
MSH2 and MLH1 leading to further genomic instability.

1.4. Chlamydia trachomatis and pneumoniae

The Chlamydiaceae family is a group of obligate intracellular bacteria, with the
subspecies Chlamydia trachomatis (C. trachomatis) capable of causing sexually transmitted in-
fections and Chlamydia pneumoniae (C. pneumoniae) capable of causing lung infections. Both
these bacteria cause asymptomatic and chronic infections. The first associations between
C. pneumoniae and lung cancer goes far back, however, newer studies have found varying
results when trying to establish a reliable biomarker in measuring chronic C. pneumoniae
infection and linking it to lung cancer [85,86]. Most often the measure of titre immunoglob-
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ulin A was used, in which some studies found associations, while others found none.
Newer studies found associations by measuring Chlamydia heat shock protein-60 antigen,
another marker used to indicate chronic Chlamydia infection. The conflicting results could
be caused by the modest reliability of micro-immunofluorescence. Despite controversial
results, most studies suggest that chronic C. pneumoniae infection did associate with lung
cancer [87,88]. Recent studies have indicated that the association may not only be mediated
by inflammation, but also epigenetic changes, such as transformation of mesothelial cells
and dysregulation in replication, transcription, and DNA repair mechanisms in the host
cell [89]. How C. pneumoniae induces these epigenetic changes is unclear and should be
looked further into.

While human papillomavirus (HPV) is well known as the most common cause of cer-
vical cancer inflicted by infections, studies indicate that C. trachomatis may not just be a
comorbidity to HPV, but instead an independent predictor for cervical cancer. The first
evidence of C. trachomatis associated to cancer was based on an epidemiological correlation
between C. trachomatis reactive serum antibodies and the presence of cervical cancer [90–92].
Studies show the presence of chlamydia HSP60-1 antibodies associated with increased cer-
vical cancer risk [93]. Recently, studies from two independent population showed women
seropositive for C. trachomatis had twice the risk of developing ovarian carcinoma [94].
The mechanism by which C. trachomatis may lead to cancer development is described
through its ability to cause the host cell DNA damage and an impairment of the host
DNA damage response [30]. Increased levels of reactive oxygen species (ROS) [95] lead
to oxidative DNA damage, resulting in the production of single-strand breaks [96]. The
impairment of the host DNA damage response was caused by histone alterations and
activation of other repair inhibitory cell mechanisms. Through inhibitions of base excision
repairs, DNA damage was not repaired efficiently, resulting in genomic instability. C.
trachomatis is known to strongly activate the PI3/MAPK survival signal and efficiently
block cell death [97,98]. It also activates the anti-apoptotic protein cIAP-2. The bacterium
is known to possess deubiquitinase Cdu1, which is known to stabilize the anti-apoptotic
protein, Mcl-1 [99,100]. Moreover, C. trachomatis also downregulates the tumour suppressor
p53 [27,31] via the PI3K and MDM2 pathways. The bacteria induce glutamine addiction in
the infected cells by stabilizing the proto-oncogene c-Myc [26]. In addition, the infection
remains asymptomatic by paralyzing the neutrophils, the first line of defense [32]. Persis-
tent infection of C. trachomatis-inducing DNA damage, blocking cell death and preventing
immune surveillance might lead to tissue damage and malignancies in the infected tissue
(Figure 5).

1.5. Fusobacterium nucleatum

F. nucleatum is a Gram-negative obligate anaerobe bacterium commonly found in
the oral cavity, known to cause opportunistic infections [101]. This oral commensal is a
periodontal pathogen associated with a wide spectrum of human diseases. F. nucleatum has
been associated with CRC through detection by quantitative polymerase chain reaction
and 16S rRNA sequence [102]. Recently, F. nucleatum has been associated with additional
cancer types, including oral, head and neck, oesophageal, cervical, and gastric cancers [103].
However, additional studies should be conducted to further back these associations.

