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ABSTRACT
Background. A significant proportion of perinatal losses in pigs occurs due to
congenital malformations. The purpose of this study is the identification of genomic
loci associated with fetal malformations in piglets.
Methods. The malformations were divided into two groups: associated with limb
defects (piglet splay leg) and associated with other congenital anomalies found in
newborn piglets. 148 Landrace and 170 Large White piglets were selected for the study.
A genome-wide association study based on the gradient boosting machine algorithm
was performed to identifymarkers associatedwith congenital anomalies and piglet splay
leg.
Results. Forty-nine SNPs (23 SNPs in Landrace pigs and 26 SNPs in Large White) were
associated with congenital anomalies, 22 of which were localized in genes. A total of
156 SNPs (28 SNPs in Landrace; 128 in Large White) were identified for piglet splay
leg, of which 79 SNPs were localized in genes. We have demonstrated that the gradient
boosting machine algorithm can identify SNPs and their combinations associated with
significant selection indicators of studiedmalformations and productive characteristics.
Data availability. Genotyping and phenotyping data are available at http://www.
compubioverne.group/data-and-software/.

Subjects Agricultural Science, Bioinformatics, Computational Biology, Genetics, Data Mining
and Machine Learning
Keywords Congenital malformations, Machine learning, GWAS, Agriculture, Pigs

INTRODUCTION
The mortality of piglets represents a severe loss for the pig farming industry (Pig Progress,
2014; Walters, 2016). The losses predominantly occur during the last days of pregnancy,
delivery, and the first three days of life (Woollen, 1993). Many factors contribute to the loss
of piglets: the age of sows and their maternal qualities, the birth duration, the litter size,
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the parity number, farm management, and other factors (Olsson, Botermans & Englund,
2018). Pigs have more frequent congenital malformations than any other domestic animal
(Woollen, 1993), and congenital malformations account for a significant proportion of
perinatal losses.

The profitable production of pigs requires that a farm consistently produces healthy
piglets (Staarvik et al., 2019). However, the piglet mortality rate is positively correlated
with the number of piglets born (Olsson, Botermans & Englund, 2018), making it a limiting
factor for farm growth. Therefore, identifying and addressing the causes of congenital
malformations in pigs is essential for pig farming.

Congenital diseases often pose a diagnostic problem, having unknown etiology,
pathology, and prognosis. This is also true beyond animal husbandry: up to 79% of
human congenital diseases have unknown etiology (Papatsiros & Others, 2012).

The frequency of occurrence of specific malformations varies from farm to farm. Breeds
with small populations have smaller genetic diversity and are prone to more defects. The
most common defect, affecting between 2.3% and 5.0% of all newborn piglets, is the piglet
splay leg (PSL) (Papatsiros & Others, 2012). PSL is a condition when a newborn piglet
cannot hold its hindlimbs together (in severe cases, the forelimbs are also affected) and
cannot stand or walk after birth (Partlow et al., 1993) and may, therefore, starve. There
are also cases of inguinal, scrotal, and umbilical hernia, cryptorchidism, and atresia. The
prevalence of this condition is between 2.3% and 5.0%.

Genetic factors are believed to play an essential role in the development of congenital
malformations in piglets. Studies found genetic drivers of PSL (Hao et al., 2017) and
cleft palate (which is a lethal anomaly in pigs) describing chromosomal imbalances in
affected offspring (Grahofer et al., 2019). All affected offspring were carriers of partial
trisomy of chromosome 14, including the FGFR2 gene associated with various dominant
hereditary syndromes of craniofacial dysostosis in humans. Hao et al. (2017) presented
seven significant SNPs and four genes related tomuscle development, glycogenmetabolism,
and mitochondrial dynamics, identified as potential candidate genes for PSL. However,
only limited research aimed at finding SNPs and candidate genes associated with congenital
malformations in pigs has been conducted (Bermingham et al., 2014; Ji et al., 2016; Bakoev
et al., 2020).

When analyzing extensive genomic data with traditional parametric models, the
problem of a small number of observations and a large number of predictive variables
(typically, tens or even hundreds of thousands of SNPs are interrogated in thousands or,
sometimes, hundreds of samples) is challenging to solve due to the high dimension or
highly correlated data structure (Li et al., 2018). Traditional GWAS analysis focuses on
a univariate hypothesis and assumes the presence of independent explanatory variables.
These methods suffer significantly from a lack of power and accuracy when dealing with
the complexity of multiple interactions or correlations between predictors (e.g., SNP-SNP
and SNP- covariate interactions) (Lettre, Lange & Hirschhorn, 2007; Zheng et al., 2007; So &
Sham, 2011; Adams, Bello & Dumancas, 2015). Machine learning approaches, and Gradient
Boosting Machines (GBM), in particular, are suitable for such complex problems (Li et al.,
2018). Various machine learning applications were developed to build a nonparametric
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regression or classification model from data. One strategy is to build a model from
theoretical considerations and then define its parameters based on the observed data.
The main idea behind the GBM algorithm is to create new baseline learners that are
maximally correlated with the negative gradient of the loss function associated with the
entire ensemble. There is a wide choice of existing loss functions that can be adjusted
depending on the specific task at hand. This flexibility makes GBMs highly customizable
for any specific data-driven task. It introduces much freedom in model design, making it a
matter of patience since it takes trial and error to select the most appropriate loss function.

