
RESEARCH ARTICLE

The Conserved G-Protein Coupled Receptor
FSHR-1 Regulates Protective Host Responses
to Infection and Oxidative Stress
Elizabeth V. Miller¤a☯, Leah N. Grandi¤b☯, Jennifer A. Giannini‡, Joseph D. Robinson‡,
Jennifer R. Powell*

Department of Biology, Gettysburg College, Gettysburg, Pennsylvania, United States of America

☯ These authors contributed equally to this work.
¤a Current address: Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry,
Goettingen, Germany
¤b Current address: Temple University School of Medicine, Philadelphia, Pennsylvania, United States of
America
‡ These authors also contributed equally to this work.
* jpowell@gettysburg.edu

Abstract
The innate immune system’s ability to sense an infection is critical so that it can rapidly

respond if pathogenic microorganisms threaten the host, but otherwise maintain a quies-

cent baseline state to avoid causing damage to the host or to commensal microorganisms.

One important mechanism for discriminating between pathogenic and non-pathogenic bac-

teria is the recognition of cellular damage caused by a pathogen during the course of infec-

tion. In Caenorhabditis elegans, the conserved G-protein coupled receptor FSHR-1 is an

important constituent of the innate immune response. FSHR-1 activates the expression of

antimicrobial infection response genes in infected worms and delays accumulation of the

ingested pathogen Pseudomonas aeruginosa. FSHR-1 is central not only to the worm’s sur-

vival of infection by multiple pathogens, but also to the worm’s survival of xenobiotic cad-

mium and oxidative stresses. Infected worms produce reactive oxygen species to fight off

the pathogens; FSHR-1 is required at the site of infection for the expression of detoxifying

genes that protect the host from collateral damage caused by this defense response.

Finally, the FSHR-1 pathway is important for the ability of worms to discriminate pathogenic

from benign bacteria and subsequently initiate an aversive learning program that promotes

selective pathogen avoidance.

Introduction
To survive an attack by a microbial pathogen, a host must first recognize that the pathogen is
attempting to cause an infection so that it can then mount a response. Recognition can occur
via direct binding of host pattern-recognition receptors (PRRs), including Toll-like receptors
(TLRs) and NOD-like receptors (NLRs), to microbe-associated molecular patterns (MAMPs)
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[1]. Direct pathogen recognition is an effective detection mechanism for professional immune
cells that exist in normally sterile environments: any microbe is a threat that therefore necessi-
tates a response. In contrast, epithelial cells commonly encounter microbes of the normal
microbiota that are benign or even beneficial to the host. Direct recognition of MAMPs is not
sufficient for the discrimination of pathogen vs. non-pathogen because these broadly conserved
molecules are found among both pathogenic and non-pathogenic members of a microbial
group. The ability to differentiate a pathogen from a non-pathogen is critical because inappro-
priate activation of the innate immune response is energetically wasteful, can harm the benefi-
cial microbiota, and can non-specifically harm the host itself [2].

Recognition of the “patterns of pathogenesis” associated with an infection instead of or in
addition to recognition of the microbe itself permits the host innate immune system to distin-
guish between a pathogen and non-pathogen [2]. One such pattern of pathogenesis is the dis-
ruption of core host processes by microbial toxins. For example, Pseudomonas aeruginosa
Exotoxin A cripples translation elongation by ADP-ribosylating EF-2. The Caenorhabditis ele-
gans bZip transcription factor ZIP-2 is only translated when general translation is impeded by
Exotoxin A; when expressed, ZIP-2 induces the transcription of a collection of antimicrobial
innate immune effectors [3]. Thus, C. elegans uses ZIP-2-mediated surveillance of translation
to detect a P. aeruginosa infection and activate the appropriate defense response.

Damage-Associated Molecular Patterns (DAMPs) that reveal physical or chemical damage
to host cells can also be sensed by the host immune system as a pattern of pathogenesis and
thus as a mode of discriminating pathogens from non-pathogens. For example, the tyrosine
metabolite 4-hydroxyphenyllactic acid (HPLA) is a DAMP produced by C. elegans in response
to sterile wounding or infection with the fungus Drechmeria coniospora. HPLA is a ligand of
the G-protein coupled receptor (GPCR) DCAR-1, which subsequently activates a MAPK-
mediated defense response [4]. Thus, this GPCR does not bind the pathogen directly; rather, it
senses damage caused by a pathogen but not a non-pathogen.

