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Background. 0e T wave represents ECG repolarization, whose detection is required during myocardial ischemia, and the first
significant change in the ECG signal is being observed in the STsegment followed by changes in other waves like P wave and QRS
complex. To offer guidance in clinical diagnosis, decision-making, and daily mobile ECG monitoring, the T wave needs to be
detected firstly. Recently, the sliding area-based method has received an increasing amount of attention due to its robustness and
low computational burden. However, the parameter setting of the search window’s boundaries in this method is not adaptive.
0erefore, in this study, we proposed an improved sliding window area method with more adaptive parameter setting for Twave
detection.Methods. Firstly, k-means clustering was used in the annotated MIT QTdatabase to generate three piecewise functions
for delineating the relationship between the RR interval and the interval from the R peak to the Twave onset and that between the
RR interval and the interval from the R peak to the T wave offset. 0en, the grid search technique combined with 5-fold cross
validation was used to select the suitable parameters’ combination for the sliding window area method. Results. With respect to
onset detection in the QT database, F1 improved from 54.70% to 70.46% and 54.05% to 72.94% for the first and second
electrocardiogram (ECG) channels, respectively. For offset detection, F1 also improved in both channels as it did in the European
ST-Tdatabase. Conclusions. F1 results from the improved algorithm version were higher than those from the traditional method,
indicating a potentially useful application for the proposed method in ECG monitoring.

1. Introduction

Nowadays, an increase in the number of people suffering
from heart diseases has been seen. Characterized by several
waveforms such as the P wave, QRS complex, and T wave,
electrocardiogram (ECG) becomes the most intuitive and
basic tool to diagnose heart diseases in clinical applications
which can provide essential physiological/pathological in-
formation for clinical diagnoses and decision-making [1],
including important time interval information between the
onset and offset of different waves [2]. Besides, many
wearable monitoring devices have appeared in recent years,
which makes it possible to monitor ECG signals throughout
an individual’s daily life. Meanwhile, a large amount of ECG
data are generated daily, which is impossible for physicians
to view/diagnose each ECG signal manually [3]. 0erefore,

developing accurate automatic analysis algorithms for ECG
signals is critical, especially with respect to mobile ECG
monitoring [4]. Furthermore, QRS complex have been
widely investigated because of its highest amplitude over the
past decades. Up to now, there are many classical methods
for detecting QRS complex and most of the methods have
been listed in [5], and the classical widely-used methods are
parabolic fitting [6], neural-network-based method [7], and
convolutional neural network [8]. In addition, those
methods for detecting the QRS complex have shown high
sensitivity with positive predictivity (>99%) on theMIT-BIH
arrhythmia database [9], which can provide powerful sup-
port for other waves’ detections.

As one of three main waves of ECG, the Twave represents
ECG repolarization, and its absence or unusual shapes may
signify disruption in repolarization or another segment of the
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heartbeat [10]. Additionally, T wave abnormalities are asso-
ciated with some heart diseases such as inverted T waves
found in other leads (other than the V1 to V4 leads), which is
related to an increase in cardiac deaths, and a tall or wide QRS
complex with an upright T wave is further suggestive of a
posterior infarction. Furthermore, during myocardial ische-
mia, the first significant change in ECG signal is being ob-
served in ST-segment followed by changes in other waves like
P wave and QRS complex of ECG signal. Hence, detection of
the T wave is significant in clinical applications [11].

However, accurate/robust Twave detection still presents
challenges due to its low amplitude (usually 0.1 to 0.3mV) as
well as great variations in T waves’ morphologies [12], like
positive T wave, negative T wave, and biphasic T wave.
Besides, most of the ischemic cases suffering from earlier
STEMI (ST-elevation myocardial infarction) have a prom-
inent ST elimination or depression, which significantly af-
fects the detection of the T onsets. Nowadays, various
approaches based on different techniques have been pro-
posed for Twave detection, and those typical techniques are
wavelet [13, 14], mathematical model [15], support vector
machine (SVM) [16], artificial neural network (ANN)
[17–19], low-pass differentiation (LPD) [20], hiddenMarkov
model (HMM) [21, 22], partially collapsed Gibbs sample and
Bayesian (PCGS) [23], “wings” function [24], derivative
curve [25], adaptive technique [26], computing the Trape-
zium’s area [27], TU complex analyses [28], correlation
analysis [29], k-nearest neighbor [30], and sliding window
area (SWA) [31]. In these aforementioned methods, the
wavelet-based method is robust to waveform morphological
variations but is sensitive to noise [13, 14].0emathematical
model method needs to build robust ECG templates, but
when the waveform variations are large, building universal
templates becomes difficult [15]. 0e SVM-based method is
efficient but constructing efficient features is tough [16], and
the ANN-based method faces the drawback of high com-
putational complexity [17]. As a comparison, the SWA
method has low computational complexity which is also
robust to noise and waveformmorphological variations [31].