We have conducted a pilot GWAS to identify potential genomic regions and genes
associated with congenital diseases and anomalies in newborn piglets. We used two
common pig breeds for our study: Landrace and LargeWhite. The Landrace pigs originated
from the free-breeding, non-pedigreed stock of swine, the regional landrace native to
Denmark. The Large White pig was produced in the 18th century by crossing the large
indigenous white pig of North England with the smaller, fatter, white Chinese pig. These
breeds have different genetics but share the problems with congenital malformations.
We use the gradient boosting machine (GBM) approach since it is flexible and relatively
easy to implement. Moreover, GBM has demonstrated considerable success in practical
applications and various machine learning and data extraction tasks (Bissacco, Yang
& Soatto, 2007; Hutchinson, Liu & Dietterich, 2011; Pittman & Brown, 2011; Johnson &
Zhang, 2014). We have evaluated the applicability of GSM for searching for genomic areas
and genes associated with congenital anomalies and compared its performance to standard
approaches.

MATERIALS & METHODS
Samples
We have an ongoing collaboration with pig breeding farms in Russia. The tissue samples
were collected at the same breeding farm with a closed breeding system by the farm
employees over the last decade. Ear clipping and phenotyping were performed following
the standard EU monitoring procedures and guidelines (2010/63/EU) at the farm. The
piglets that were assessed as healthy were kept alive, and the affected piglets were culled, and
the ear clipping was performed post-mortem. Per 2010/63/EU guidelines, ear clipping and
pig slaughter do not require a separate IRB approval or anesthesia. We have collected tissue
samples, and phenotypic information on all available piglets at the pig farm determined
to have birth defects by specially trained farm employees. We have also collected samples
from healthy piglets from the same farm to form control groups.

Among the 148 Landrace piglets, 75 were healthy, 27 had piglet splay legs, and 46 had
other congenital anomalies. Among the 170 Large White piglets, 108 were healthy, 38 had
piglet splay legs, and 32 had other congenital anomalies. All sampled piglets were female.

Genomic DNA was extracted from the tissue samples using a set of DNA-Extran-
2 reagents (NPF Syntol LLC, Russia) per the manufacturer’s instructions. The
quantity, quality, and integrity of DNA were evaluated using a Qubit 2.0 desktop
fluorometer (Invitrogen’’/‘‘Life Technologies, Waltham, MA, USA) and a NanoDrop8000
spectrophotometer (Thermo FisherScientific’’, Waltham, MA, USA).
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Table 1 Frequencies of congenital disabilities in breeds.

Breed Yes No

Congenital Anomalies
Landrace 46 56
Large White 32 106

Piglet Splay Leg
Landrace 27 75
Large White 30 108

Notes.
‘‘Yes’’, defect present; ‘‘No’’, defect absent.

The animals were genotyped using the GeneSeek Genomic Profiler (GGP) BeadChip
for Porcine HD (Illumina, Neogen), comprising 68,516 SNPs. According to the
recommendations, genotype quality control was performed using Plink 1.9 (Marees et al.,
2018). After excluding SNPs with a missing sample frequency >2% and a Hardy–Weinberg
equilibrium (HWE) p-value <10−7, 45,218 SNPs for the Landrace pigs and 44,324 SNPs
for the Large White pigs were retained for further analysis.

Significant SNPs were identified separately for the two breeds and two congenital
disabilities.

Data preprocessing and function selection
The malformations detected in newborn piglets were divided into two groups by assessed
qualities: leg defects (piglet splay leg, PSL) and other congenital anomalies (CA). The
analysis was carried out using a case-control design (Table 1). The dependent variable was
binary: presence (‘‘Yes’’) or absence (‘‘No’’) of the condition, as evaluated by professional
pig breeders.

For the gene-phenotype association analysis, a manifestation of congenital anomalies
in piglets and PSL genotypes was used as a predictor in the model. We used the Plink 1.9
0/1/2 encoding for genotypes (Purcell et al., 2007). The data were randomly divided into
training (80%) and testing (20%) sets. In each iteration of the training, hyperparameters
were set up using a search within a 10-fold cross-checking structure on a random 80%
of the training set. The most effective hyperparameters were used to train the model and
tested on the test set. The gradient boosting machine (GBM) algorithm was used to select
the most significant predictors among SNPs.

All scripts were written in R and executed on the H2O platform (Click et al., 2016).

Population structure analysis
To analyze the population structure, we used two related techniques: singular value
decomposition (SVD) using the script from (Porto-Neto et al., 2013) and Principal
component analysis (PCA), using command princomp in R. Plots of top 10 principal
components were done in R. Admixture analysis was performed using the ADMIXTURE
algorithm (Alexander, Novembre & Lange, 2009) for varying the number of components
between 2 and 9. Cross-validation errors reported by the ADMIXTURE andGPS algorithms
(Elhaik et al., 2014) were used to identify the optimal number of components.
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GPS algorithm was used for predicting the provenance of all genotyped individuals. If
no geographic information is supplied for the reference samples, GPS identifies the closest
reference populations to the tested sample. If geographic information is available, GPS also
finds a global position where the individuals with the genotype closest to the tested one
live. If there is no geographic information, GPS can find the nearest individuals among the
reference dataset. GPS is not suitable to analyze recently admixed individuals. GPS works
by calculating the Euclidean distance between the sample’s admixture proportions and the
reference dataset.