The role of F. nucleatum in CRC is thought to be through multiple different path-
ways. Fusobacterium adhesin A (FadA) was found to bind and inhibit E-cadherin in
xenograft mice. E-cadherin is a tumour suppressor, causing activation of β-catenin sig-
nalling, previously mentioned to promote cell proliferation [104]. Additionally, FadA
increased expression of nuclear factor-κB (NF-κB) and pro-inflammatory interleukins such
as IL-6, IL-8, and IL-18 leading to a proinflammatory microenvironment [104]. Finally, F.
nucleatum was shown to induce anticancer immune response evasion through fusobacterial
apoptosis protein 2 (Fap2) [105]. Fap2 was found to bind the TIGIT immune receptor, a
receptor expressed on all natural killer cells (NK cells) and other immune cells, thus inhibit-
ing NK cell cytotoxicity [105]. Additionally, TIGIT was expressed on tumour-infiltrating
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lymphocytes and Fap2 was found to inhibit T cell activities, effectively protecting F. nu-
cleatum from immune cell attacks (Figure 6). Interestingly, it was shown that exosomes
harbouring miR1246/92b-3p/27a-3p CXCL16 derived from F. nucleatum-infected colorectal
cancer cells facilitated tumour metastasis [106]. Moreover, in vitro and in vivo studies
show that the bacterial infection leads to upregulation of cytochrome p450 monooxygenase,
which increases the invasiveness and migratory ability (EMT) of colorectal cancer cells via
the TLR4/Keap1/NRF2 axis [107].
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been associated with CRC through detection by quantitative polymerase chain reaction 
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Figure 5. C. trachomatis downregulates the tumour suppressor P53 leading to increased cell prolifera-
tion, while also increasing levels of reactive oxygen species, causing oxidative DNA damage, which
together with inhibition of cell DNA repair mechanisms causes genomic instability. C. pneumoniae,
through unknown mechanisms, leads to inflammation and dysregulation of replication, transcription,
and DNA repair mechanisms.
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Figure 6. Pathways activated by F. nucleatum. FadA was found to inhibit E-cadherin, activating β-
catenin and increasing cell proliferation. Additionally, increased levels of NF-κB and proinflammatory
interleukins IL-6, IL-8, and IL-18 resulted in a possible tumour promoting inflammation. Fap2 showed
interactions with the TIGIT immune receptor, causing inhibition of immune cells, and thereby creating
an immunosuppressive microenvironment.
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1.6. Streptococcus bovis

S. bovis is a group of Gram-positive, opportunistic bacteria, capable of causing en-
docarditis and bacteraemia. S. bovis has shown to associate with colorectal cancer (CRC),
through a series of retrospective studies [108,109]. Over time it has become clearer, that
the association was mostly derived from the subspecies Streptococcus gallolyticus (SG).
While it was previously uncertain if the presence of SG in tumour tissue was caused by
SG-promoting tumour development, or the result of the tumour enabling SG coloniza-
tion, recent studies done on mice found that SG may in fact promote colorectal tumour
development [110,111].

The study showed a clear indication that SG increased levels of β-catenin, c-Myc,
and proliferative cell nuclear antigen (PCNA) resulting in cell proliferation in certain
responsive cell lines. Additionally, silencing β-catenin through knockdown cells resulted
in a completely abolished effect of SG on the increased cell proliferation, thereby indicating
the important role of SG in activating β-catenin and promoting cell proliferation, resulting
in potential tumour development. The pathway of how SG upregulated β-catenin is still
unclear and should be further investigated [111] (Figure 7).
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1.7. Mycoplasma

Mycoplasma is a group of small bacteria with no cell wall, consisting of more than
100 subspecies. Several species of Mycoplasma have been suspected to associate with cancer,
with the most prominent being: M. hyorhinis, M. hominis, and M. genitalium, and a few
mentions of M. penetrans and M. salivarium [112–114].

Few studies have attempted to find these associations, indicating a need for additional
large-scale studies. Whether these bacteria can directly lead to malignancies is yet unclear.
In relation to cancer, M. hyorhinis is the most widely studied and has shown to be associ-
ated with prostate cancer, gastric carcinoma, oesophageal cancer, lung cancer, and breast
cancer. In recent studies, several of the bacterial proteins have been found to possibly have
carcinogenic mechanisms. One study found a clear indication of M. hyorhinis activating
the β-catenin signalling pathway in M. hyorhinis-induced gastric cancer cell motility. Addi-
tionally, the activation of β-catenin seemed to be induced by glycogen synthase kinase 3
beta (GSK3β) and the Wnt-receptor lipoprotein-receptor-related protein 6 (LRP6), while
also finding interaction between LRP6 and the mycoplasmal membrane protein p37. When
GSK3β did not bind and activate LRP6, no increased activation of β-catenin was found [34].
The p37 protein activates carcinogenic effects such as enabling immortality in mammalian
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cell lines [115] and promoting cell motility, migration, and invasion through the activation
of metalloproteinase-2 and epidermal growth factor receptor in vitro [116] (Figure 8).
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Figure 8. M. hyorhinis increases β-catenin through GSK3β, Wnt-signalling, and activation of LRP6.
This resulted in increased cell proliferation. Without LRP6 activation, GSK3β had an inhibitory effect
on β-catenin. LRP6 was additionally able to interact with p37, leading to increased levels of cell
immortality, cell motility, migration, and invasion.