GPCR-based innate immune recognition of bacterial pathogens extends beyond the DCAR-
1/HPLA system. Bacterial uracil, which is secreted at higher levels by pathogens than by com-
mensals, is a pattern of pathogenesis that is recognized by an as-yet-unidentified GPCR in the
Drosophila melanogaster gut epithelium. Uracil-activated GPCR signaling triggers the produc-
tion of reactive oxygen species (ROS), an essential component of theDrosophila defense against
midgut infections [5,6]. In mice, nasal epithelial cells detect acyl-homoserine lactone quorum
sensing molecules, which are associated with virulence in Gram-negative bacteria, via GPCR/
phospholipase C-mediated signaling [7]. These chemosensory cells then activate a local inflam-
matory response [8]. These examples illustrate that G-protein coupled receptors, long known
to play important roles in diverse processes, are emerging as central players in the detection of
infection.

Here we describe a conserved GPCR that acts in the intestine to regulate protective host
responses toward toxic xenobiotics and ingested pathogens. The C. elegans Follicle Stimulating
Hormone Receptor homolog FSHR-1 is required for the innate immune response to diverse
pathogens [9]. FSHR-1 delays the intestinal accumulation of ingested pathogenic bacteria.
Upon infection, the FSHR-1 pathway activates not only the expression of known infection
response genes, but also a collection of stress response genes. FSHR-1 protects worms from
toxic reactive oxygen species (ROS) and cadmium, independent of infection. FSHR-1 is
required for worms to learn aversive behavior toward pathogens, and overexpression causes
avoidance of benign bacteria, indicating that the FSHR-1 pathway contributes to the worm’s
ability to discriminate pathogen from non-pathogen.
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Results and Discussion

FSHR-1 delays pathogen accumulation in the intestine
Intestinal infection by Pseudomonas aeruginosa strain PA14 progresses more quickly in fshr-1
mutants than in wild-type C. elegans. Wild-type worms exposed to PA14 initially appear
healthy, but by 8 hours post-infection they begin to show early symptoms of the infection,
including a distension of the lumen of their intestine. By 24 hours post-infection, the worms
may appear sickly and slightly small and the intestine has begun to accumulate live actively
dividing bacteria [10]. To determine the effect of a null fshr-1(ok778)mutation on this progres-
sion of infection, we exposed worms to GFP-labeled PA14. At the light microscopic level, fshr-
1(ok778)mutant worms follow the same sequence of infection as wild-type worms, but develop
symptoms of infection more quickly. For example, by 18 hours of exposure to GFP-labeled
PA14, most wild-type worms have very little fluorescence in the lumen of their intestines, sug-
gesting they have not yet amassed a substantial amount of PA14 (Fig 1A and 1C). In contrast,
after 18 hours of exposure to GFP-PA14, fshr-1(ok778)mutants have already accumulated a
significantly greater amount of the fluorescent pathogen in their intestinal lumens (P<0.0001)
(Fig 1B and 1C).

Both wild-type and fshr-1(ok778)mutant worms eventually succumb to a PA14 infection.
However, infected fshr-1(ok778) worms have a mean survival time of 39 hours, significantly
less than the wild-type mean survival time of 73 hours (P<0.0001) (Fig 1D). We previously
showed that the slope of the survival curves is approximately the same but the fshr-1 survival
curve is shifted to the left [9]. This observation, combined with the more rapid accumulation of
pathogenic PA14, suggests that FSHR-1 protects C. elegans from bacterial infection by delaying
the establishment or progression of the infection.

Could FSHR-1 be a pattern recognition receptor? Its extracellular domain contains seven
Leucine-Rich Repeat domains, protein-protein interaction motifs that are also present in the
ligand-binding domains of Toll-like receptors (TLRs) and Nod-like receptors (NLRs) [11].
However, fshr-1(ok778)mutants are more sensitive than wild-type worms to infection by
diverse pathogens, including not only the Gram negative pathogen PA14, but also the Gram
positive bacterial pathogens Staphylococcus aureus (P>0.01) and Enterococcus faecalis
(P>0.05) (Fig 1D) [9], as well as the eukaryotic fungal pathogen Candida albicans (R. Pukkila-
Worley and J. Powell, personal communication). Because these microbes are members of struc-
turally dissimilar classes, it is unlikely that FSHR-1 detects infection by binding directly to a
common MAMP possessed by these distinct phyla. Rather than serving as a direct PRR like fel-
low LRR-containing TLRs and NLRs, we propose that FSHR-1 is an indirect sensor of
infection.