We also used the genomic relationshipmatrix (GRM), which is calculated by the formula
(VanRaden, 2008) G= ZZ ′

2
∑N

i pi(1−pi)
, where pi is the alternative allele frequency in the ith

locus. Calculation of matrix Z requires several steps. At first, matrix P, containing (2pi−1)
in each cell, is calculated. It has dimension LxN, where L is the number of SNPs, and N is
the number of animals. Next, genotype matrixM is calculated, where genotypes are coded
as−1/0/1 (−1 is homozygous in alternative allele, 0 is heterozygous, and +1 is homozygous
in reference allele). Matrix Z is the difference between P andM, and Z ′ isthe transposition
of matrix Z.

SVD is a valuable tool for characterizing the genetic structure to detect and extract
small signals even if the data is noisy (Berrar, Dubitzky & Granzow, 2007). We performed
the SVD and visualized the relationships between populations using R. SNPRelate (Zheng
et al., 2012) was used to perform principal component analysis (PCA), Identity-By-State
(IBS) analysis, relationship inference, and hierarchical clustering.

Machine learning analysis
GBM can provide an accurate estimate of the response variable by creating new base
learners maximally correlated with the negative gradient of the loss function associated
with the entire ensemble. Using the classical quadratic error loss function (L2 norm), the
training procedure produces a sequence of error-fitting steps. AUC (’’Area Under the
receiver operating characteristic Curve’’) is used to assess classifier performances: better
classifiers have larger values of AUC. AUCPR (Precision-Recall) - Logistic Loss –is a logistic
loss function that penalizes the classifier’s confidence in an incorrect response; Gini index
was used for evaluating the quality of classification, Mean Per-Class Error is the average
value for a class error.

We have selected the following parameters of GBM to minimize the validation error: the
number of trees (ntree = 1000), learning rate (learn_rate = 10−3), maximum tree depth
(max_depth = 10), and number of cross-checks (nfolds = 10).

We stratified the samples by breed and type of defect. All samples were randomly
divided into training (80%) and testing (20%) sets. In each iteration of the training,
hyperparameters were set up using a search within a 10-fold cross-checking structure on a
random 80% of the training set. The most effective hyperparameters were used to train the
model and tested on the test set. GBM algorithm was used to select the most ‘‘important’’
predictors among SNPs. GBM approach uses relative importance to rank the SNPs. At each
split in each tree, GBM computes the mean squared error (MSE) for regression (the tree
split criterion). GBM averages the MSE improvement (decrease) made by each variable
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across all the trees that the variable is used. The variables with the largest average decrease in
MSE are considered the most important. The values of the relative importance of variables
vary from 0 to 1 (Minitab, 2010; Natekin & Knoll, 2013). Because GBM is a collection of
individual decision trees, the relative importance value is a measure of the critical variable
for evaluating the target variable. We considered all SNPs with positive relative importance
to be significant.

GBM algorithm can potentially identify too many SNP with positive relative importance
when complex traits are analyzed. To reduce the false-positive rate, functional annotation
of SNPs is conducted, intersection with other methods is determined, and only the highest
scoring SNPs are considered.

SNPs with positive relative importance were used to generate a list of associated SNPs;
their positions and corresponding genes were examined with the Ensembl! browser (Sus
scrofa 11.1) (Ensembl genome browser 102, 2020). The functional annotation was performed
using the Panther database (PANTHER Gene List Analysis, 2020) and the Variant Effect
Predictor (VEP) tool (http://uswest.ensembl.org/Sus_scrofa/Tools/VEP/) (McLaren et al.,
2016; Khimsuriya et al., 2019). To find the GWAS studies for the human orthologs, we used
the EBI GWAS Catalog (https://www.ebi.ac.uk/gwas/home) and a manual search in the
literature for data on their associations with any human or animal traits.

Association analysis with rrBLUP and plink
We compared the performance of GBM with rrBLUP (Endelman, 2011) and Plink (Purcell
et al., 2007) approaches.

We used the function GWAS from the rrBLUP R package using flags min.maf =0.05
and P3D =FALSE (equivalent to EMMA with REML) and selected SNPs with marker
scores −log10p >2, which is equivalent to the condition of p-value <10−2.

Plink was used with the following options: –all-pheno –allow-no-sex –bfile <...>–model
–pheno <..>. This command conducts five tests: the tests offered here are (in addition to the
basic allelic test): basic allelic test, Cochran-Armitage trend test, Genotypic test, Dominant
gene action test, and Recessive gene action test. We chose SNPs with asymptotic p-value
<10−2 in at least one of these five tests.

IRB approval
All procedures were performed under the guidelines approved by the LK. Ernst Federal
Research Center for Animal Husbandry (Russia) and with the rules for conducting
laboratory research (tests) in the implementation of veterinary control (supervision)
approved by Council Decision Eurasian Economic Commission No. 80 (November 10,
2017).

RESULTS
We have conducted admixture analysis of both breeds for K = 2...11. Both breeds appear
to be genetically diverse. Both Admixture and PCA (Fig. S1) plots showed that LA and
LW pigs belong to two different sample groups. However, for all K (Fig. 1), the admixture
profiles of Large White pigs are a mosaic of almost all components, while a smaller number
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Figure 1 Admixture plots forK = 2 . . .11 for Landrace (LA) and LargeWhite (LW) pigs.
Full-size DOI: 10.7717/peerj.11580/fig-1

of admixture components represents the Landraces. Therefore, the sampled Landrace pigs
were genetically more homogeneous than the Large White pigs. To determine the optimal
number of components, we have analyzed cross-validation error and accuracy of clustering.
As a function of the number of admixture components, the cross-validation error drops
to a plateau value at K = 4. Next, we used NbClust (Charrad M., Ghazzali N., Boiteau V.,
Niknafs A., 2014) kmeans procedure in R to partition the samples using 26 different scores
to define the optimal number of clusters. The number of clusters for K>3 was between 6
and 8.