In 2006, Zhang et al. first proposed the SWAmethod for
detecting T wave offsets and confirmed its efficiency in the
QT database [31]. Subsequently, Song et al. improved this
method for detecting T wave onsets [32]. Afterwards, our
team combined onsets and offsets detection for classifying
the morphology of the ST segment [33]. In 2017, our team
analyzed its efficiency in the QT database with a different
evaluation index (F1 measure), and we found that there is
still some space for further improvement since the pa-
rameter settings in the transitional SWA method are not
adaptive [34], and the parameters given by Zhang et al. [31]
and Song et al. [32] are empiric values and there is no
optimization step included.

Hence, in this study, an improved SWA method for both
onset and offset detections of T wave with more adaptive
parameter settings is proposed. 0e performance of the
improvedmethod was compared with the traditional method,
and both methods were validated in two common ECG
databases: (1) the QT database (training and testing) and (2)
another independent European ST-T database (only testing).

2. Methods

2.1.Data. Records from two datasets are used.0e first is the
QT database, which contains 105 15-minute two-channel
ECG recordings with the sample rate of 250Hz, and we
chose it as the training and testing sets because multiple-type
records from different databases are contained in this da-
tabase. Besides, totally 43 recordings have manually anno-
tated T wave onsets and 103 recordings have manually
annotated T wave offsets. All records with annotations are
selected, and for each record, a 0.05–45Hz low-pass zero-
phase filter was applied for denoising before importing to
our algorithm. Furthermore, there are usually 30 to 100
representatively manually annotated discrete beats in each
annotated recording. 0us, an RR interval adjustment is also
needed before using these records because we used the
manually annotated R peak locations. Table 1 shows the
summarized annotated information of the QT database.
More detailed information about the annotations of this
database can be found in the study by Laguna et al. [35].

0e second database is the European ST-T database,
which consists 90 2-hour two-channel ECG recordings
sampled at 250Hz, and records of this database are only
used to test the robustness of our improved method. 0e
European ST-T database is chosen because of its widely
usages in evaluation of algorithms for analysis of ST and T
wave changes [36, 37]. In this study, 23 recordings (only the
first 5minutes in each recording) were selected and were
manually annotated for T wave onsets and offsets by a
trained staff member because of loss of Twave international
annotations. Table 1 also shows the detailed annotation
information of this database. Besides, when choosing re-
cords, if there were serious signal quality problems within
the first 5-minute episode, the following 5-minute episode
was used and a 0.05–45Hz bandpass filter was applied for
denoising for each record we chose before importing into
the algorithm. We do not implement RR interval adjust-
ment because R peaks were detected by jqrs method [21].

To verify the consistency of the annotations between the
two databases, we analyzed the time interval information
between the T wave onset/offset and the corresponding R
peak position for the two databases. Figure 1 shows the
probability density distributions of the time interval in-
formation from the two databases. As shown in Figure 1,
we found that our manual annotations of the onset/offset
of T wave in the European ST-T database had similar
probability density distributions with the annotations in
the QT database, which indicated the effectiveness of our
annotations.

2.2. Sliding Window Area (SWA) Method

2.2.1. SWA Method. SWA is an algorithm for detecting T
wave onset and offset (Ton and Tend, respectively) by analyzing
the waveform area of ECG within a sliding window [31].
Onset/offset is detected when the area of the sliding window
reaches its maximum in a prefixed searching range. 0en, we
show an example for explaining themethod in Figures 2 and 3.
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Table 1: Summary of the annotative information of the QT and the European ST-T databases.

