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Although several risk factors for stroke have been identified, one-third remain unexplained. Here 
we show that infection with Streptococcus mutans expressing collagen-binding protein (CBP) is 
a potential risk factor for haemorrhagic stroke. Infection with serotype k S. mutans, but not a 
standard strain, aggravates cerebral haemorrhage in mice. Serotype k S. mutans accumulates 
in the damaged, but not the contralateral hemisphere, indicating an interaction of bacteria with 
injured blood vessels. The most important factor for high-virulence is expression of CBP, which 
is a common property of most serotype k strains. The detection frequency of CBP-expressing 
S. mutans in haemorrhagic stroke patients is significantly higher than in control subjects. 
Strains isolated from haemorrhagic stroke patients aggravate haemorrhage in a mouse model, 
indicating that they are haemorrhagic stroke-associated. Administration of recombinant CBP 
causes aggravation of haemorrhage. Our data suggest that CBP of S. mutans is directly involved 
in haemorrhagic stroke. 
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Stroke causes 9% of all deaths worldwide and is the second most 
common cause of death after ischemic heart disease1. Strokes 
are primarily classified into ischemic or haemorrhagic sub-

types. Several genetic and environmental risk factors for stroke have 
been identified. However, approximately one-third of the attributed 
risk remains unexplained by any detected risk factor2–4.

Several types of bacterial infection including oral bacteria are 
reported to be associated with cardiovascular diseases5,6. As the 
thrombotic and thrombolytic systems are closely related to the 
pathogenesis of cardiovascular diseases, many studies on bacteria-
induced platelet activation have been performed7–10. Most reports 
describe the induction of platelet activation and aggregation by  
various bacteria such as Staphylococcus aureus and Porphyromonas 
gingivalis, and their mechanisms are well investigated7–10. In contrast, 
there is a possibility that some bacteria may inhibit platelet aggrega-
tion. However, little is known about the clinical significance of such 
bacteria on cardiovascular diseases. Recently, we reported the possi-
bility that several strains of Streptococcus mutans, a major pathogen 
of dental caries, may affect platelet aggregation11. S. mutans strains 
are reported to be isolated from extraoral sites, such as blood and 
extirpated heart valve specimens, which are presumed to be derived 
from the oral cavity, and dental procedures are thought to be one of 
the most important causes of the onset of bacteremia12,13. S. mutans 

are now classified into four serotypes (c/e/f/k), with a prevalence of 
more than 70% of serotype c, ~20% of serotype e ,and less than 5% 
of serotype f and k strains in the oral cavity14. Serotype k was recently 
designated as separate from non-c/e/f serotype strains isolated from 
the blood of patients with bacteremia after tooth extraction14.

Thus, S. mutans is known to be a possible pathogen for not 
only dental caries but also bacteremia. However, the associations 
between S. mutans and the other systemic diseases remain to be elu-
cidated. There are several complicating diseases reported in patients 
with infective endocarditis, and 10% of these patients have been 
shown to be associated with intracerebral complications in Japan15. 
In addition, one of the serotype k S. mutans strains was isolated 
from a bacteremia patient complicated with an intracerebral vascu-
lar disorder16. Thus, we speculated that such S. mutans strains might 
be involved in the pathogenesis of intracerebral diseases. In this 
study, we show that infection with haemorrhagic stroke-associated  
S. mutans strains is a potential risk factor for cerebral haemorrhage. 
Our data presents a new potential risk factor for haemorrhagic 
stroke.

Results
Evaluation of cerebral haemorrhage in a mouse model. In our 
experimental procedure (Fig. 1a,b), weak bleeding was observed 
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Figure 1 | Evaluation of the virulence of serotype k S. mutans strains using the mouse cerebral haemorrhage model. (a) Schematic illustrations of 
the hypothesis and experimental procedures for S. mutans-induced aggravation of cerebral haemorrhage. (b) Schedule of experimental procedures 
for photochemically induced endothelial cell injury of the middle cerebral artery in mice. (c) Representative macroscopic appearance of whole mouse 
brain 24 h after the onset of cerebral haemorrhage administered phosphate buffered saline (PBS, vehicle control) or the TW295 strain of S. mutans. Ips; 
ipsilateral, Ctr; contralateral hemisphere of brain, respectively. Scale bar; 5 mm. (d) Representative macroscopic appearance of slices of mouse brain 
administered PBS (control) or the TW295 strain of S. mutans. Arrowheads indicate the haemorrhaged areas. Scale bar; 5 mm. (e) Size of the haemorrhage 
areas of the group of mice infected with various strains of S. mutans. Each column represents mean ± standard error (s.e.m.) from 10–21 independent 
experiments. Statistical significance was determined using Bonferroni’s method after ANOVA. *P < 0.05; **P < 0.01 versus control. (f) Typical microscopic 
photographs of ipsilateral hemisphere isolated from control or TW295-administered mice 3 h after the onset of cerebral haemorrhage. Large magnification 
shows microvascular bleeding. Scale bar; 200 µm. (g) Activation of MMP-9 in mouse brain by gelatin gel zymography. Samples were collected 24 h after 
the administration of bacteria. Std; standard of MMP-9 (92 kDa) and MMP-2 (62 and 66 kDa).
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in the ipsilateral hemisphere downstream of the middle cerebral 
artery 24 h after the induction of cerebral haemorrhage (Fig. 1c,d). 
Our mouse model reflects the haemorrhagic transformation of 
ischemic stroke. Administration of MT8148, the standard strain of 
S. mutans (serotype c strain), did not show any aggravated effects 
on cerebral haemorrhage in comparison to vehicle control (Fig. 1e). 
In contrast, TW871, a serotype k strain isolated from a subject with 
subarachnoid haemorrhage (Supplementary Table S1), showed a 
significant exacerbation of cerebral haemorrhage (Fig. 1e). Similarly, 
the groups of mice infected with other serotype k strains, TW295 or 
SA53, showed significantly greater haemorrhagic areas than control 
or groups infected with MT8148. TW295 and SA53 caused the 
greatest increase in the area of cerebral haemorrhage. However, no 
alterations in blood pressure, heart rate or cerebral blood flow were 
observed after the administration of strain TW295 in a mouse stroke 
model (Supplementary Tables S2, S3). Microscopic observations 
revealed obvious bleeding in TW295-administered mouse brains 
3 h after the onset of cerebral haemorrhage (Fig. 1f). Furthermore, 
we investigated the effect of TW295, the most virulent strain of 
S. mutans, on the activation of matrix metalloproteinase (MMP)-
9. Disruption of blood vessels barriers by activated MMP-9 is an 
important amplification pathway that causes further bleeding17,18. As 
shown in Figure 1g, activation of MMP-9 was specifically observed 
in the ipsilateral hemisphere of injured mouse brain. Administration 
of TW295 stimulated further activation of MMP-9 in the ipsilateral 
hemisphere compared with control. However, it should be noted 
that the administration of TW295 alone in the absence of injury to 
the cerebral artery did not cause any tissue damage in mice 24 h after 
the onset of cerebral haemorrhage (see the contralateral hemisphere 
in Fig. 1c,d). These results indicate that the presence of both a 
vascular event and bacteremia of serotype k strains is required for 
aggravation of cerebral haemorrhage.