GPS (Elhaik et al., 2014) leave-one-out analysis validated the clustering assignment
correctness. For K = 2 and 3, nearly 10% of the samples were misclassified (the rest was
placed to correct clusters). For the higher values of K, GPS was placing 100% of samples
into correct clusters. The fraction of affected animals per cluster ranged from 11% to 42%
for splay leg phenotype and 13% to 83% for other congenital anomalies. For example, for
K = 11, in cluster LA_2, all six piglets were affected; one had a splay leg and five other
congenital anomalies. In cluster LW_3, having 23 members, three piglets were born with
splay legs, and no other anomalies were detected.

We have calculated Pearson’s correlation coefficient between piglets’ status and values of
admixture components. For example, forK = 18, in both breeds, the presence of congenital
anomalies is negatively correlated with the admixture component K8 (LW: r=−0.26, t -test
p-value=0.0002). This effect is especially pronounced in Large White piglets: 3% of piglets
with K8>0.3 (1 out of 38) have congenital defects, as compared to 31% of piglets with

Bakoev et al. (2021), PeerJ, DOI 10.7717/peerj.11580 7/21

https://peerj.com
https://doi.org/10.7717/peerj.11580/fig-1
http://dx.doi.org/10.7717/peerj.11580


K8<0.3 (29 out of 94). Cluster LW_7, where K8 is the main ancestry, is the healthiest.
Congenital anomalies in Large White piglets are positively correlated with the admixture
component K5 (r = 0.21, t -test p-value = 0.007). 41% of piglets with K5>0.3 (15 out of
37) have congenital defects, as compared to 16% of piglets with K5<0.3 (15 out of 95).
Therefore, it appears that certain pig lines are more susceptible to the development of
congenital anomalies.

Fst between Landrace and Large White pigs was estimated by the method of Weir &
Cockerham (1984) to be 0.165. Hierarchical clustering (Fig. 2A), PCA analysis (Fig. 2B)
showed the separation of Landrace and Large White pigs into two distinct groups. Note
that the PCA plot had the arch and horseshoe effects for Large White pigs. These effects
are common in ecological and population studies when the sampling units cover a long
ecological gradient. Those samples at each end of the gradient have few species in common.
These artifacts produce visually beautiful but false patterns that are not present in the
original data. Using the SNPRelate package in R (Zheng et al., 2012), we have calculated
relatedness (Fig. 2C) and IBS (Fig. 2D). Within- and between-breed relatedness have been
inferred by the IBD using the Plink method of moments (Purcell et al., 2007). We have
calculated the Cotterman coefficients of relatedness K0 and K1 (Cotterman, 1940). These
plots show that Large White samples mainly were from unrelated individuals, while the
Landrace samples range from unrelated to first-degree relatives. Clustering (A) and IBS
(D) plots also showed population stratification within the Large White pigs: the samples
could be separated into two main clusters.

Next, we used the rrBLUP (Endelman, 2011) R package and Plink (Chang et al., 2015)
to find significant SNPs associated with the splay leg and congenital malformations
phenotypes separately for the Large White and the Landrace breeds. Plink performs five
tests: basic Allelic test, Cochran-Armitage trend test, Genotypic test, Dominant gene action
test, and Recessive gene action test.

Using the p-value cut-off of 10−5, there were no significant SNPs in Landrace pigs
identified by Plink (p-value <10−5 in at least one of the five Plink tests) and also by
rrBLUP (Fig. 3). In Large White pigs, one SNP (MARC0062453 a.k.a. rs80912121) was
found significant by two Plink tests for piglet splay leg (its rrBLUP p-value = 1.334
×10−5, hence, it nearly misses the cut-off). It is an intron variant for CRISP3 (cysteine-
rich secretory protein 3) on chromosome 7. For other congenital anomalies of Large
White pigs, rrBLUP has identified two SNPs, intergenic variant ALGA0086405 and
downstream gene variant WU_10.2_13_216912741, the first of each was significant in
four out of five tests, according to Plink. SNP ALGA0086405 (rs81454026) is located on
Chromosome 15 position 92,733,414. There are three genes near this SNP: GULP, TFPI,
and CALCRL. Gene GULP PTB (domain-containing engulfment adaptor 1) is located on
Chromosome 15: 92,838,715–93,251,019. Gene TFPI (tissue factor pathway inhibitor) is
located on Chromosome 15: 92,345,075–92,409,905. Gene CALCRL (calcitonin receptor-
like receptor) is located on Chromosome 15: 92,233,841–92,332,363. These genes may be
associated with the disease since, due to artificial selection and small effective population
size in pigs, the LD in pigs is much larger than in humans (Badke et al., 2012).
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Figure 2 Diversity of samples analysis.Hierarchical clustering (A), PCA analysis (B) showed the sepa-
ration of Landrace and Large White pigs into two distinct groups. Relatedness (C) and IBS (D) plots show
that Large White samples mainly were from unrelated individuals, while the Landrace samples range from
unrelated to first-degree relatives. Clustering (A) and IBS (D) plots also showed population stratification
within the Large White pigs: the samples could be separated into two main clusters.