Variable
QT database European ST-T database

Onset Offset Onset Offset
No. of recordings 43 105 23 23
No. of annotated beats 1371 3542 14337 14337
Min. Dis_qrs (ms) 52 228 60 220
Max. Dis_qrs (ms) 412 784 264 612
Mean of Dis_qrs (ms) 164 360 160 380
SD of Dis_qrs (ms) 60 71 29 47
Dis_qrs: the time interval between the Twave onset/offset and the Rwave position within the current beat; SD: standard deviation.0e annotations of the QT
database are taken from the database website https://www.physionet.org/physiobank/database/qtdb/doc/index.shtml.
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Figure 1: Probability density distribution of the time interval information between T wave onset/offset and R wave peak by analyzing the
annotations from the two databases: (a) QT database and (b) European ST-T database.
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Figure 2: Demonstration of the SWA method for T wave onset detection.
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Figure 3: Demonstration of the SWA method for detecting offsets of the T wave.
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Figure 2 illustrates the detection for Ton. Firstly, with the
location of R peak, the left and right boundaries (t1 and t2,
respectively) of search window are determined based on the
current RR interval as suggested in the study by Song et al. [32]:

t1 � ⌈0.5 ×
���
RRi


⌉ + Ri + 0.08 s,

t2 � ⌊0.15 × RRi( ⌋ + Ri + 0.12( s, if RRi < 0.88 s,
t1 � ⌈0.5 ×

���
RRi


⌉ + Ri + 0.1 s,

t2 � Ri + 0.32( s, if RRi ≥ 0.88 s,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

where RRi is the ith RR interval and Ri is the ith position of R
peak.

0e waveform area (area of onset denoted as: Ao) within
the fixed sliding window t t + w  was calculated using the
following formula:

Ao � 
t+w

j�t

sj − sk , (2)

where w � 0.12 s (by default), which is the window width, t
stretches from t1 to t2, sj is the waveform amplitude at the jth
sample point, and sk is the local average amplitude (using a
smoothing window of p � 0.016 s by default), which is
defined according to the following equation:

Sk �
1

2p + 1


t+p

j�t−p
Sj. (3)

As shown in Figure 2, when t�Ton, Ao reaches its
maximum value.

Figure 3 illustrates the Tend detection. At first, with the
location of the R peak, the left and right boundaries (t3 and t4,
respectively) of the search window are determined based on the
current RR interval as suggested in a study by Zhang et al. [31]:

t3 � ⌊0.15 × RRi⌋ + Ri + 0.148( s,

t4 � ⌈0.7 × RRi⌉ + Ri − 0.036( s, if RRi < 0.88 s,

t3 � Ri + 0.28( s,

t4 � ⌈0.2 × RRi⌉ + Ri + 0.404( s, if RRi ≥ 0.88 s.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(4)

0e waveform area (area of ends denoted as: Ae) within
the fixed sliding window t−w t  was then calculated
according to the following formula:

Ae � 
t

j�t−w
sj − sk , (5)

where w � 0.128 s (by default), t is from t3 to t4, and sj and sk

have been defined in equation (2). As shown in Figure 3,
when t�Tend, Ae reaches its maximum value. As for the
difference between Figures 2 and 3 is the direction to cal-
culate the sliding area.

In addition, Algorithm 1 shows the description of the
traditional SWA algorithm and more details to which the
algorithm proof can refer [31].

2.2.2. Improved SWAMethod. One key issue with respect to
the SWA method is to accurately determine the search

boundaries, but the search boundaries are closely related to
the RR interval. As shown in Figures 2 and 3, if the interval of
the searching window’s boundaries was set too small which
means that two boundary points are near the current R peak,
the maximum of sliding area could not be found or the
detected onset/offset of T wave are nearer to the R peak.
0ese issues affect detection accuracy, which results in de-
tection error and vice versa.