Collagen-binding protein and cerebral haemorrhage. We 
hypothesized that administered bacteria may specifically localize 
to damaged areas. Therefore, we attempted to detect S. mutans 
in damaged tissues in our cerebral haemorrhage model after the 
administration of bacteria. We observed accumulation of adminis-
tered TW295 cells only in the ipsilateral hemisphere, but not other 
parts of the brain or organs (Fig. 2a,b). The number of bacteria 
localized to the whole ipsilateral hemisphere at 3 h after the onset 
of damage was 14,333 ± 5,377. In addition, the presence of admin-
istrated bacteria in the vessels of damaged areas was detected by 
optical microscopic observation (Fig. 2c). Furthermore, apparent 
accumulation of administered TW295 in the damaged blood ves-
sel was confirmed by ex vivo electron microscopic observation 
(Fig. 2d). Bacteria were localized to the endothelial cell-dam-
aged and collagen fibre-denuded blood vessels in the ipsilateral 
hemisphere. Furthermore, obvious binding of bacteria to colla-
gen fibres was also confirmed in the damaged vessels (Fig. 2e). 
These results suggest that the administered bacteria specifically 
interacted with damaged vessels in vivo, especially via denuded 
collagen fibres.

Therefore, we focused on a direct interaction between sero-
type k S. mutans and collagen fibres. It is well known that denuded  
collagen fibres exist on the surface of damaged vessels after the  
rupture of endothelial cells, and the interaction between collagen 
fibres and platelets is important for the initiation of platelet aggre-
gation. Recently, a cell-surface 120-kDa collagen-binding adhesin 
(Cnm) was identified in S. mutans, and its coding gene (cnm) was 
cloned and sequenced19. In our previous study, the distribution of 
cnm in S. mutans clinical strains was shown to be ~10%, and its 
distribution was predominant in serotype k or f strains20,21. Inter-
estingly, all of the highly virulent strains (TW871, TW295, SA53 
and LJ32, see Fig. 1e) observed in cerebral haemorrhage cases have 
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Figure 2 | Accumulation of administered bacteria in damaged ipsilateral area of mouse brain. (a) Detection of the infected bacterial cells in various 
kinds of organs by PCR. M; Molecular marker (100-bp ladder, bold bands are 1,000 bp and 500 bp, respectively), Std; Positive control of the genomic DNA 
extracted from TW295. Ips; ipsilateral, Ctr; contralateral hemisphere of brain, respectively. (b) Recovered isolation of administered bacteria in damaged 
or non-damaged area. Samples isolated from damaged or non-damaged area in brains were plated onto culture dish for collecting of S. mutans. Recovered 
isolation numbers of bacteria are expressed as CFU per mg protein. Each column represents mean value from three independent animals. (c) Detection of 
accumulated bacteria in damaged brain areas by Gram-stain. White arrowheads indicate the accumulated bacteria. Scale bar; 25 µm. (d) Representative 
appearance of the interaction of the injured blood vessel and infected bacterial cells observed by in vivo SEM. Scale bar; 10 µm. The right photo shows 
high magnification. White arrowheads show the accumulated bacteria leaked outside of the vessel at the injured site. Scale bar; 5 µm. (e) Interaction of 
bacteria and collagen fibres around the vessels in a damaged hemisphere by in vivo SEM. White arrowheads indicate bacteria interacting with collagen 
fibres. Scale bar; 2 µm.
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this surface collagen-binding protein (CBP) (Supplementary Table 
S1). In fact, collagen-binding activity of the highly virulent strains 
was dramatically higher than that of MT8148 in vitro (Fig. 3a). In 
addition, platelet aggregation was decreased in vitro after treatment 
with the highly virulent strains in comparison to MT8148 (Fig. 3b). 
Therefore, we generated a mutant strain with a CBP expression 
defect (TW295CND, Supplementary Table S1) from the TW295 
strain21. This strain completely lost the ability to bind to collagen 
(Fig. 3a). The suppression of platelet aggregation observed with 
TW295 was completely ameliorated with TW295CND (Fig. 3b). 
These results clearly indicate that CBP is necessary for the collagen-
binding activity and inhibition of platelet aggregation observed with 
the TW295 strain. Next, we administered the TW295CND strain to 
mice in our cerebral haemorrhage model. As shown in Figure 3c, 
a drastic reduction in cerebral haemorrhage area was observed in 
mice administered TW295CND in comparison to those adminis-
tered TW295. A good correlation between collagen-binding activity  
and haemorrhage area (Fig. 3d) and inhibition of platelet aggre-
gation (Fig. 3e) was observed. These results indicate that CBP in  
serotype k S. mutans is the main cause of its high virulence in  
cerebral haemorrhage.