FSHR-1 regulates the expression of immune and stress-associated
genes
To understand the effect of the FSHR-1 pathway on the innate immune response in C. elegans,
we examined gene expression in infected worms. We previously showed that FSHR-1 is
required in C. elegans for the transcriptional induction of a set of known infection response
genes upon exposure to PA14 [9]. Many of these genes are thought to have antimicrobial activ-
ity that antagonizes the infecting pathogen [12]. To gain a more complete picture of the down-
stream transcriptional impact of the FSHR-1 pathway, we performed a full-genome microarray
on wild-type or fshr-1(ok778) null mutant worms that were either infected with PA14 or grown
on relatively non-pathogenic E. coliOP50 as a control [13]. We used quantitative RT-PCR (S1
Fig) and transcriptional reporter (S2 Fig) analyses to validate the microarray results. Thirty
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four genes were expressed at greater than 2-fold higher levels (P<0.05) in wild-type worms rel-
ative to fshr-1(ok778)mutants grown on E. coli (S1 Table). Fifty-six genes were expressed at
greater than 2-fold higher levels (P<0.05) in wild-type worms infected with PA14 relative to
infected fshr-1(ok778)mutants (S2 Table). When we examined the reported functions of the
genes whose expression in infected worms depends on fshr-1, we observed that many were
known antimicrobial infection response genes; in addition, 18% of fshr-1-regulated genes were
associated with some type of cellular stress (Fig 1E).

FSHR-1 acts in the intestine to mediate survival of heavy metal and
oxidative stress
One way that host cells sense an infection indirectly is by assessing infection-induced cellular
damage or stress. Because the loss of fshr-1 is associated with sensitivity to diverse pathogens
and results in the misregulation of a set of stress-response genes, we hypothesized that the
FSHR-1 pathway may contribute to the worm’s immune defenses by responding to general

Fig 1. FSHR-1 is required for the defense against diverse pathogens. Representative wild-type (A) and fshr-1(ok778)mutant (B) worms fed GFP-PA14
for 18 hours. Scale bars = 100 μm. (C) Quantification of the sum of the intestinal fluorescence intensity for at least 10 representative individual worms per
condition. (D) Mean survival time of wild-type and fshr-1(ok778)mutant worms exposed to different bacterial food sources. * P<0.05, **P<0.01, ***
P<0.0001 in unpaired t-test. Error bars are SEM. (E) Functional annotation of genes whose mean expression from three microarray replicates in wild-type
worms infected with PA14 for 4 hours was at least 2-fold higher than their mean expression in fshr-1(ok778)mutants infected with PA14 for 4 hours, with
P<0.05. Genes known to be involved both in infection response and stress response were grouped with stress response.

doi:10.1371/journal.pone.0137403.g001
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damage or cellular stress caused by infection. As a corollary, we predicted that the FSHR-1
pathway might also sense some types of cellular stress in the absence of infection. To test this
prediction, we measured the survival of worms subjected to several types of stress.

To determine the effects of heavy metal stress on fshr-1(ok778)mutants, we exposed L4
worms to 100 μM cadmium and measured their survival. fshr-1(ok778)mutants died signifi-
cantly more quickly in the presence of cadmium than wild-type worms (One-way ANOVA,
F = 110.68; Tukey HSD test, P<0.05) (Fig 2A and 2B). Expression of fshr-1 in the intestine is
necessary and sufficient for its role in the response to infection by PA14 [9], so we also tested
whether fshr-1(+) expressed in the intestine could rescue the cadmium sensitivity phenotype of
fshr-1(ok778)mutants. Interestingly, expression of fshr-1(+) from an intestinal promoter res-
cued the cadmium sensitivity phenotype and conferred resistance to cadmium exposure (One-
way ANOVA, F = 110.68; Tukey HSD test, P<0.01) (Fig 2A and 2B). These data suggest that
the fshr-1 pathway is not only required for surviving cadmium exposure, but also could be suf-
ficient in the intestine to protect worms against cadmium-induced damage independent of
infection.

To determine whether the fshr-1 pathway plays a role in the survival of oxidative stress, we
placed worms on plates containing 5 mM paraquat, which causes the production of reactive
oxygen species (ROS). fshr-1(ok778)mutants died significantly more quickly than wild-type
worms (One-way ANOVA, F = 40.96; Tukey HSD test, P<0.01) (Fig 2C and 2D). Additionally,
intestinal expression of fshr-1(+) rescued the paraquat sensitivity phenotype (One-way
ANOVA, F = 40.96; Tukey HSD test, P<0.01), suggesting that the fshr-1 pathway is important
for the ability of worms to survive infection-independent oxidative stress in the same tissue in
which it acts to promote survival of infection.

Wild-type worms subjected to thermal stress survive at 37°C for an average of 320 minutes
(Fig 2E and 2F). The mean survival of fshr-1(ok778)mutants at 37°C is not significantly differ-
ent from the survival of wild-type worms (One-way ANOVA, F = 0.42, P = 0.669), indicating
that the fshr-1 pathway does not respond to the damage caused by high heat.