In the traditional SWA method, there are two piecewise
functions with predefined parameter settings. In order to
more accurately model the relationships between RR interval
and the searching boundaries in this study, we performed a
k-means clustering analysis between RR intervals and RTon
(RTon denotes the time interval between the R peak and T
wave onset) as well as the relationship between the RR
intervals and RToff (RToff the time interval between the R
peak and Twave offset), which is implemented by means of
the k-means function in Matlab. 0e scatter plots with the
optimal k-means clustering (k� 3) are shown in Figure 4
[38], and k is determined by combining the results of
clustering and the computational complexity of parameters’
settings as well as the adaptiveness of the algorithm. 0en,
the two relationships (between RR intervals and RTon, and
between RR intervals and RToff ) are obtained using the
following equations:

case 1 : RR< 0.76 s, 0.05 s<RTon < 0.25 s,

case 2 : 0.76 s≤RR< 1.13 s, 0.05 s<RTon < 0.35 s,

case 3 : RR≥ 1.13 s, 0.05 s<RTon < 0.45 s,

case 1 : RR< 0.72 s, 0.2 s<RToff < 0.45 s,

case 2 : 0.72 s≤RR< 1.1 s, 0.2 s<RToff < 0.6 s,

case 3 : RR≥ 1.1 s, 0.2 s<RToff < 0.8 s.

(6)

0us, the three piecewise functions for determining the
search boundaries for T wave onset and offset detections
were obtained with the parameters presented in Table 2:

t1 � Ri +⌈ald ×
���
RRi


⌉ + 0.02 s,

t2 � Ri +⌈alu ×
���
RRi


⌉ + 0.16 s, if RRi < 0.76 s,

t1 � Ri +⌊ard ×
���
RRi


⌋ + 0.04 s,

t2 � Ri +⌊aru ×
���
RRi


⌋ + 0.24 s, if 0.76 s≤RRi < 1.13 s,

t1 � Ri +⌈amd ×
���
RRi


⌉ + 0.04 s,

t2 � Ri +⌈amu ×
���
RRi


⌉ + 0.4 s, if RRi ≥ 1.13 s,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

t3 � Ri +⌈ald × RRi⌉ + 0.18( s,

t4 � Ri +⌈alu × RRi⌉ + 0.3( s, if RRi < 0.72 s,

t3 � Ri +⌊ard × RRi⌋ + 0.18( s,

t4 � Ri +⌊aru × RRi⌋ + 0.4( s, if 0.72 s≤RRi < 1.1 s,

t3 � Ri +⌈amd × RRi⌉ + 0.18( s,

t4 � Ri +⌈amu × RRi⌉ + 0.48( , s if RRi ≥ 1.1 s.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)
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0en, the grid search was used to determine the best
combination of parameters in equations (7) and (8), which
was implemented by for loop. In a loop, we changed the
value of one parameter at a time, kept the other parameters
unchanged, and applied the algorithm in the QTdatabase as

well as using a 5-fold cross-validation.0en, we stored the F1
measure of one loop and started another loop. 0rough all
loops, we traversed all of the combinations of parameters
referred to in Table 2. After comparing the results, the
combinations of parameters with the highest F1 measure
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Figure 4: Clustering results for T wave feature points: (a) clustering information of T wave onsets; (b) clustering information of T wave
offsets.

Input: ECG signal S(t), R peak locations, R peak numbers N, sliding window width w, smoothing factor p, and morphology
predefined factor r
Output: T wave onset locations
Calculation:

(1) Calculate t1 and t2 and construct sliding window
window� S(t1 : t2)

(2) Smooth signal and calculate sliding area for each point i inside [t1, t2]
Area(i) � sum(S(i : (i + w))− sum(S((i−p) : (i + p)))/(p∗ 2 + 1))

(3) T wave morphology classification
if r � “p”‖r � “pn”‖r � “bm”‖r � “”
calculate [k1, l1] � max(Area)

end if
if r � “n”‖r � “np”‖r � “”
calculate [k2, l2] � max(−Area)

end if
(4) Get k

k � min(k1, k2)

Output: T wave onset�R peak + k.

ALGORITHM 1: Traditional SWA algorithm (T wave onset detection).
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were chosen. 0e best parameters’ combinations for Twave
onsets are listed: ald� 0.4, alu� 0.2, ard� 0.4, aru� 0.4,
amd� 0.3, and amu� 0.0 and for T wave ends are listed:
ald� 0.2, alu� 0.1, ard� 0.2, ard� 0.1, aru� 0.0, amd� 0.0,
and amu� 0.1. 0e improved SWA method can be sum-
marized as a block diagram in Figure 5.