It was reported that several strains of S. aureus also expressed 
CBP22,23. We, therefore, investigated the effect of such S. aureus 
strains on collagen-binding activity and aggravation of haemorrhage.  
As shown in Fig. 3f, the collagen-binding activity of S. aureus strains 
was much lower than that of TW295-type S. mutans. Aggravation of 
haemorrhage by S. aureus was not observed (Fig. 3g). These results 
may indicate that not only the bacterial characteristics, but also the 
characteristics of CBP differ between S. mutans and S. aureus.

Inhibition of platelet aggregation by serotype k strains. Platelet 
aggregation is the most important step to hemostasis after vascular 
damage. Therefore, we investigated the effect of various serotypes of 
S. mutans on collagen-induced platelet aggregation. MT8148, the 
standard strain of S. mutans, did not show any inhibitory effects on 
platelet aggregation in whole blood in comparison to vehicle control 
(Supplementary Fig. S1a). In contrast, TW871, a serotype k strain, 
showed a significant inhibition of collagen-induced platelet aggre-
gation, when 107 cells were added to whole blood.

We also investigated the effects of 58 other clinically isolated 
S. mutans strains on collagen-induced platelet aggregation. The 
aggregation rates of serotype k strains were significantly lower than 
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Figure 3 | Relationship between collagen-binding activity and cerebral haemorrhage. (a) Collagen-binding activity of various strains of S. mutans. The 
activity was evaluated under fixed conditions of 2 mg of Type I collagen and 1×1010 bacterial cells. The results for each strain are expressed as a percentage 
of TW871 (defined as 100%). Each column represents mean ± standard deviation (s.d.) from three independent experiments. (b) Platelet aggregation 
activity of various strains of S. mutans. The assays were performed using whole blood obtained from mice with an aggregometer under fixed conditions 
of 4 µg of Type I collagen and 1×107 bacterial cells. The results for each strain are expressed as a percentage based on that with collagen but no bacterial 
cells as 100%. Each column represents mean ± s.d. from 3–5 independent experiments. (c) Size of the haemorrhagic areas of mice infected with TW295, 
TW295CND (the strain generated from TW295), or MT8148. Each column represents mean ± s.e.m. from 11–16 independent experiments Statistical 
significance was determined using Bonferroni’s method after ANOVA. **P < 0.01 versus TW295. (d) Correlation between collagen-binding activity 
and total area of haemorrhage (regression analysis; R2 = 0.6981). Each point represents mean ± s.e.m. from the data of each treatment. (e) Correlation 
between collagen-binding activity and collagen-induced platelet aggregation (regression analysis; R2 = 0.6432). Each point represents mean ± s.e.m. from 
the data of each treatment. (f) Collagen-binding activity of various strains of S. aureus. Phillips and Cowan 1 are reported to have high collagen-binding 
activity in various S. aureus strains. The activity was evaluated under fixed conditions of 2 mg of Type I collagen and 1×1010 bacterial cells. The results for 
each strain are expressed as a percentage of TW871 activity as 100%. Each column represents mean ± s.d. from 3–5 independent experiments. (g) Size 
of the haemorrhagic areas of mice infected with the two strains of S. aureus in a mouse stroke model. Each column represents mean ± s.e.m. from 6–7 
independent experiments. NS; no statistical significance versus control (Bonferroni’s method after ANOVA).
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those of other serotypes (Supplementary Fig. S1b). Among them, 
the TW295 strain showed the most potent inhibition of collagen-
induced platelet aggregation. Interestingly, platelet aggregation 
rates of blood-isolated strains were shown to be significantly lower 
than those of orally isolated strains (Supplementary Fig. S1c). Fur-
ther results were obtained when TW871 was added to the platelet 
aggregation system using platelet-rich plasma (PRP, Supplementary 
Fig. S2a,b). Maximum aggregation, induced by the addition of col-
lagen, was dramatically decreased by the addition of TW871, but 
not MT8148, a standard strain. An increase in the lag-time to the 
onset of aggregation was also observed (Supplementary Fig. S2c).  
In addition, bleeding time in mice showed a tendency to be pro-
longed after TW295 administration (control; 170 ± 10.0 s. versus 
TW295; 180 ± 14.5 s., n = 6, mean ± s.e.m.).

However, arachidonic acid-induced platelet aggregation was 
not inhibited by the administration of TW295 (Supplementary  
Fig. S2d). Therefore, we hypothesized that TW295 might be inter-
cepting collagen, resulting in the inhibition of platelet activation.  
As shown in the scanning electron microscopic (SEM) images in 
Figure 4a, interactions between platelets and collagen that result 

in platelet activation were observed when the platelet fraction was 
collected after stimulation with collagen (Fig. 4a). Morphological 
changes associated with platelet activation, such as pseudopodia 
and platelet adhesion, were observed in the vehicle control group. 
Addition of MT8148 did not show any effects on the interaction of 
platelets and collagen versus control (Fig. 4a, MT8148). In contrast, 
the addition of TW295 showed obvious suppression of the interac-
tion between platelets and collagen, resulting in the inhibition of 
platelet activation (Fig. 4a, TW295). These results clearly indicate 
that the binding of collagen by TW295 leads to inhibition of the 
interaction between platelets and collagen, resulting in the inhibi-
tion of aggregation.