Because fshr-1(ok778)mutants are sensitive to oxidative and cadmium stress but not to
thermal stress, the FSHR-1 pathway responds specifically to certain types of stress rather than
more broadly to any type of cellular damage. Many studies have shown that cadmium exposure
causes oxidative stress through the production of ROS (recently reviewed in [14]). Microarray
experiments have also shown that cadmium exposure induces many of the same changes in
gene expression as infection by Pseudomonas aeruginosa [12]. It is possible this common
response is due to the fact that ROS play important roles in the interaction between host and
pathogen during an infection [15]. Thus, host cells are subjected to oxidative stress both when
infected and when exposed to toxic doses of cadmium. We propose a model in which the
FSHR-1 pathway senses and responds to oxidative damage from a variety of sources, including
exogenously added chemicals and the worm’s own immune system.

FSHR-1 controls the induction of the oxidative-stress response gene
gcs-1 in response to infection
C. elegans intestinal cells generate an oxidative burst upon infection with Enterococcus faecalis
strain OG1RF [15]. The dual oxidase Ce-Duox1/BLI-3 is responsible for the formation of these
ROS, and is required for the worm to fight the E. faecalis infection [16,17]. Because ROS react
with and damage a variety of biological molecules, and do not discriminate against host or
pathogen targets, C. elegans intestinal cells and other host cells that produce ROS as a form of
pathogen defense must also induce an oxidative stress response to detoxify the ROS and protect
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itself from collateral damage. In worms infected with E. faecalis or PA14, this detoxification
response is mediated by the Nrf transcription factor SKN-1 [18].

GCS-1 is a phase II detoxification enzyme and catalyzes the rate-limiting step of glutathione
biosynthesis. It is an important target of SKN-1 and is a participant in the oxidative stress
response in C. elegans. Wild-type worms induce the intestinal expression of a gcs-1::gfp

Fig 2. FSHR-1 is required for the survival of heavymetal and oxidative stress.Wild-type, fshr-1(ok778)mutants, and mutants rescued with fshr-1(+) in
the intestine were measured for their ability to survive different types of stress. Worms were subjected to 100 μM cadmium (A, B), 5 mM paraquat (C, D), or
37°C (E, F). Representative survival curves for approximately 80–100 worms for each condition are shown in (A, C, and E) with standard deviation error bars.
The mean survival time for each genotype was calculated for at least three independent experiments (B, D, F). Error bars are SEM. One-way ANOVA and
Tukey HSD test, *P<0.05, **P<0.01.

doi:10.1371/journal.pone.0137403.g002
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transcriptional reporter within 5 hours of infection with PA14 (One-way ANOVA, F = 13.33;
Tukey HSD test, P<0.01)(Fig 3A, 3B and 3E). Note that this change in gene expression occurs
rapidly, before visible physical symptoms appear. In contrast, fshr-1(ok778)mutant worms fail
to induce expression of gcs-1::gfp upon PA14 infection (Fig 3C–3E). These data, in combination
with the microarray (Fig 1E), indicate that fshr-1 is required for the early activation of the
host’s protective oxidative stress response upon infection.

FSHR-1 mediates the avoidance of pathogens
Another important component of immunity is a behavioral response to pathogen exposure.
Worms increase their survival when they avoid a lawn of pathogenic bacteria, presumably
because they ingest fewer pathogen cells [19–22]. To determine whether fshr-1 contributes to
the behavioral avoidance of pathogens, we measured the occupancy of worms on lawns of
pathogenic and non-pathogenic bacteria. Both wild-type and fshr-1(ok778)mutant worms pre-
fer to forage on a lawn of relatively non-pathogenic E. coli strain OP50, with more than 90% of
the worms found occupying the lawn (Fig 4A and 4B). Wild-type worms can distinguish
between pathogenic and non-pathogenic bacteria and initiate an aversive learning program to
actively avoid feeding on the pathogen [20,23,24]. Initially, wild-type worms are attracted to
pathogenic PA14 and occupy a lawn at levels similar to a non-pathogenic OP50 lawn (Fig 4A
and 4C). After 9 hours of exposure to PA14, however, only 29% of wild-type worms occupy a
lawn of the pathogen (Fig 4D). Although fshr-1(ok778)mutants are indistinguishable from
wild-type in their occupancy of non-pathogenic OP50 lawns and of their initial occupancy of
pathogenic PA14 lawns (Fig 4A, 4B and 4C), fshr-1(ok778)mutants are impaired in their ability
to learn pathogen avoidance. 45% of fshr-1(ok778)mutants remain on a lawn of PA14 after 9
hours of exposure (One-way ANOVA, F = 8.89; Tukey HSD test, P<0.01) (Fig 4D). Addition-
ally, fshr-1(RNAi) worms show significantly lower lawn occupancy (51%) after 9 hours of
exposure to PA14 than control RNAi worms (21%, two-sample T-test, P<0.001), confirming
that FSHR-1 is required for the ability of worms to avoid pathogenic bacteria (S3 Fig).