1.8. Bacteroides fragilis

B. fragilis is an anaerobe bacterium, part of the normal microbiota in the human colon,
often categorized into nontoxigenic B. fragilis and enterotoxigenic B. fragilis (ETBF), capable
of producing a heat-labile toxin [117]. Recently, gut microbiota have been shown to play a
bigger role than previously anticipated in the development of CRC, and ETBF has been
found to be prevalent in the colonic mucosa of CRC patients [117,118]. This data was
additionally supported by a study on APC+/− mice, which showed the toxin from ETBF
had carcinogenic properties through inflammatory cascades. The B. fragilis toxin (BFT)
mediated E-cadherin cleavage, through an unidentified receptor, resulting in the activation
of the Wnt/β-catenin signalling pathway [119]. Additionally, BFT was able to create a
proinflammatory microenvironment through activation of STAT3 and possibly NF-κB. The
study additionally found that IL-17 is a key proinflammatory mediator necessary for colon
tumour development in the APC+/− mice [119] (Figure 9). The link between IL-17 and
tumorigenesis is still unclear.
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Figure 9. B. fragilis (ETBF) cleaves E-cadherin, leading to activated β-catenin levels, resulting in
increased cell proliferation. ETBF also creates tumour-promoting inflammation through upregulation
of the STAT3 pathway, IL-17, and NF-κB.

1.9. Neisseria gonorrhoeae

N. gonorrhoeae is an aerobic Gram-negative bacterium, well known for its diplococci
shape, being one of the most frequent sexually transmitted diseases, and its capability to
cause pelvic inflammatory disease. N. gonorrhoeae has widely been tested for its association
with prostate cancer, often leading to controversial results, with large prospective cohort
studies failing to find any association [120]. A more recent meta-analysis suggests that
despite the varying results, N. gonorrhoea may in fact be associated with prostate cancer [21].
Other studies found associations between N. gonorrhoeae and bladder cancer in men [23].
Due to the vast amount of controversy, large-scale cohort studies should be conducted
to support these associations. The mechanism behind the potential carcinogenic effect of
N. gonorrhoeae is unclear and not well explored, likely due to its inconsistent associations.
However, one study found N. gonorrhoeae caused DNA damage, increased the expression
of p21 and p27 and decreased the expression of p53 in non-tumour epithelial cells. This
could support the claim that N. gonorrhoeae may be carcinogenic, although this should be
further explored [20] (Figure 10).
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expression of p21 and p27 while decreasing the levels of p53 in non-tumour epithelial cells, resulting
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1.10. Enterococcus faecalis

E. faecalis is a facultative anaerobe Gram-positive bacterium commonly found in
the oral cavity and intestines. E. faecalis populations have been found to be significantly
increased in faeces of patients with CRC compared to healthy controls; however, the
question of whether the role of E. faecalis is protective or carcinogenic remains [121]. One
study found E. faecalis to activate Wnt/β-catenin signalling through coculturing with
M1 macrophages, thereby inducing cell proliferation in murine primary colon epithelial
cells [122]. Another study found the heat-killed E. faecalis EC-12 strain supressed β-catenin
signalling, thus having a potential protective role in CRC [123].

A possible explanation could be caused by the isolation of different E. faecalis strains.
Different strains, as the result of gene transfers, could lead to the bacterium becoming more
or less virulent, resulting in different inflammatory responses [124]. A harmful role of E.
faecalis has been suggested to be through its ability to induce intracellular ROS production,
causing DNA instability and a lowered DNA repair response. Finally, infection seemed to
induce a NF-κB-dominated inflammatory response [125] (Figure 11)
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Figure 11. E. faecalis increased intracellular levels of ROS, leading to DNA instability and reduced
DNA repair response resulting in genomic instability. E. Faecalis increased NF-κB levels, thereby
causing a tumour promoting inflammation. When cocultured with M1 macrophages, β-catenin levels
increased, leading to increased cell proliferation. Coculturing with heat-killed E. faecalis EC-12 strain,
β-catenin was reduced, showing a possible protective role in CRC.