Furthermore, we investigated the cell surface differences between 
MT8148 and TW295 using electron microscopy. Transmission elec-
tron microscopic observation (TEM, Fig. 4b) showed differences in 
cell surface between MT8148 and the serotype k strain TW295. How-
ever, the appearance of bacterial membranes by TEM of ultrathin 
sections can sometimes vary with observational direction. In addi-
tion, it is necessary to consider section thickness during ultrastruc-
tural observations. Therefore, we compared the bacterial membrane 
using three-dimensional images re-constructed by computed tom-
ography (CT) of TEM. As shown in Fig. 4c, the peptidoglycan layer 
of MT8148 appeared as a clear and smooth layer in the three-dimen-
sional TEM image. In contrast, the peptidoglycan layer of TW295 
was opaque with a vague appearance. These results indicate that  
the differences in the bacterial surface, including the peptidoglycan 
layer, may affect the binding of bacteria to collagen fibres.

The surface ionic charge of platelets is one of the important fac-
tors leading to interaction with exposed collagen fibres on injured 
blood vessels. The anionic character of the platelet surface leads to 
interactions with the cationic charges of collagen24–26. Therefore, we 
determined the ionic charge of the bacterial surface, because it may 
affect bacterial interactions with collagen. The mean values for zeta-
potential, as an index of cell surface ionic charge, of MT8148 cells 
dissolved in saline was  − 0.75 mV, indicating an almost nonionic 
character (Fig. 4d). The zeta-potential values of serotype k strains 
such as TW295 and TW871 were much lower than that of MT8148, 
indicating that the cell surface of serotype k strains was anionic.  
A regression analysis between the zeta-potential value and the 
platelet aggregation rate showed a significant positive correlation  
(Fig. 4e). Thus, a vague peptidoglycan layer on the bacterial surface 
may affect the surface ionic charge, altering the binding strength 
between bacteria and collagen fibres.

In contrast, the zeta potential value and cell surface layer of the 
CBP-defective strain, TW295CND, was slightly, but not markedly, 
changed versus MT8148 (Fig. 4f), Thus, CBP itself may not be the 
only determinant of cell surface conditions such as zeta potential 
and peptidoglycan structure.

Strains isolated from stroke patients caused haemorrhage. To 
further support our hypothesis that the infection of CBP-expressing 
S. mutans is a potential risk factor for haemorrhagic stroke, we com-
pared the frequency of cnm-expressing (CBP-expressing) S. mutans 
in oral samples between cerebral haemorrhage patients and age-
matched non-stroke healthy subjects. S. mutans was isolated from 
41 out of 74 patients. Among them, 20 patients were infected with 
cnm-expressing S. mutans (20/41, 48.8%, Table 1). The frequency 
of cnm-expressing TW295-type S. mutans strains in cerebral haem-
orrhage patients was significantly higher than that in control sub-
jects (control; 3/20, 15.0%, Table 1, Odds ratio 5.40). In addition, 
we compared the frequency of cnm-expressing S. mutans strains 
between cerebral haemorrhage and ischemic (non-haemorrhagic) 
stroke patients. The frequency of cnm-expressing S. mutans strains 
was significantly higher in cerebral haemorrhage than ischemic 
stroke patients (Supplementary Table S4). These results suggested 
that infection of CBP (cnm)-expressing S. mutans is a potential risk 
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Figure 4 | Variation of bacterial cell surface conditions and collagen-
induced platelet aggregation. (a) Representative appearance of S. mutans 
strains and platelet reactions to collagen observed by SEM. After the 
reaction with collagen, the platelet fraction was collected and observed by 
SEM. Scale bar; 2 µm. (b) TEM observation of bacterial surfaces. Scale bar; 
0.2 µm. (c) Three-dimensional reconstructed images of bacterial surface 
of MT8148, TW295 and TW295CND. Opaque with a vague appearance 
of the peptidoglycan layer of TW295 is indicated with arrowheads. Scale 
bar; 0.1 µm. (d) Zeta-potential values of S. mutans strains. Zeta-potential 
values of various strains were measured and expressed in mV. Open 
columns represent oral isolates and closed columns blood isolates. Each 
column represents the mean value from 3–5 independent experiments. 
(e) Correlation between platelet aggregation and zeta-potential value 
(regression analysis; R = 0.740, P = 0.0011). Each point represents a mean 
value from each bacterial strain. (f) Comparison of zeta potential values on 
MT8148, TW295, and TW295CND. Each column represents mean ± s.e.m. 
from 3–5 independent experiments.



ARTICLE

��

nature communications | DOI: 10.1038/ncomms1491

nature communications | 2:485 | DOI: 10.1038/ncomms1491 | www.nature.com/naturecommunications

© 2011 Macmillan Publishers Limited. All rights reserved.

factor for haemorrhagic stroke. In addition, we tested the virulence 
of CBP-expressing S. mutans strains isolated from patients. We 
tested two CBP-expressing S. mutans strains from stroke patients 
(SMH2 and SMH4) in a mouse haemorrhagic stroke model, because 
they showed both strong collagen-binding activity and inhibition of 
collagen-induced platelet aggregation (Supplementary Fig. S3a,b). 
A dramatic aggravation of cerebral haemorrhage was observed in 
mice administered with the two isolated cnm-expressing S. mutans 
strains in comparison to control (Fig. 5a,b,c). These results clearly 
indicate that infection of CBP-expressing S. mutans from cerebral 
haemorrhage patients is a risk factor for haemorrhagic stroke.