Learned behavioral avoidance requires that the worm identify the microbe and associate
that identity with the effects of the infection. Microbial identification is mediated by a chemo-
sensory circuit that detects secondary metabolites and activates a neuroendocrine signaling
pathway [23,24]. Although the detection of secondary bacterial metabolites associated with vir-
ulence can indicate not only the presence of a bacterium but also an infection, it is likely this
neuronal signal is integrated with signals from the site of infection. To determine whether
FSHR-1 acts in the intestine to influence pathogen avoidance, we measured the lawn occu-
pancy of worms expressing FSHR-1 exclusively in the intestine. Intestine-specific expression of
the wild-type fshr-1(+) from the integrated transgene agIs35[gut::fshr-1(+)] was sufficient to
rescue the PA14 avoidance defect of fshr-1(ok778) null mutants (One-way ANOVA, F = 8.89;
Tukey HSD test, P<0.01), suggesting that FSHR-1 does function in the intestine for this role
(Fig 4D).

Interestingly, worms with the agIs35[gut::fshr-1(+)] transgene inappropriately avoid bacte-
rial lawns in the absence of a pathogen. Only 60% of gut::fshr-1(+) transgenic worms occupy a
lawn of OP50 after 9 hours of exposure, while 90% of wild-type and fshr-1(ok778)mutant
worms are present in the lawn (Fig 4B) (One-way ANOVA, F = 54.84, P<0.0001). Even in the
absence of aversive learning, naïve transgenic worms show a modest but statistically significant
10% reduction in their occupancy of a bacterial lawn on which they were recently placed (Fig
4A and 4C) (OP50: One-way ANOVA, F = 8.38; Tukey HSD test, P<0.01. PA14: One-way
ANOVA, F = 9.85; Tukey HSD test, P<0.01). It is possible that the heterologous intestinal pro-
moter and multiple copies in which the gut::fshr-1(+) transgene is present cause a hyper-
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activation of the FSHR-1 pathway, which could incorrectly or constitutively signal the need to
avoid a microbe.

To determine the extent to which an altered avoidance behavior contributes to the infection
sensitivity phenotype of fshr-1(ok778)mutants, we performed killing assays using standard or
big lawns. In a standard killing assay, the lawn of pathogen covers only part of the plate, giving
the worms the option to avoid this lawn and reduce their consumption of the pathogen. A big
lawn assay removes this choice by covering the entire surface of the agar with the pathogen.
Wild-type worms die more quickly in a big-lawn killing assay than in a standard small-lawn
killing assay (One-way ANOVA, F = 255.04; Tukey HSD test, P<0.01), confirming previous
reports that avoiding the lawn is one successful strategy for fighting infection (Fig 5A and 5B)
[19,25,26]. Infected fshr-1(ok778)mutants die along a nearly identical time course in standard
small- and big-lawn killing assays, providing additional support for the conclusion that the
FSHR-1 pathway regulates a behavioral pathogen avoidance component of the immune sys-
tem. Importantly, fshr-1(ok778)mutants are still more sensitive to infection than wild-type
worms in a big-lawn killing assay (One-way ANOVA, F = 255.04; Tukey HSD test, P<0.01)

Fig 3. FSHR-1 is required for the induction of the oxidative stress response by PA14. ldIs3[gcs-1::gfp]
(A, B) or fshr-1(ok778); ldIs3[gcs-1::gfp] (C, D) worms were exposed to OP50 (A, C) or PA14 (B, D) for 5
hours. Representative worms show that in a wild-type background, gcs-1::gfp is induced by pathogen
exposure; this induction depends on fshr-1. Scale bars = 100 μm. (E) Quantification of the mean
fluorescence intensity of the intestine for each condition (see Methods). Error bars are SEM. One-way
ANOVA and Tukey HSD test, **P<0.01.

doi:10.1371/journal.pone.0137403.g003
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(Fig 5A and 5B), indicating that regulation of pathogen avoidance is not the only contribution
of the FSHR-1 pathway to innate immune defense.

Conclusions
In summary, the conserved GPCR FSHR-1 mediates multiple defensive and protective facets of
the C. elegans innate immune system. FSHR-1 is required for the survival both of infection by
diverse pathogens and of xenobiotic insults that cause oxidative stress. Upon infection, FSHR-
1 activates expression of a collection of known antimicrobial infection response genes that
defend the worm by attacking the pathogen. FSHR-1 also activates expression of a collection of
oxidative stress response genes that detoxify ROS produced as part of the worm’s defense and
thereby protect the worm against oxidative damage. FSHR-1 is additionally required for the
protective ability of worms to sense an infection and modify their behavior to avoid pathogens.