Full-size DOI: 10.7717/peerj.11580/fig-2

SNP WU_10.2_13_216912741 (located downstream of a lncRNA located on Chromo-
some 13: 207,036,621-207,042,808 reverse strand) was not significant according to Plink.
Plink has identified four SNPs (ALGA0097461, ASGA0009945,WU_10.2_2_80100147, and
WU_10.2_6_139448200), that were not significant according to rrBLUP. ALGA0097461
is in an intron of a lncRNA on Chromosome 18: 23,230,190–23,234,168, forward strand.
ASGA0009945 is an intron variant of gene growth arrest-specific 2 gene GAS2 on
chromosome 2: 36,713,106–36,840,407 reverse strand. WU_10.2_2_80100147 is an intron
variant of TBC1 domain family member 9B, located on Chromosome 2:78548370 (forward
strand). WU_10.2_6_139448200 is an intergenic variant on Chromosome 6:151776796
(forward strand).

Next, we used the GBM approach (see Table 2, Table 3, Table S5, and Table S6. A
complete list of GBM SNPs is in Table S7). GBM has identified 205 variants combined
from separate analyses of two breeds and two conditions. The Ensembl Variant Effect
Prediction tool classified the SNPs into the following categories: intron variant: 71%;
non coding transcript variant: 9%; intergenic variant: 8%; downstream gene variant:
5%; upstream gene variant: 4%; 3-prime UTR variant: 2%; non coding transcript exon
variant: 1%; synonymous variant: 1%. To compare the GBM and Plink performance,
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Figure 3 Manhattan plots.Manhattan plots for splay leg (A, B, E, F) and other congenital malformations
(C, D, G,H) phenotypes in Landrace (A, B, C, D) and Large White (E, F, G, H) piglets, rrBLUP and Plink.
Since Plink performs five tests for each SNP, the average negative logarithm of the p-value is plotted for
Plink.

Full-size DOI: 10.7717/peerj.11580/fig-3

Table 2 Model performance statistics.

LogLoss Mean Per-Class
Error

AUC AUCPR Gini index

LW_CA 0.5540447 0.03846154 0.9805258 0.9668851 0.9610516
LW_PSL 0.5211852 0.0304878 0.985684 0.9446652 0.971368
LR_CA 0.680473 0.02591362 0.9920266 0.9922641 0.9840532
LR_PSL 0.5893216 0.02678571 0.9902597 0.9762245 0.9805195

we have calculated the confusion matrices (Table S8). GBM was more accurate than
Plink in labeling the affected piglets as affected, but this came at the cost of a higher
false-positive rate. After training and testing the models, the primary performance statistics
were calculated (Table 2).

GBM has found 49 SNPs (23 SNPs in LA pigs and 26 SNPs in LW) linked with
congenital anomalies. Twenty-two of these SNPs were located in genes (Table 3). In
total, 156 significant SNPs were identified for the splay leg condition. In Landrace pigs,
twenty-eight SNPs were identified; fifteen were located in genes (Table S5). In Large White
pigs, 128 SNPs were identified (63 of the SNPs were in fifteen genes, Table S6).

The overlap between GBM, Plink (selecting SNPs significant in at least one of the five
Plink tests), and rrBLUP identified SNPs is shown in Figs. S2 and S3. Only five SNPs were
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Table 3 Significant SNPs for Congenital Anomalies in Landrace and LargeWhite.

SNP rs Relative
(scaled)
importance

Chr Positiont Region Genes

Landrace
WU_10.2_11_75539421 rs327546322 1 11 68243122 intron variant UBAC2
ASGA0090409 rs81308724 0.17969795 9 132259417 intron variant –
ALGA0039990 rs80853265 0.162018797 7 27590000 intron variant KHDRBS2
H3GA0012640 rs80952853 0.159128694 4 41057067 intron variant –
ASGA0001071 rs80929780 0.153784938 1 11602546 intron variant TFB1M
ALGA0021723 rs81378521 0.147428179 3 129009157 intergenic variant –
CASI0008977 rs81362278 0.134018265 2 107190210 intergenic variant –
MARC0043492 rs81236079 0.130584752 10 57103362 intron variant PARD3
WU_10.2_12_54317583 rs334985085 0.093871326 12 52096685 intron variant –
WU_10.2_5_100991426 rs332283409 0.086313799 5 96174863 intergenic variant –
MARC0032403 rs81226924 0.085383243 6 153229902 intron variant –
WU_10.2_12_55815693 rs333979944 0.08394744 12 53340648 upstream gene variant HES7
WU_10.2_17_2109978 rs333466948 0.08380046 17 2254601 intron variant SGCZ
WU_10.2_3_117349436 rs326261063 0.079718525 3 110594886 intergenic variant –
WU_10.2_7_7152107 rs319964590 0.079475487 7 6938938 intergenic variant –
WU_10.2_2_149667584 rs318724234 0.060478378 2 143464372 intergenic variant –
ALGA0092396 rs81464168 0.009155868 16 78922265 intergenic variant –
H3GA0019737 rs80783940 0.008957679 7 5925551 intergenic variant –
ALGA0011791 rs81360893 0.008939152 2 10024147 upstream gene variant LRRC10B
ALGA0061932 rs81431030 0.008708879 11 37414879 intergenic variant –
INRA0001740 rs337471656 0.002194657 1 34468175 intergenic variant –
ALGA0019218 rs81371006 0.002145075 3 57271701 intron variant –
ALGA0044485 rs80793422 1.36E-07 7 108105220 intergenic variant –