Analysis of stroke prone spontaneous hypertensive rat model. 
To test whether TW295-type S. mutans also aggravates cerebral 
haemorrhage in other stroke model and animal species, we used the 
stroke prone spontaneous hypertensive (SHRSP) rat model. As the 
SHRSP rat exhibits spontaneous stroke induced by hypertension, we 

exposed SHRSP rats to TW295 (Supplementary Fig. S4). As shown 
in Figure 6, the group administered TW295 showed obvious neu-
rological deficits, such as forelimb and hindlimb flexion, forelimb 
motor function, postural reaction, and abnormal posture in com-
parison to vehicle-administered control SHRSP rats (Fig. 6a and 
Supplementary Movies 1, 2). Increased haemorrhage in the whole 
brain of TW295-administered SHRSP rats was clearly observed 
in comparison to that of vehicle-administered control SHRSP rats 
(Fig. 6b,c). These results clearly indicate that aggravation of cerebral 
haemorrhage induced by TW295 occurs in multiple stroke models, 
and may be a common mechanism between various animal species, 
including human.

Aggravation of haemorrhage by recombinant Cnm protein. As 
CBP-expressing S. mutans causes the aggravation of cerebral haem-
orrhage, we hypothesized that CBP itself might be able to cause 
haemorrhage. To clarify the role of CBP in the aggravation of haem-
orrhage, we produced recombinant Cnm protein. Pre-application 
of 100 µg recombinant Cnm protein completely inhibited TW295 
binding to the collagen layer, indicating that recombinant Cnm  
protein functionally binds to the collagen layer (Supplementary  
Fig. S5). We then administered recombinant Cnm protein in a mouse 
stroke model. As shown in Figure 7, administration of recombinant 
Cnm protein dose-dependently aggravated cerebral haemorrhage. 
A dosage of 100 µg of recombinant Cnm protein showed a similar 
degree of haemorrhagic aggravation compared with TW295 admin-
istration (Fig. 7b). These results indicate that CBP itself can aggra-
vate cerebral haemorrhage.

Discussion
This is the first study showing that infection with CBP-expressing  
S. mutans is a potential risk factor for haemorrhagic stroke.

Bacteria-related aggravation of cerebral haemorrhage was 
demonstrated in mice infected with serotype k S. mutans strains.  
In addition, administered bacteria were identified in the ipsilateral 
but not the contralateral hemisphere, indicating that the interac-
tion of serotype k S. mutans with damaged blood vessels is a crucial 
event in the development of the cerebral haemorrhage. Aggravation 
of cerebral haemorrhage induced by serotype k S. mutans strains 
may be a common effect between various animal species, including 
humans, because the aggravation by TW295 was also observed in 
the SHRSP rat stroke model.

The serotype k S. mutans strains exhibited common cell surface 
protein expression patterns, including the expression of CBP that 
could be important for the aggravation of cerebral haemorrhage. 
Our hypothesis that CBP of serotype k S. mutans is necessary for 
cerebral haemorrhage is supported by our result that the CBP-
defective mutant strain, TW295CND, showed no aggravation of 
cerebral haemorrhage. The highly virulent strains, TW295, TW871, 
SA53 and LJ32 (although LJ32 is not serotype k), commonly pos-

Table 1 | Frequency of cnm-expressing S. mutans infection in cerebral haemorrhage patients and control subjects.

Control  
subjects

Cerebral haemorrhage 
patients

P-value (Fisher’s exact 
probability test)

Odds ratio  
(95%CI)

Total number (Male:Female) 35 (15:20) 74 (47:27)
Age (mean ± s.d.) 65.9 ± 6.7 68.4 ± 4.0 NS
S. mutans-isolated/total subjects (%) 20/35 (57.1%) 41/74 (55.4%) NS
cnm-positive S. mutans/total subjects (%) 3/35 (8.5%) 20/74 (27.0%) P=0.0423 3.95 (1.09–14.35)
cnm-positive S. mutans/total S. mutans-
isolated subjects (%)

3/20 (15.0%) 20/41 (48.8%) P=0.0123 5.40 (1.37–21.27)