We have previously shown that FSHR-1 is necessary and sufficient in the intestine for its
role in promoting survival of infection by ingested pathogens [9]. Here we provide evidence
that this receptor coordinates multiple facets of innate immunity from the intestine, the site of
infection. An intestinal role for FSHR-1 in the response to infection-induced oxidative stress is
not unexpected because the worms must sense and respond to oxidative damage at the site of
ROS production, the intestine. FSHR-1 also acts in the intestine for its protective role against
infection-independent oxidative stress, suggesting the same mechanism can be used to sense

Fig 4. FSHR-1 promotes the avoidance of pathogenic PA14. The occupancy of wild-type, fshr-1(ok778), and ok778; agIs35[gut::fshr-1(+)]worms on a
lawn of relatively non-pathogenic E. coliOP50 (A, B) or pathogenic P. aeruginosa PA14 (C, D) was measured <1 hour (A, C) and 9 hours (B, D) after
transferring worms to the lawn. Error bars are SEM. One-way ANOVA and Tukey HSD test, *P<0.05, **P<0.01.

doi:10.1371/journal.pone.0137403.g004
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xenobiotic ROS production despite the fact that the worm’s exposure to ROS-generating cad-
mium and paraquat is not restricted to the intestinal epithelium.

Learned pathogen avoidance behavior is a more complex phenomenon that requires the
integration of sensory signals from multiple tissues. ASJ chemosensory neurons detect second-
ary metabolites produced by bacteria via a G-protein signaling pathway and communicate with
interneurons via a TGF-β neuroendocrine signal [26]. The intestine and hypodermis sense per-
turbations in essential cellular processes caused by bacterial toxins at the site of an infection
[27]. The bacterial identity signal from the neurons is integrated with an infection signal from
the intestine and/or hypodermis to modulate the worm’s behavior and promote learned avoid-
ance of a pathogen via a suppression of aerotaxis and activation of serotonin signaling
[23,24,27]. Although G-protein signaling is important for the neuronal identification of

Fig 5. Pathogen avoidance contributes to the pathogen sensitivity of fshr-1mutants. The survival of
worms was measured when exposed to a standard small lawn of PA14 or a big lawn that covered the entire
surface of the agar. (A) Representative killing assay. (B) Mean survival time was measured and compared
using one-way ANOVA and Tukey HSD test, **P<0.01. Error bars are standard deviation (A) or SEM (B).

doi:10.1371/journal.pone.0137403.g005
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bacteria, and it is a formal possibility that FSHR-1 also acts in the neurons, our data indicate
that the GPCR FSHR-1 acts in the intestine to promote the avoidance of pathogens, suggesting
that FSHR-1 contributes to the intestinal detection of infection rather than the neuronal identi-
fication of bacteria.

How might the FSHR-1 pathway sense an infection? The production of ROS by host cells is
a widely utilized mechanism of pathogen defense that also results in collateral damage to host
tissues [15]. In addition, multiple pathogens have been shown to use ROS production as an
important virulence determinant, suggesting that oxidative damage could be classified as a pat-
tern of pathogenesis [28–31]. Regardless of the source of oxidative damage—bacterial attack,
host defense, or xenobiotic assault—a critical response is the activation of detoxification
enzymes that mitigate the damage. In addition, epithelial cells sensing oxidative stress would
increase the survival of the host by initiating or amplifying local anti-pathogen defenses such
as antimicrobial infection response gene expression, and endocrine signals that trigger an aver-
sive learning program. Because FSHR-1 is required both for the survival of xenobiotic oxidative
stress, and for the activation of oxidative stress response and infection response genes upon
infection, we propose a model in which the FSHR-1 pathway could sense oxidative damage as a
pattern of pathogenesis and then activate multiple facets of the innate immune response.

The ligand for FSHR-1 is unknown. FSHR-1 belongs to the LGR class of GPCRs; homologs
bind the heterodimeric glycopeptide hormone FSHα/β [32–34]. The worm genome does not
contain an identifiable FSHα subunit and no known role in immunity has been associated with
the gene that most closely resembles FSHβ, suggesting that FSHR-1 may bind a noncanonical
ligand. Because FSHR-1 is important for the defense against multiple dissimilar pathogens, it is
not likely to be a PRR that binds a MAMP. We have shown that the FSHR-1 pathway functions
in the absence of infection to promote survival of heavy metal and oxidative stress, suggesting
that FSHR-1’s ligand must be endogenously produced rather than bacterial in origin. A
recently described example of a GPCR that recognizes infection in C. elegans by binding an
endogenous ligand is the DAMP receptor DCAR-1 [4]. HPLA is a tyrosine metabolite that is
produced by the worm upon physical disruption of the cuticle and underlying hypodermis by a
sterile wound or by the piercing hyphae of the pathogenic fungus Drechmeria coniospora.
Rather than detecting physical damage as a sign of infection, it is tempting to speculate that
FSHR-1 could bind an endogenously-produced DAMP that signals chemical damage caused
by ROS production. An important future step in understanding the recognition and response
to infection in epithelial cells is the identification of the FSHR-1 ligand.