1.11. Clostridium septicum

C. septicum is an anaerobic, Gram-positive, gas-producing bacterium capable of form-
ing spores. Infection with C. septicum is uncommon. Despite the low number of cases,
studies have found strong indications of its associated with CRC [126,127]. It is not clear if
this association is a coincidence or if any bacterial virulence factors are directly causing
malignancy. A possible explanation of this association has been suggested to be that the tu-
mour creates a hypoxic and acidic microenvironment through anaerobic glycolysis, which
favours the germination of the C. septicum spores, indicating that the bacterium is not the
causal agent of the tumour [128]. A direct involvement of C. septicum in CRC has not yet
been found.

1.12. Mycobacterium tuberculosis

Mycobacterium tuberculosis (MBT) is an intracellular pathogenic bacterium, capable
of entering the respiratory airways, establishing lifelong infections. MBT has been well
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documented to be associated with increased risk of lung cancer [129]. A recent study found
strong associations with cancer, specifically from the M. tuberculosis L form (MBT-L), a wall
defective and pleomorphic form of MBT, which behaves much like carcinogenic viruses.
The MBT-L had low activity and pathogenicity, which may often have gone undiagnosed
causing possible misclassifications such as chronic lymphadenitis of unknown origin [130].
Recently a study on mice, found MBT inhibited T-cell-mediated cellular immune response
by impairing T helper cells in the late stage of infection. MBT is reported to promote tumour
metastasis in the lungs through increased programmed cell death protein 1/programmed
death-ligand 1 (PD-1/PD-L1) pathway activation [11] (Figure 12).
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Figure 12. Mycobacterium tuberculosis (MBT) increased levels of PD-1/PD-L1 resulting in increased
tumour metastasis while also inhibiting T cell immune response causing an immunosuppressive
microenvironment favourable for potential tumour progression.

2. Discussion

Although a rather large group of bacteria has been shown to be associated with
different cancer types, only H. pylori is currently accepted as a group 1 carcinogen, reflecting
how the bacterial cancer field has not received the same amount of attention as the viral
field. While some bacteria such as E. coli, S. bovis, and C. trachomatis have long been
associated with cancer, studies focused on bacterial factors that directly predispose infected
tissue towards carcinoma have only recently been reported. The bacterial effectors that can
inflict mutations and result in malignancies in the infected tissue are yet to be discovered.

Several bacteria mentioned are commonly found in the human microbiome, yet they
are associated with cancer. If a bacterium is causal for cancer, why is the cancer not seen
more frequently? Even though cancer is one of the well-funded and focused research areas,
much is still to be discovered. For a cell to turn malignant due to chronic infectious disease,
the cell must accumulate the respective mutations in the DNA, or these epigenetic changes
might imprint memory to activate indefinite survival signals leading to cell proliferation.
Most of the showcased bacteria are capable of inflicting one or more of these hallmarks to
an otherwise normal cell, but unless all the hallmarks are acquired, i.e., “the perfect storm
has hit”, the cell may not be a fully functional cancer cell. If the bacteria truly are linked
to the cause of cancer, they are not likely the only causal factor but instead a contribution
in the multistep process required to fulfil the hallmarks of cancer, leaving the rest of the
hallmarks to be acquired by other causes, such as radiation, smoking, aging, or inheritance
Thus these chronic infections can increase the fitness of cells towards carcinoma.
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Since many studies show that bacteria could be located at the site of tumour develop-
ment, it is also debatable whether the bacteria might colocalize in the transformed tissue
due to the excess nutrient availability and increased vascularization. This affinity for
tumour tissue is exploited by scientists, by using attenuated strains of bacteria as adjuvants
in the treatment of various neoplasms. The bacterial tropism for tumour microenviron-
ment could also activate the innate and adaptive immune response of the host to clear
malignant cells.

This review showcases that bacteria likely have a bigger role to play in the category of
infectious cancers, and that this category, previously estimated to be 13% of all cancers, is
likely underestimated. The bacteria included in this review are the most suggested bacteria
to be associated with increased risk of cancer, yet there is still a lack of deeper understanding
in how these bacteria may be associated to the cause of cancer. This highlights the need
for more research to be done in this field with the likelihood of finding more bacteria, not
mentioned in this review, to also have carcinogenic properties.
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