Oral samples were collected from multiple institutes and hospitals. Age-matched non-stroke subjects who did not have a history of diseases such as stroke, heart failure, diabetes mellitus, rheumatoid 
arthritis, liver disease, kidney disease, gastrointestinal disease, hypertension or anemia were defined as control subjects. Detection of cnm-positive strains was always confirmed by isolation and 
culture of the individual strains. Each isolation and identification of cnm-positive or negative status was repeated multiple times. s.d., standard deviation; CI, confidence interval; NS, non-significant.
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Figure 5 | Effect of CBP-expressing S. mutans isolated from stroke 
patients on cerebral haemorrhage. (a) Representative macroscopic 
appearance of whole mouse brain 24 h after the onset of cerebral 
haemorrhage administered SMH4 isolated from a haemorrhagic stroke 
patient. Scale bar; 5 mm. (b) Representative macroscopic appearance of 
mouse brain slices administered SMH4. Scale bar; 5 mm. (c) Size of the 
haemorrhage areas from the group of mice infected with CBP-expressing 
S. mutans (SMH2 and SMH4) isolated from stroke patients. Each column 
represents mean ± s.e.m. from 11–16 independent experiments. Statistical 
significance was determined using Bonferroni’s method after ANOVA. 
*P < 0.05 versus control.
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sessed strong collagen-binding properties because of their cell 
surface CBP expression. As collagen-induced, but not arachidonic 
acid-induced, platelet aggregation was inhibited by the treatment 
with CBP-expressing S. mutans, interaction between collagen and 
CBP-expressing S. mutans may be important. We speculate that 
strains with strong collagen-binding properties accumulate on 
exposed collagen layers after the rupture of endothelial cells. With 
no bacteria present, platelets bind to the exposed collagen layer 
when the endothelial cells are damaged or ruptured. In the pres-
ence of CBP-expressing S. mutans, however, these bacteria bind to 
the exposed collagen layer instead of platelets, resulting in damaged 
areas remaining unsealed. Thus, continued bleeding may occur. In 
fact, we observed that a comparatively large amount of the collagen 
layer was exposed in the damaged hemisphere in our mouse haem-
orrhagic stroke model (Supplementary Fig. S6a) and that many bac-
teria accumulated in the area (Supplementary Fig. S6b). The accu-
mulation of such high-virulence strains may then activate MMP-9, 
recruit leukocytes, and inhibit further collagen-induced platelet 
aggregation, resulting in further bleeding. Thus, the strains with CBP 
should be regarded as highly virulent strains for cerebral haemor-
rhage. In fact, ex vivo SEM images of blood vessels in the ipsilateral 
side of damaged mouse brain showed administered bacteria with no 

associated platelet aggregations. In addition, a slight increase in the 
accumulation of inflammatory cells was also observed in the ipsi-
lateral hemisphere (Supplementary Fig. S7), indicating the limited 
involvement of infiltrating leukocytes on the activation of MMP-9 
in bacteria-administered mouse brains.

Bacterial cell surface conditions, including the peptidoglycan 
layer and/or ionic charge, may also affect the binding of bacteria 
with collagen fibres. In general, collagen is cationic in physiologi-
cal situations and, therefore, bacterial surface ionic character might 
be important for interaction with exposed collagen fibres. As the 
values of zeta-potential and the collagen-induced platelet aggrega-
tion rates were positively correlated, strains with low zeta-potential 
values (anionic) might also be classified as highly virulent strains. 
Taken together, we speculate that the S. mutans strains with CBP 
possess a high affinity to the exposed collagen fibres and that a 
strongly anionic cell-surface leads to further increased affinity for 
cationic collagen fibres. Therefore, synergism between the presence 
of CBP and anionic cell surface conditions may cause strong bind-
ing to collagen fibres, resulting in the accumulation of highly virulent 
bacteria in collagen-denuded blood vessels. We propose a mechanism 
of haemorrhagic aggravation of stroke in which accumulated highly 
virulent bacteria bind to the exposed collagen layer after endothelial 
cell injury, resulting in the inhibition of collagen-induced platelet 
aggregation in injured blood vessels. Consequently, the accumulation 
of bacteria leads to the activation of MMP-9, resulting in an accelera-
tion of bleeding and haemorrhagic stroke (Supplementary Fig. S8).

The estimated rate of oral cavity infection by S. mutans with 
CBP in healthy subjects is 8–10% (refs 20,27). Thus, only a limited 
number of strains are possible risk factors for the aggravation of 
cerebral haemorrhage caused by S. mutans-induced bacteremia. 
Therapeutic interventions for cerebral haemorrhage are limited 
after the onset of disease, and prevention is considered the most 
important approach28. Therefore, it may be important to identify 
subjects with highly virulent strains of S. mutans at risk for cere-
bral haemorrhage. In fact, we isolated cnm-expressing highly vir-
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Figure 6 | Effect of CBP-expressing S. mutans on SHRSP rats.  
(a) Alteration of neurological deficits on TW295-administered or vehicle-
administered SHRSP rats. The neurological deficit score of each animal 
was evaluated and scored. Open columns represent vehicle-administered 
control and closed columns represent TW295 administered groups. Each 
column represents mean ± s.e.m. from 8–10 independent experiments. 
Statistical significance was determined using Student’s t-test. *P < 0.05 
versus control. (b) Representative macroscopic appearance of SHRSP rat 
brain slices administered TW295 (TW295) or vehicle (Control). Scale 
bar; 5 mm. (c) Total size of the haemorrhage areas of the group of SHRSP 
rats injected with TW295 or vehicle (control). Each column represents 
mean ± s.e.m. from 8–10 independent experiments. Statistical significance 
was determined using Student’s t-test. *P < 0.05 versus control.
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ulent TW295-type-S. mutans strains from haemorrhagic stroke 
patients with extremely high frequencies (48.8% of S. mutans-
positive patients, and 27.0% of all patients) compared with  
age-matched non-stroke control subjects (15.0% of S. mutans 
positive patients, and 8.5% of all control subjects) or ischemic 
stroke patients (22.2% of S. mutans-positive patients, and 11.1% 
of all ischemic stroke patients). Thus, about 30% of cerebral 
haemorrhage patients have these dangerous strains. These results 
indicate that the bacteremia of highly virulent TW295-type  
S. mutans may be an important risk factor for haemorrhagic stroke 
in many clinical cases. In addition, several S. mutans strains with 
CBP isolated from stroke patients caused aggravation of cerebral 
haemorrhage in a mouse haemorrhagic stroke model, indicating 
the potential involvement of highly virulent S. mutans in occur-
rences of haemorrhagic stroke. Further large-scale clinical screen-
ing investigations about the relationship between the infection of 
highly virulent S. mutans and the occurrence of haemorrhagic 
stroke are required.