Methods

C. elegans strains and maintenance
C. elegans were grown at 20°C on NGM agar plates seeded with E. coli strain OP50 as previ-
ously described [35]. For experiments requiring developmentally synchronized worms, gravid
hermaphrodites were bleached to obtain embryos, which hatched in sterile M9 buffer overnight
at room temperature. Arrested L1s were pipetted to the appropriate seeded plates to resume
development.

Killing assays
Infection-based “slow killing” pathogen assays were performed as described [36,37]. Briefly,
10 μl of a saturated overnight culture of P. aeruginosa PA14 was pipetted onto 3.5 cm SK plates
(NGM, with 0.35% Bacto-peptone) and spread slightly (standard lawn) or to cover the plate
(big lawn). The plates were incubated at 37°C for 24 hours, followed by 25°C for 24 hours [38].
FUDR (75 μg/ml) was added to the perimeter of the agar 30–60 minutes before assay set-up.
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L4 larvae were transferred to the plates, incubated at 25°C, and monitored for survival over
time [36,37].

For oxidative and cadmium stress killing assays, 3.5 cm NGM plates were poured with a
supplement of paraquat or CdCl2. Concentrations of paraquat between 0.2 mM and 200 mM
are commonly used to induce cytoplasmic oxidative stress so we used 5 mM paraquat in our
assays [39,40]. We used 100 μM cadmium to induce heavy metal stress, as previously described
[41]. Plates were seeded with 20x concentrated OP50 and FUDR (75 μg/ml) was added to the
perimeter of the agar 30–60 minutes before assay set-up. L4 larvae were transferred to the
plates and monitored for survival over time using a nose-touch response assay.

For heat stress killing assays, synchronized L1s were pipetted onto NGM plates seeded with
OP50 and grown at 20°C until the young adult stage. Plates were transferred to 37°C and the
numbers of live and dead worms were scored at multiple time points using a nose-touch
response assay. To minimize temperature fluctuations throughout the assay, each plate was
scored only once and then discarded.

All killing assays were performed in triplicate with approximately 40 worms per plate, and
each experiment was repeated at least three times. Mean survival time was calculated for each
plate as described [37]. Conditions were compared using a one-way ANOVA and Tukey HSD
test.

Pathogen accumulation
To measure accumulation of pathogens, N2 wild-type or fshr-1(ok778) L4 worms were trans-
ferred to SK plates prepared as for a pathogen killing assay, but with GFP-labeled PA14. After
18 hours of incubation at 25°C, worms were anesthetized with 25 mMNaN3, then photo-
graphed using a Nikon 90i compound epiflourescence microscope. To quantify the pathogen
accumulation, the sum of the fluorescence intensity in the worm was determined for at least 10
worms per condition.

Avoidance assays
To measure bacterial avoidance, 7 μl of PA14 or 10 μl of OP50 saturated overnight culture was
pipetted onto a 3.5 cm SK plate. The plates were grown at 37°C for 24 hours, followed by 25°C
for 24 hours. L4 worms were transferred to the center of the bacterial spot and incubated at
25°C. All plates were scored for avoidance of the lawn at least 30 minutes but no more than 1
hour after set-up, and again 9 hours after set-up. Worms were scored as “in” the lawn if at least
50% of their posterior body were in contact with the lawn or if their head were in contact with
and foraging in the lawn. Worms were scored as “out” of the lawn if their head and>50% of
their body were outside the lawn. All experiments were performed in triplicate and repeated at
least three times. The mean lawn occupancies for different conditions were compared using a
one-way ANOVA and Tukey HSD test.

Microarray
To measure genome-wide gene expression, young adult N2 wild-type or fshr-1(ok778) worms
were transferred to SK plates with PA14 or OP50 prepared as if for a pathogen killing assay.
Samples were prepared as previously described [12]. Briefly, total RNA was harvested in TriR-
eagent (Molecular Research Center) after 4 hours of incubation on SK plates. cDNA was syn-
thesized following the recommended RetroScript (Life Technologies) protocol. After second
strand synthesis, double-stranded cDNA was purified using an RNeasy (Qiagen) column. Sam-
ples were hybridized on Affymetrix full-genome GeneChips for C. elegans at the Harvard Med-
ical School Biopolymer Facility. Each experiment was repeated three times. The data were
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analyzed using GenePattern (Broad Institute) and Microsoft Excel. The mean expression for
the three replicates of each gene was compared between conditions using a two-tailed two-sam-
ple t-test. A gene was considered differentially expressed between conditions if there was a
greater than 2-fold difference in mean expression with P<0.05.