LargeWhite
ALGA0017725 rs81374120 0.546335895 3 14378300 intron variant AUTS2
ALGA0073944 rs81442837 0.499235802 13 202632332 intergenic variant –
WU_10.2_3_15378840 rs341893226 0.180246643 3 15160891 intron variant GALNT17
ASGA0072045 rs81459151 0.145878845 16 5329922 intergenic variant –
ALGA0113804 rs81342635 0.144408707 15 3184616 intergenic variant –
ASGA0013696 rs81375919 0.099250196 3 15479959 intergenic variant CALN1
H3GA0007467 rs81363418 0.094527613 2 117920694 intron variant YTHDC2
SIRI0001468 rs336235921 0.086802683 14 16125221 intergenic variant –
WU_10.2_9_118577560 rs338897394 0.079731895 9 107810783 intergenic variant LAMB4
H3GA0032097 rs80839766 0.057702654 11 61255621 intron variant GPC5
WU_10.2_4_141926663 rs336392887 0.042778974 4 129408094 intron variant –
ALGA0033179 rs81385720 0.03855201 5 80890102 intergenic variant –
ALGA0051763 rs81407215 0.037760121 9 18530451 intron variant DLG2
H3GA0006930 rs81359994 0.010964118 2 2254601 intron variant –
INRA0028052 rs339217230 0.010576312 7 107218015 intergenic variant –

(continued on next page)
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Table 3 (continued)

SNP rs Relative
(scaled)
importance

Chr Positiont Region Genes

ASGA0097745 rs81317775 0.01055165 1 17142254 upstream gene variant UST
WU_10.2_16_79725318 rs325342191 0.004863526 16 73720088 intergenic variant –
WU_10.2_7_120970587 rs339280644 0.001789988 7 114362106 downstream gene variant CHGA
ALGA0092260 rs81463703 0.001774664 16 76426659 intron variant ADAMTS16
WU_10.2_9_41095074 rs342351984 0.00168734 9 36909534 intron variant EXPH5
ASGA0103580 rs81303379 2.76E-07 9 21603270 intron variant RAB38
INRA0054882 rs343281670 6.96E-08 17 58675609 intron variant APCDD1L
ALGA0118274 rs81325152 4.80E-08 9 45104488 intron variant DSCAML1
M1GA0007538 rs81385962 4.43E-08 5 11566047 downstream gene variant –
ALGA0091619 rs81461997 2.37E-08 16 69786647 intergenic variant –
DIAS0002910 rs81218446 1.66E-08 6 19956188 synonymous variant CFAP20

detected by all three methods: ALGA0075476, MARC0030657, WU_10.2_6_138715609,
CASI0008977, and ALGA0021723 (Fig. 3).

ALGA0075476, significant in Landraces for splay leg, is on the 14, position 12790416
in the intron of homeobox-containing gene 1, HMBOX1. According to the EBI GWAS
catalog, SNPs in this gene’s human ortholog are associated with obesity-related traits
(https://www.ebi.ac.uk/gwas/variants/snp:rs2221894).

MARC0030657 (also a significant marker in Landraces for the splay leg) is on
chromosome 1, position 112210717. This SNP is located in the Intron 5–6 of lncRNA
ENSSSCG00000048340. In general, lncRNAs serve as molecular signals to regulate
transcription.

WU_10.2_6_138715609 (significant in Large White pigs for the splay leg) is an
intergenic variant on chromosome 6, position 150780123. Two more intergenic variants
(CASI0008977 at chr2:107190210 and ALGA0021723 chr3:129009157) were identified as
significant in Landrace pigs for the splay leg.

SNP WU_10.2_18_48204887 was identified as significant by GBM for the splay leg in
Large White pigs, for other congenital anomalies in Landrace pigs by Plink and rrBLUP.
WU_10.2_18_48204887 (on chromosome 18, position 43798925) is in the intron of gene
TRIL (TLA4 interactor with leucine-rich repeats). In humans, SNPs in this region are
associated with anomalies in the urogenital system.

The reason for the small number of SNPs in the overlap between the three methods is
in the approaches used by the programs: the first two programs use parametric methods
(negatively affected by small sample size and a large number of SNPs), while in the GBM
algorithm, a nonparametric approach is taken.

In Landraces, one of the identified genes (ACSL3, Acyl-CoA synthetase long-chain
family member 3) encoded a metabolite interconversion enzyme from the long-chain fatty
acid coenzymes A-ligases. All members of this family convert free long-chain acids into
esters but differ in tissue-specific expression. Complex fatty acyl-COA esters are substrates
for numerous fatty acid metabolic pathways, including mitochondrial β-oxidation and
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phospholipids, and triacylglycerol synthesis. Changes in ACSL enzymes can contribute
to various physiological processes, including apoptosis, gene transcription, signaling, and
vulnerability to oxidative stress (Johnson et al., 2012).