2.3.EvaluationMethod. Detections for true and false positives
(TP and FP, respectively) and false negative (FN) were de-
termined with a threshold of 100ms. In this study, indices like
sensitivity (Se), positive precision (P+), and F1 measurement
were selected as evaluation indices [39, 40] with the following
definitions: Se � TP/(TP + FN), P+ � TP/(TP + FN), and
F1 � (TP × 2)/(TP × 2 + FN + FP). F1 measure is selected
other than accuracy since F1measure is the weighted average of
precision and recall which satisfies our asymmetric datasets
where values of false positive and false negatives are not the
same.

3. Results

Figure 6 shows the detection examples of the proposed
method, compared with the traditional methods, Zhang’s
method for T wave offset detection [31] and Song’s method
for T wave onset detection [32]. Figure 6(a) shows the
inverted Twave detections, Figure 6(b) shows the biphasic T
wave detections, and Figure 6(c) shows the normal T wave
detections. From Figure 6, Twave offset detections get better
results than T wave onset detections. And, our method got
obviously better results when it is applied in T wave onsets
detections.

3.1. Results from the QT Database. We firstly tested the
performance of the improved SWA method on the QT
database.0e traditional SWAmethods (Song’s method [32]
and Zhang’s method [31]) were used as comparators.

Table 3 shows the results of onset and offset detections in
the QT database. Both of the two channels signals (first and
second channels) were tested. From Table 3, we found the
improved SWA method significantly enhanced detection
accuracies for both onset and offset detections. For onset
detection, F1 improved from 54.70% to 70.46% and 54.05%
to 72.94% for two ECG channels, respectively. For offset
detection, F1 improved from 87.83% to 93.73% and 86.73%
to 94.75% for two ECG channels, respectively. In addition,
detection errors were also analyzed. As expected, the im-
proved SWAmethod indicated smaller detection errors than
the traditional method except for a slight increase in the
offset detection from the second channel (traditional
0.027± 31.85ms versus improved 2.45± 33.98ms). How-
ever, it is worthwhile to note that all Se, P+, and F1 indices
increased from ∼86% to ∼94%.

3.2. Results from the European ST-TDatabase. Table 4 shows
the results of onset and offset detections in the European ST-
T database. 0e improvements after using the improved
method were more significant when performing T wave

onset detection. F1 improved from 41.02% to 84.13% and
44.33% to 87.62% for two ECG channels, respectively. 0e
mean detection errors significantly decreased from 19.52ms
to 7.04ms and 36.27ms to 6.35ms for two ECG channels,
respectively. Performance improvements in offset detection
were small but convincing F1 improved from 98.83% to
99.57% and 91.76% to 98.29% for two ECG channels, re-
spectively. However, the mean detection errors for T wave
offset detection slightly increased (not significant) when
performing the improved method.

4. Discussion

As seen from Tables 3 and 4, both T wave onset and offset
detection of the new proposed method reported better
performances (F1 measure) than the traditional method,
suggesting that applying the clustering technique in the
SWAmethod for deciding searching boundaries is helpful to
enhance detection accuracy. In addition, clustering is a
statistical-based technique, which can be used to determine
whether the independent part of a population belongs to
different groups by comparing quantitative multiple features
[38]. Besides, we noted that, for the Twave offset detections,
neither the traditional SWA nor the improved version re-
ported the better performance than the detection of T wave
onsets. One possible explanation is that Zhang proposed this
method originally to detect Twave offsets not Twave onsets
and proved its mathematical rationality for T wave offsets.
Another possible explanation is that the clustering method
for determining the search boundaries is a statistical-based
technique. 0erefore, the accuracy of the clustering results is
related to the data amount. However, the annotated T wave
onsets in the QT database are far less than the annotated T
wave offsets (1371 versus 3452). 0us, the relationship found
by clustering analysis between the RR interval and RTon is
not that strong (Figure 4(a)) compared to the relationship
between the RR interval and RToff (Figure 4(b)). Moreover,
the significant difference between the improved and tradi-
tional SWAs indicates that the improved version can more
extensively and adaptively determine the search window’s
boundaries by using the k-means clustering based on the QT
database and grid search strategy. However, the traditional
SWA only used predefined parameters and did not give out
any detailed explanations.