To validate the microarray data, quantitative RT-PCR was performed as previously
described [12] on four genes that were induced in infected worms according to microarray
data. Briefly, wild-type N2 and fshr-1(ok778)mutant young adults were transferred to SK plates
with PA14 or OP50 prepared as if for a pathogen killing assay. After 4 hours, worms were
washed off the plates with M9 buffer and washed two more times to remove excess bacteria.
Total RNA was extracted using TRI-Reagent. cDNA was synthesized using a Retro-script kit
(Ambion) with oligo-dT primers, and then amplified on a MyiQ2 iCycler (Bio-Rad) with iQ
supermix containing SYBR green (Bio-Rad). Primers are available upon request. Normalized
expression values were compared among three independent biological replicates. For each
experiment, the induction was calculated as the expression in worms exposed to PA14 divided
by the expression in worms exposed in parallel to OP50. A two-sample T-test was used to com-
pare the induction in wild-type worms with the induction in fshr-1(ok778)mutants.

Reporter induction
To measure induction of the ldIs3 [gcs-1::gfp] oxidative stress response reporter, L4 LD1171
ldIs3 or JRP1024 fshr-1(ok778); ldIs3 worms were transferred to SK plates with PA14 or OP50
prepared as if for a pathogen killing assay. After 5 hours, worms were anesthetized with 25 mM
NaN3, then photographed using a Nikon 90i compound epiflourescence microscope. To quan-
tify reporter expression, the intestine was manually outlined using the Nikon Elements
Advanced Research software. The mean fluorescence intensity of this Region of Interest was
determined by the software for at least 10 worms per condition.

To validate the microarray data, reporter strains BC11778 sEx11778 [gpx-1::gfp] and
BC14266 sEx14266 [gst-38::gfp] [42] were transferred as L4 larvae to SK plates with PA14 or
OP50 prepared as described above. After 5 hours, worms were anesthetized and photographed
as described above. The exposure time was held constant for all conditions within an
experiment.

Supporting Information
S1 Fig. Microarray validation using qRT-PCR. (A) Induction of a sample of genes in worms
infected with PA14 for 4 hours relative to control worms grown in parallel on non-pathogenic
OP50. Expression was measured using qRT-PCR, and induction was defined as the expression
in worms on PA14 divided by expression in worms on OP50. (B) The induction of the same
genes based on microarray data. Error bars are SEM. T-test comparison of induction in wild-
type and fshr-1(ok778)mutants, �P<0.05, ��P<0.01.
(TIF)

S2 Fig. Microarray validation using transcriptional reporters. (A, B) Expression of the
reporter gpx-1::GFP in worms grown on OP50 (A) or infected with PA14 for 5 hours (B). (C,
D) Expression of the reporter gst-38::GFP in worms grown on OP50 (C) or infected with PA14
for 5 hours (D). (E) The expression of the same genes in worms grown on OP50 or infected
with PA15, based on microarray data. Error bars are SEM. T-test comparison of microarray
expression in wild-type worms fed OP50 or PA14, ��P<0.01.
(TIF)
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S3 Fig. FSHR-1 is required for the avoidance of pathogenic PA14. L4 fshr-1 (RNAi) and
L4440 control (RNAi) worms were transferred to lawns of pathogenic P. aeruginosa PA14. The
lawn occupancy was measured 1 hour and 9 hours after the transfer and the means of the two
RNAi conditions were compared at each time point with a T-test. ���P<0.001. Error bars are
SEM.
(TIF)

S1 Table. Ratio of basal gene expression in uninfected worms. The ratio of gene expression
was calculated as the expression in wild-type N2 worms / fshr-1(ok778)mutant worms grown
on E. coli OP50. The genes shown have at least 2-fold higher expression in wild-type worms
than in mutants, with P<0.05 in a two-sample T-test.
(XLSX)

S2 Table. Ratio of gene expression in infected worms. The ratio of gene expression was calcu-
lated as the expression in wild-type N2 worms / fshr-1(ok778)mutant worms grown on E. coli
OP50 until the young adult stage and then transferred to P. aeruginosa PA14 for 4 hours. The
genes shown have at least 2-fold higher expression in wild-type worms than in mutants, with
P<0.05 in a two-sample T-test.
(XLSX)
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