SNP rs344559304 in BTB16 gene (zinc finger and BTB domain-containing 16 as PLZF
and ZFP145) received the top score in PSL in Large While pigs. The protein it encodes
belongs to the Krüppel-like family of zinc finger proteins. It has been previously shown
that ZBTB16 acts as an essential transcriptional repressor or activator (Kolesnichenko
& Vogt, 2011) and participates in diverse biological processes (Dick & Doulatov, 2009),
spermatogenesis (Buaas et al., 2004; Costoya et al., 2004), the formation of hind limbs
(Barna et al., 2000), and the apoptosis of cells (Cheung et al., 2010). Impressive results were
obtained in studies of the effect of inactivated ZBTB16 on the formation of the skeletal
structures of the leg (Wei et al., 2018): ZFP145 -/- mice showed morphological defects
affecting the hindlimb’s skeletal structures, whereas the forelimb’s skeletal defects occurred
with lower frequency. Also, ZBTB16 was shown to regulate the expression of the HOX and
BMP genes (Wei et al., 2018), influencing leg defect formation.

For PSL in LA pigs, the top SNP was rs81225364, inside an extended non-coding
RNA region. LncRNAs participate in many biological processes, such as the regulation of
epigenetic modifications (Roberts, Morris & Weinberg, 2014), embryo development (Zhang
et al., 2014), and the development of skeletal muscle (Shi et al., 2020).

We have identified SNP rs327546322, located in the UBAC2 gene (ubiquitin-associated
domain-containing protein 2), to be of the highest significance for the congenital anomalies
in Landrace pigs. Polymorphisms in the UBAC2 gene are associated with a genetic
predisposition to Behcet’s disease in humans (Sawalha et al., 2011; Yamazoe et al., 2017), a
rare disorder causing blood vessel inflammation throughout the body: in joints, vascular
system, lungs, gastrointestinal tract, central nervous system, and epididymis (Kaklamani,
Vaiopoulos & Kaklamanis, 1998). The symptoms include recurrent eye inflammation, oral
and genital sores, and skin lesions. No information on polymorphism of the UBAC2 gene
in pigs is available in the literature; however, based on the association of the gene with
Behcet’s disease and its manifestation in humans, the UBAC2 gene is a promising candidate
for further investigation of congenital anomalies in pigs.

For congenital anomalies in LW pigs, the top-scoring SNP is rs81374120 in the AUTS2
gene. AUTS2 is one of 10 genes with the highest intron RNA score in the fetal brain (Sultana
et al., 2002; Bedogni et al., 2010; Oksenberg & Ahituv, 2013). (Ameur et al., 2011) showed
that alternative splicing programs control the expression of intronic RNAs in the fetal
brain. In recent years, the role of the AUTS2 gene in developing autism spectrum disorders
has been extensively studied in humans. Also, variants of this gene are associated with
brain malformations and congenital disabilities (Beunders et al., 2013). Therefore, it can be
hypothesized that the identified SNP rs81374120 in the AUTS2 gene in pigs is associated
with nervous system development disorders and leads to congenital anomalies in piglets.

DISCUSSION
Currently, assessing genetic load is one of the primary problems in pig farming. Various
anomalies affect pig breeding’s economic efficiency, and the search for genetic factors
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associated with their manifestation is an urgent task for researchers. It is vital to
simultaneously reduce the number of carriers of congenital defects in the Sus scrofa
population and improve productivity indicators. It is not possible to solve these problems
using classical breeding without using modern genomic selection approaches.

The traditional strategy of culling piglets with phenotypic defects is effective in only a
small part of hereditary pathologies caused by dominant or sex-linked genes. However,
most Sus scrofa genetic diseases have a recessive or polygenic type of inheritance; therefore,
these culling methods are insufficient.

Therefore, the task of finding new methods to identify animals that carry hereditary
pathologies is so essential. Nowadays, congenital anomalies cause significant economic
losses in the pork industry. The development of genomic technology has given newmeaning
to the search for solutions.

When analyzing large genomic datasets using conventional parametric models, small
observations and large numbers of predictive variables present an obstacle. This problem
is challenging to the high dimensionality or strongly correlated data structure (Chen &
Ishwaran, 2012). GWAS analysis, based on traditional statistical methods, focuses on
a one-dimensional hypothesis and assumes independent explanatory variables; these
methods suffer significantly from a lack of power and accuracy when dealing with the
complexity of multiple interactions or correlations between predictors (e.g., SNP–SNP
and SNP–covariate interactions) (Lettre, Lange & Hirschhorn, 2007; Zheng et al., 2007; So
& Sham, 2011; Chen & Ishwaran, 2012; Adams, Bello & Dumancas, 2015).

The etiology and pathogenesis of the splay leg are complex and still poorly understood.
Histomorphological studies have described PSL as myofibrillar hypoplasia, but this
condition has also been detected in clinically normal piglets (Ducatelle et al., 1986).
Ultrastructural analysis has shown that piglets with PSL have higher muscle glycogen
content than normal piglets (Antalíková, Horák & Matolín, 1996). Maak et al. (2009)
compared gene expression in posterior legmuscles (M. adductores, M. gracilis, M. sartorius)
from diseased and healthy piglets. As a result, they proposed four genes (SQSTM1, SSRP1,
DDIT4, and MAF) related to splay legs in piglets. Hao et al. (2017), in a study on 185
animals from four populations (Yorkshire, Duroc, Landrace, and crossbred Yorkshire and
Landrace), identified four genes (HOMER1 and JMY on SSC2, ITGA1 on SSC16, and
RAB32 on SSC1) associated with muscle development, metabolism, and mitochondrial
dynamics that were proposed as candidate genes for PSL.