To our surprise, administration of recombinant Cnm protein  
itself aggravated cerebral haemorrhage in a mouse haemorrhagic 
stroke model. These results clearly indicate that CBP itself is  
capable of causing an aggravation of cerebral haemorrhage. At the  
same time, it may suggest that we must be aware of the release of 
CBP from bacteria into circulation after destroying TW295-type  
S. mutans during transitory bacteremia. Free CBP may itself be a 
risk factor for haemorrhagic stroke.

In conclusion, infection with highly virulent haemorrhagic 
stroke-inducible S. mutans is a potential risk factor for haem-
orrhagic stroke. The important identified virulence factors for  
cerebral haemorrhage are the presence of CBP and the anionic cell 
surface conditions, which are common properties of most serotype 
k clinical isolates.

Methods
Ethics of animal experiments and human subjects. All animal experiments 
in the present study conformed to the Guide for the Care and Use of Laboratory 
Animals published by the United States National Institutes of Health, and were 
approved by the institutional animal care and use committees of Osaka University 
Graduate School of Dentistry and Hamamatsu University School of Medicine.

Study protocols using human samples were approved by the Ethics Com-
mittee of Osaka University Graduate School of Dentistry, Seirei Hamamatsu 
General Hospital, and Suita Municipal Hospital. All subjects were informed of 
the protocols and gave written consent before their participation in this study. 
Cerebral haemorrhage patients were strictly selected by neurosurgery experts using 
MRI and other diagnostic criteria. We also selected ischemic stroke (including 
atherosclerotic stroke) patients who were diagnosed with ischemic stroke without 
any haemorrhage. Oral samples were collected from patients in multiple institutes 
and hospitals. Age-matched non-stroke subjects who did not have a history of any 
other diseases such as stroke, heart failure, diabetes mellitus, rheumatoid arthritis, 
liver disease, kidney disease, gastrointestinal disease, hypertension or anemia were 
defined as control subjects.

Bacterial strains and culture conditions. Supplementary Table S1 shows the  
major S. mutans strains used in this study14,16,20,21,29. In addition, 58 clinical  
S. mutans strains (blood isolates; n = 13; oral isolates; n = 45) were selected from 
our laboratory stock in this study30. All strains were grown in brain heart infusion 
broth (Difco) and erythromycin was added for selection of mutant strains.

S. aureus strains that have collagen-binding activity (Phillips, Cowan 1, and 
Newman) were also cultured in brain heart infusion broth22,23.

Collagen-binding assay. The collagen-binding properties were evaluated accord-
ing to the method described by Waterhouse and Russell31, with some modifica-
tions27. The activity was evaluated under fixed conditions of 2 mg of Type I collagen 
and 1×1010 bacterial cells. The results for each strain are expressed as a percentage 
compared with TW871 binding, which was defined as 100%.

Platelet aggregation assay. The platelet aggregation assay was carried out 
using mouse whole blood by an impedance method with an aggregometer 
(Whole-blood aggregometer C540, Baxter). Briefly, whole blood was taken from 
mice (ICR, male, 8-weeks-old, CLEA), and mixtures of varied amounts of bacte-
rial cells (103–107 colony forming unit, CFU) and whole blood were incubated at 
37 °C for 5 min, followed by the addition of collagen (native collagen fibrils (type 

I), Chrono-log). Aggregation rates of each strain were calculated by impedance 
(Ω) values with or without the addition of bacterial cells, and were expressed as 
a percent of vehicle.

In addition to the whole blood aggregation, we performed a platelet aggrega-
tion assay using human PRP. Human PRP was prepared from healthy volunteers 
and the standard S. mutans strain, MT8148, or TW871 (final concentration; 
107 cells ml − 1) was added. Collagen (4 µg) was added 5 min after the incubation 
with MT8148 or TW871, and the maximum impedance value during the 20-min. 
observation period was measured using an aggregometer. Maximum platelet 
aggregation rates and the prolongation of lag-time until the start of aggregation 
were evaluated using PRP.

Evaluation of bacterial surface charge. Bacterial surface charge was evaluated as 
zeta-potential values using a zeta-potential analyzer (ELSZ-2, Otsuka Electronics), 
which automatically calculated zeta-potential from the electrophoresis mobility 
using the Smoluchowski equation. Overnight-cultured bacterial cells were washed 
and adjusted using PBS to 107 CFU and were applied to the analyzer, which meas-
ured the zeta-potential of the cells at five standard points automatically. Results 
were expressed as mean values.

Mouse cerebral haemorrhage model. Endothelial injury in middle cerebral 
artery of mice was induced using a photochemical method with some modi-
fications17,32 (Fig. 1a,b). Bacterial suspensions (107 cells per body) in PBS were 
intravenously administered through the jugular vein, followed by the administra-
tion of rose bengal under photo-irradiation with a xenon lamp equipped with a 
heat-absorbing filter (0.04 W cm − 2, wavelength 540 nm, Hamamatsu Photonics) 
for 10 min using a 1.5-mm diameter optic fibre mounted on a micromanipulator. 
Twenty-four hours after the bacterial infection, mice were sacrificed and the brains 
were removed. The total haemorrhage areas from all brain sections were calculated 
by computer analysis and expressed in mm2 according to the method17,32 (DP 
controller, model DP70, Olympus).