Another difference between Zhang’s [31] and our results
was observed when using the QT database for validation,
Zhang’s study chose the better result from the outputs of the
two ECG channels [31]. In order to compare our results with
those from Zhang, we also calculated smaller errors from the
results of two ECG channels. 0e comparable results are
summarized in Table 5. 0e mean detection errors are
similar between Zhang’s and our results. We also noted that
the standard deviation of detection errors was 25.82ms for
our method and 21.19ms for the traditional SWA. Both of
them were smaller than the acceptable threshold (30.6ms)
proposed by the common standards in Electrocardiography
Working Party [41].

Table 5 also summarizes comparable results from other
studies. 0e wavelet-based method reported a mean error of
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Input QT database signal Initializing parameters

Clustering result learning

Setting parameters’ range

Grid searchFivefold cross-validation

Comparing F1 measure

Improved method Input European ST-T 
database signal

Results of two databases

Figure 5: 0e block diagram of the proposed method for delineating the T wave onset/offset.

1

0.5

0

–0.5

–1

Vo
lta

ge
 (m

V
)

ECG
R peak
T offset-proposed method

T onset-proposed method
T offset-Zhang’s method
T onset-Song’s method

0.5 1 1.5 2 2.5 3 3.5
Time (s)

(a)

1

0.5

0

–0.5

–1

Vo
lta

ge
 (m

V
)

ECG
R peak
T offset-proposed method

T onset-proposed method
T offset-Zhang’s method
T onset-Song’s method

0.5 1 1.5 2 2.5 3 3.5
Time (s)

(b)

Figure 6: Continued.
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1.6ms [13, 14]; the low-pass differentiation-based method
gave a relative large mean error of 13.5ms [20], while the
hidden Markov model-based method reported a mean error
of 5ms [21, 22]. Furthermore, the partially collapsed Gibbs
sample reported 4.3ms [23], and the k-nearest neighbor-

based method reported 2.8ms [20]. 0e TU complex
analysis gave a minimum detection mean error of 0.8ms but
did not include the corresponding Se and P+ results [28]. In
addition, methods proposed by Mahsa with linear and
nonlinear phase observation to detect fiducial points are also
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Figure 6: Twave detection examples.0e solid points marked ( ) are R peaks; the solid points marked ( and ) are results of our method; the
hollow circles marked ( and ) are results of the traditional method; the shadow areas are accepted as TP cases. (a) e0107; (b) e0111; (c)
e0118.

Table 3: Results of T wave detection in the QT database.

Detection Channel Method Se (%) P+ (%) F1 (%) Error mean± SD (ms)

Onset
First Traditional SWA [32] 54.70 54.70 54.70 −30.2± 40.75

Improved SWA 70.46 70.46 70.46 7.3 ± 53.12

Second Traditional SWA [32] 54.05 54.05 54.05 −36.27± 43.29
Improved SWA 72.94 72.94 72.94 6.35 ± 53.78

Offset
First Traditional SWA [31] 87.83 87.83 87.83 −2.57± 30.08

Improved SWA 93.93 93.93 93.93 1.19 ± 33.59

Second Traditional SWA [31] 86.73 86.73 86.73 0.027± 31.85
Improved SWA 94.75 94.75 94.75 2.45 ± 33.98

Table 4: Results of T wave detection in the European ST-T database.

Detection Channel Method Se (%) P+ (%) F1 (%) Error mean± SD (ms)

Onset
First Traditional SWA [32] 41.02 41.02 41.02 19.52± 31.89

Improved SWA 84.13 84.13 84.13 27.87 ± 44.22

Second Traditional SWA [32] 44.33 44.32 44.33 −36.27± 43.29
Improved SWA 87.62 87.61 87.62 215.20 ± 33.54

Offset
First Traditional SWA [31] 98.80 98.86 98.83 22.2± 22.70

Improved SWA 99.50 99.65 99.57 26.94 ± 20.98

Second Traditional SWA [31] 91.80 91.71 91.76 21.07± 26.31
Improved SWA 98.29 98.28 98.29 24.54 ± 25.52

Table 2: Information of parameters when detecting the T wave.