Our work has identified 79 genes that could be considered candidate genes for the
splay leg. Even though the genes identified by Hao et al. (2017) were not identified in
our work (neither by plink or rrBLUP analysis), it may be noted that in LW pigs, seven
of the identified genes (EXT2, NDUFA10, MTMR12, HS6ST3, DBT, ACOXl, CHST11)
belong to the protein class ‘‘metabolite interconversion enzyme’’ (PC00262). Metabolic
changes have been documented in multifactorial diseases in humans (DeBerardinis &
Thompson, 2012). Metabolism is carried out through enzymatically catalyzed biochemical
reactions and involves the mutual conversion of small molecules (metabolites) that play a
crucial role in various cellular functions, from energy production to complex biosynthesis
macromolecules (Pey et al., 2013). The EXT2 gene (Exostosin Glycosyltransferase 2)
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encodes one of the glycosyltransferases involved in the chain extension stage of heparan
sulfate biosynthesis. EXT2 gene polymorphism is associated with humans with exostosis
(or osteoma, benign growth of new bone on top of the existing bone) (Wuyts et al., 1998).

CONCLUSIONS
Our pilot study showed that machine learning approaches could identify genomic loci
associated with congenital malformations in piglets. We have identified lists of SNPs and
candidate genes associated with congenital anomalies and piglet splay leg for Large White
and Landrace pigs. We have also highlighted the need to study farm animals to determine
population characteristics and identify genotypes associated with significant selection
indicators of malformations and productive qualities.

The small sample size used here is a limitation of our pilot study. We will extend this
approach to larger datasets since it is vital for ensuring efficient and ethical handling of
farm animals.
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with increased risk of Behçet’s disease. Arthritis and Rheumatism 63:3607–3612
DOI 10.1002/art.30604.

Shi T, HuW, HouH, Zhao Z, ShangM, Zhang L. 2020. Identification and comparative
analysis of long non-coding RNA in the skeletal muscle of two dezhou donkey
strains. Gene 11 DOI 10.3390/genes11050508.

So H-C, Sham PC. 2011. Robust association tests under different genetic models, allow-
ing for binary or quantitative traits and covariates. Behavior Genetics 41:768–775
DOI 10.1007/s10519-011-9450-9.

Staarvik T, Framstad T, HeggelundM, Brynjulvsrud Fremgaarden S, Kielland C. 2019.
Blood-glucose levels in newborn piglets and the associations between blood-glucose
levels, intrauterine growth restriction and pre-weaning mortality. Porcine Health
Management 5:22 DOI 10.1186/s40813-019-0129-6.

Sultana R, Yu C-E, Yu J, Munson J, Chen D, HuaW, Estes A, Cortes F, dela Barra F,
Yu D, Haider ST, Trask BJ, Green ED, RaskindWH, Disteche CM,Wijsman E,
Dawson G, StormDR, Schellenberg GD, Villacres EC. 2002. Identification of a
novel gene on chromosome 7q11.2 interrupted by a translocation breakpoint in a
pair of autistic twins. Genomics 80:129–134 DOI 10.1006/geno.2002.6810.

VanRaden PM. 2008. Efficient methods to compute genomic predictions. Journal of
Dairy Science 91:4414–4423 DOI 10.3168/jds.2007-0980.

Wei S, ZhangM, Zheng Y, Yan P. 2018. ZBTB16 Overexpression Enhances White
Adipogenesis and Induces Brown-Like Adipocyte Formation of Bovine White Intra-
muscular Preadipocytes. Cellular Physiology and Biochemistry: International Journal
of Experimental Cellular Physiology, Biochemistry, and Pharmacology 48:2528–2538
DOI 10.1159/000492697.

Bakoev et al. (2021), PeerJ, DOI 10.7717/peerj.11580 20/21

https://peerj.com
http://dx.doi.org/10.1186/1752-0509-7-62
http://dx.doi.org/10.1371/journal.pone.0020583
http://dx.doi.org/10.1007/978-1-62703-447-0_19
http://dx.doi.org/10.1086/519795
http://dx.doi.org/10.4161/epi.26700
http://dx.doi.org/10.1002/art.30604
http://dx.doi.org/10.3390/genes11050508
http://dx.doi.org/10.1007/s10519-011-9450-9
http://dx.doi.org/10.1186/s40813-019-0129-6
http://dx.doi.org/10.1006/geno.2002.6810
http://dx.doi.org/10.3168/jds.2007-0980
http://dx.doi.org/10.1159/000492697
http://dx.doi.org/10.7717/peerj.11580


Weir BS, Cockerham CC. 1984. Estimating f-statistics for the analysis of population
structure. Evolution 38(6):1358–1370 DOI 10.2307/2408641.

Woollen NE. 1993. Congenital diseases and abnormalities of pigs. The Veterinary clinics
of North America. 9. Veterinary Clinics of North America: Food Animal Practice,
163–181 DOI 10.1016/S0749-0720(15)30679-4.

WuytsW, Van HulW, Boulle KDe, Hendrickx J, Bakker E, Vanhoenacker F, Mollica F,
Lüdecke HJ, Sayli BS, Pazzaglia UE, Mortier G, Hamel B, Conrad EU, Matsushita
M, RaskindWH,Willems PJ. 1998.Mutations in the EXT1 and EXT2 genes in
hereditary multiple exostoses. American Journal of Human Genetics 62:346–354
DOI 10.1086/301726.

Yamazoe K, Meguro A, Takeuchi M, Shibuya E, Ohno S, Mizuki N. 2017. Comprehen-
sive analysis of the association between UBAC2 polymorphisms and Behçet’s disease
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