Activation of matrix metalloprotease-9. Gelatin gel zymography was performed 
according to the method of Gursoy-Ozdemir et al. with some modifications18. 
Briefly, tissue samples collected 24 h after the administration of bacteria or vehicle 
were homogenized in 50 mM Tris–HCl, 150 m M NaCl, 1% Nonidet P-40, 0.1% 
SDS and 0.1% deoxycholic acid, pH 7.4 buffer solution including protease inhibi-
tors. Then, samples were separated by electrophoresis using a gelatin zymography-
electrophoresis kit (Cosmo Bio).

Ex vivo electron microscopic observation. Brain tissues were removed from 
mice 3 h after the induction of cerebral haemorrhage for electron microscopic 
observations in haemorrhagic areas. Briefly, the haemorrhagic cerebrum was fixed 
with 2% glutaraldehyde. Then the cerebrum was cut and removed including a part 
of the obstacle, and were fixed again with 1% osmium tetra-oxide and dehydrated 
with an ethanol series. The samples were frozen and fractured into two to four 
pieces by a freeze fracture device filled with liquid nitrogen. The fracture surface 
was perpendicular to the cerebral surface, and included the haemorrhage. The frac-
tured samples were dried with t-butyl alcohol using freeze drying equipment and 
adhered to the sample stage using conductive paste with the section at the top, and 
were then coated with osmium as conductive processing. The completed specimens 
were observed by SEM.

Three-dimensional computed tomography of bacteria. The bacterial mem-
branes were compared using three-dimensional re-constructed images made 
by computed tomography (CT) of TEM (JEM 1220: JEOL). TEM images of the 
bacteria were taken at 150,000 magnification at every degree from a tilted range 
of  − 60° to  + 60°. The CT images of the three-dimensional reconstruction were 
produced with Radon transform software. These CT images can be displayed in an 
arbitrary direction.

Detection of bacteria in tissue samples. Detection of the infected bacteria in 
several organs was carried out by PCR as follows. Whole DNA was extracted from 
extirpated tissue, such as injured or uninjured brain hemispheres, lung, liver and 
intestine. PCR was carried out using S. mutans-specific sets of primers described 
previously14,20,27 (Supplementary Table S5). The limit of detection for bacteria was 
5–50 cells in each specimen. To confirm that viable strains were in the tissue, each 
extirpated tissue was squeezed in sterile PBS, and the original as well as the diluted 
liquid were streaked on Mitis-Salivarius agar (Difco) plates containing bacitracin 
(100 units per ml; Sigma-Aldrich), which are the selected culture agar plates for  
S. mutans.

Stroke model in stroke prone spontaneous hypertensive rats. Male SHRSP rats 
(12-weeks-old, SLC) were housed in a climate-controlled (temperature 22–24 °C, 
humidity 40–60%) light-regulated room with a 12-h light: 12-h dark cycle. All rats 
consumed the SP diet (Funahashi). Free access to rat chow and 0.5% saline solution 
was maintained throughout the experiment.

The rats were divided into two groups, a TW295-administered and a vehicle-
administered control group. TW295 was administered intravenously through the 
tail vein at day 1, 3, 8 and 10 (Supplementary Fig. S4a). Non-invasive blood pres-
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sure was measured by tail cuff just before and one day after first administration of 
TW295 or vehicle. Body weight measurement and neurological scores of each rat 
were also performed at each time of intravenous administration. The neurological 
deficit score of each animal was evaluated according to the method described pre-
viously33. Briefly, forelimb and hindlimb flexion, forelimb motor function, postural 
reaction, and each animal’s posture were observed. Each item was scored from 0–3 
and the most severe animal scored 15 points.

At day 15, animals were killed under sodium pentobarbital anaesthesia. Saline 
perfusion followed by brain removal was preformed, and six preselected coronal 
sections (from anterior 3.5 mm to anterior 13.5 mm), 2 mm in thickness, were 
made using a brain matrix (RBS-02, Neuroscience). For each section, haemor-
rhagic area was determined using computerized image analysis by Photoshop and 
Image J software.

Generation of recombinant Cnm and application in mouse model. Recom-
binant Cnm was generated as reported previously34. Briefly, the coding region 
for Cnm of strain TW871 was amplified by PCR, which was subcloned into 
the expression vectors pET-42a( + ) (Novagen). Then, the resultant plasmids 
were transformed into Escherichia coli BL21 (DE3). The E. coli organisms were 
grown in Luria-Bertani broth containing kanamycin and tetracycline at 37 °C to 
the mid-exponential phase. Isopropylthio-β-d-galactoside (Wako Chemicals) 
was then added to give a final concentration of 1.0 mM, and the cultures were 
incubated for an extra 3 h to induce GST–Cnm protein synthesis. After that, the 
cells were collected and were suspended in 10 mM phosphate buffer, which was 
ultrasonicated on ice. Supernatants were obtained and purified using a glutath-
ione Sepharose 4B column (GE Healthcare). The GST-fusion protein treated 
with PreScission Protease (GE Healthcare) at 4 °C was subjected to SDS–PAGE, 
and purified recombinant Cnm was obtained using GeBA flex-tube (Gene Bio 
Application).

The collagen binding activity of recombinant Cnm protein was confirmed by 
the inhibition of TW295 adhesion to collagen layers (Supplementary Fig. S5), and 
the dosages were determined as 10 and 100 µg according to the inhibition curve. 
Then, the recombinant Cnm protein was applied in mouse cerebral haemorrhage 
model as described above.

Statistical analyses. Statistical analyses were carried out with Prism 4 (GraphPad 
Software). Fisher’s protected least significant difference, Student’s t-tests, regression 
analysis and Bonferroni’s method after analysis of variance (ANOVA) were per-
formed. The results were considered significantly different when P < 0.05. 
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