Parameters
T onset T offset

IV CS CR IV CS CR
ald/alu/ard 0.1 0.1 0.1∼0.4 0.1

0.1
0.1∼0.4

aru/amd 0.0 0.0∼0.4amu 0.0 0.0∼0.4
IV: initialized value; CS: change step; CR: change range.
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listed as comparative method [42], and two parts of QT
database including normal sinus rhythm and arrhythmia
database are used when evaluating extraction of fiducial
points and the nonlinear observation has more smaller
deviations 23ms for the first database and 19ms for the
second database.

0e potential issues existing in the above studies consist
of two main points: (1) the time tolerance for determining
true positive detection was not clear and (2) training and
testing were both performed in the QTdatabase, but we used
the European ST-T database as the independent testing
dataset.

Besides, as deep-learning technology improves, more
and more methods based on this technique have been
proposed to detect ECG feature points; for instance, a re-
cently proposed method using neural network and fixed-size
least-squares SVM to detect T wave end reported it is a
minimum detection mean error of −3ms in the QTdatabase;
a QRS complex detection by using two-level convolutional
neural network [8] reported its sensitivity of 99.77% in the
MIT-BIH AR database. When using deep-learning tech-
nique, a great amount of data is needed, and in T wave
detection, the annotated T wave ends are limited but a
meaningful strategy was proposed in [19], which is to use
different strategies for selecting different training sets such as
random selection and k-means. But, we just proposed an
idea that is to use one independent database (QTdataset) as
the training set and testing set and another independent
database (records from the European ST-T database an-
notated by a trained staff) as the testing set.

In order to illustrate difference between error and F1
measure, we did statistical analysis of error. And, Figure 7
gives the cumulative line chart of error (denoted as CLCE) of
Twave offsets in the QTdatabase which explains our method
got more true positive beats than the traditional method
inside our time tolerance. 0e CLCE of Twave onsets in the
QT database and CLCE of T wave in the European ST-T
database also have the same regularities of distribution as it
did in the T wave offsets in the QT database.

Moreover, the limitation of our study is that the anno-
tations of the European ST-T database are only done by a
trained staff member which may result in nonauthoritative

annotations. Besides, we only combine the data statistic and
data mining technique to changing the parameters of tradi-
tional SWAmethod. In our following work, more records with
authoritative annotations will be used to test the robustness of
the combination of parameters we obtained in this study.

5. Conclusion

In this paper, an improved sliding window area method for
detecting T wave onset and offset was proposed. 0e main
contribution/novelty was for application of the data statistic
and data mining technique: (1) k-means clustering for the
setting of search boundaries and (2) grid search strategy to
optimize the parameters. Experiments performed in the QT
database and the European ST-Tdatabase demonstrated the
improved method’s better performance.
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Figure 7: 0e cumulative line chart of error (T offsets in the QT
database). TR result represents the traditional SWA method result,
and IM result represents the improved SWA method result.

Table 5: Comparable detection results of T wave offset in the QT database.

Methods Annotations Se (%) P+ (%) Mean ± SD (ms)
Improved SWA 3542 98.5 98.5 1.21 ± 25.82
Traditional SWA [31] 3542 95.5 95.5 −1.12± 21.19
Wavelet-based [13, 14] 3542 99.77 97.79 −1.6± 18.1
Low-pass differentiation-based [20] 3542 99.00 97.74 13.5± 27.0
Hidden Markov model-based [21, 22] 3542 NA NA −5± 14
Partially collapsed Gibbs sample [23] 3403 99.81 98.97 4.3± 20.8
k-nearest neighbor-based [30] 30 records NA NA 2.8± 18.6
TU complex analysis [28] 3528 92.60 NA 0.8± 30.3
Neural network and fixed-size least-squares SVM [19] 3542 NA NA −3.0± 16.9
L.EKF25 [42] 10 records NA NA 11± 39
N.L.EKF25 [42] 4± 23
L.EKF25 [42] 15 records NA NA −17± 30
N.L.EKF25 [42] −21± 19
NA: not available; L.EKF25: linear Kalman filter; N.L.EKF25: nonlinear Kalman filter.
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