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Abstract: Early diagnosis and continuous monitoring of respiratory failure (RF) in the course of
the most prevalent chronic cardio-vascular (CVD) and respiratory diseases (CRD) are a clinical,
unresolved problem because wearable, non-invasive, and user-friendly medical devices, which could
grant reliable measures of the oxygen saturation (SpO2) and heart rate (HR) in real-life during daily
activities are still lacking. In this study, we investigated the agreement between a new medical wrist-
worn device (BrOxy M) and a reference, medical pulseoximeter (Nellcor PM 1000N). Twelve healthy
volunteers (aged 20–51 years, 84% males, 33% with black skin, obtaining, during the controlled
hypoxia test, the simultaneous registration of 219 data pairs, homogeneously deployed in the levels
of Sat.O2 97%, 92%, 87%, 82% [ISO 80601-2-61:2017 standard (paragraph EE.3)]) were included. The
paired T test 0 and the Bland-Altman plot were performed to assess bias and accuracy. SpO2 and HR
readings by the two devices resulted significantly correlated (r = 0.91 and 0.96, p < 0.001, respectively).
Analyses excluded the presence of proportional bias. For SpO2, the mean bias was −0.18% and the
accuracy (ARMS) was 2.7%. For HR the mean bias was 0.25 bpm and the ARMS3.7 bpm. The sensitivity
to detect SpO2 ≤ 94% was 94.4%. The agreement between BrOxy M and the reference pulse oximeter
was “substantial” (for SpO2 cut-off 94% and 90%, k = 0.79 and k = 0.80, respectively). We conclude
that BrOxy M demonstrated accuracy, reliability and consistency in measuring SpO2 and HR, being
fully comparable with a reference medical pulseoxymeter, with no adverse effects. As a wearable
device, Broxy M can measure continually SpO2 and HR in everyday life, helping in detecting and
following up CVD and CRD subjects.

Keywords: wrist-watch pulsoximeter; chronic cardiac diseases; chronic respiratory diseases; heart
rate; pulse oxygen saturation; reflective pulseoximeter; SpO2

1. Introduction

Chronic obstructive pulmonary disease (COPD) and Heart failure (HF) are non-
communicable diseases (NCDs), responsible for a huge number of deaths and years of life
lost (YLL) [1–10]. Initial symptoms of COPD and HF can be elusive and easily confused
with normal ageing. When both conditions exacerbate, hospitalization and even death
can follow [11–20]. Many COPD subjects in the last stages of their disease need long-term
continuous oxygen therapy (LTOT). Similarly, diagnosis and monitoring can be difficult
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in other prevalent respiratory chronic conditions (Idiopathic Pulmonary Fibrosis (IPF)
and other interstitial lung diseases (ILD)) [21,22] and Obstructive Sleep Apnea Syndrome
(OSAS) [23,24] since symptoms of all these chronic diseases can vary significantly daily.
Non-invasive monitoring of vital parameters through reliable devices would be welcome
in providing a careful surveillance of subjects [25–28] as well as in identifying early the
disease or the need of LTOT, or the persistence of its indication over time [29]. A clinical-
functional monitoring in real time of normal daily activities and night rest can help in
defining the causes of symptoms [30,31] and in identifying sleep disordered breathing [32].
Summarizing, chronic heart and pulmonary conditions need to be identified as early as
possible and, after diagnosis, to be monitored as easily as possible, better if in real life.
Blood oxygen saturation (SpO2) and heart rate (HR) are universally kept as a reliable proxy
for heart and lung performance.

For these reasons, devices and technologies are being studied, mainly in the field of
tele-monitoring but also in designing new tools to meet unmet needs. One line of research
is the continuing ambulatory recording of vital signs such as SpO2 and HR in real life
to acquire information for early diagnosis, treatment and its effectiveness. The concept
“historical predecessors” are the Holter Monitor and the device for ambulatory blood
pressure monitoring.

In the last years, many devices have been produced to assist people in their leisure
activities. So-called smartwatches are able to measure heart frequency and correlate it with
movements. A smaller number of devices has been marketed with improved functions,
e.g., measuring not only HR but also SpO2. However, these commercial devices for fitness
are not compliant with a specific set of regulations requested for the medical devices, and
therefore, they cannot be adopted for clinical uses. There are only a few medical devices
certified for clinical uses (patients’ monitoring, follow-up, early-diagnosis, and professional
healthcare treatments) [33–37]. Most of these devices are invasive, wire, or they require
hospitalization for monitoring.

Devices wrist-wereable are based on reflective photoplethysmography, which is partic-
ularly complex compared to the classic transmission technology. Based on our knowledge,
there is at least one study which reported the ability of reflective photoplethysmography
in measuring SpO2 levels with adequate accuracy [38], but on our clinical experience,
measuring only SpO2 is not useful enough in evaluating patient’s situation. A more precise
judgement is provided by the simultaneous measurement of HR, since cardiac arrhythmias
can interfere with the right interpretation of SpO2 data. Furthermore, the simultaneous
measurements of SpO2 and HR can help diagnose other pathological conditions such as
sleep disordered breathing [39,40].

The continuous monitoring in real daily life can give important information for diag-
nosis/management of cardio-respiratory diseases.

For this purpose, a new pulse oximeter was designed, wearable such as a watch and
able to correlate pulse and oximetry with exercise. This new device, named BrOxy M (CE
marked, patented: WO 2019/193196 A1; WO 2021/069729 A1), aimed to fill the gap of
currently available devices, with a high-accuracy level of measurements, due to a unique
calibration system “tailored on patients”.

The aims of the present study of controlled desaturation were: (i) to confirm the
performance of the BrOxy M in comparison with a reference, CE marked, pulse oxime-
ter equipment widely used in clinical settings; (ii) to assess possible factors affecting
BrOxy M performance.

2. Materials and Methods
2.1. Study Design

This monocentric interventional post-market clinical study (Annex I of EN ISO 14155:2020,
www.iso.org) (accessed on 29 June 2021), denominated SOMBRERO (Italian acronym for
“SOrveglianza delle Misure di BroxyM durante REspirazione di diffeRenti concentrazioni
di Ossigeno”- i.e., “Validation of measures taken by Broxy during respiration of different
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oxygen concentrations”), was performed in Italy according to the procedures described
in the standard ISO 80601-2-61:2017 “Medical electrical equipment—Part 2-61: particular
requirements for basic safety and essential performance of pulse oximeter equipment”. The
study, comparing SpO2 and HR recorded with the BrOxy M pulse oximeter and with a
reference pulse oximeter equipment, was performed in healthy volunteers in controlled
desaturation conditions over a range between 80% and 100% SpO2. It was chosen to con-
sider the reference range 80% to 100% since this range includes normal values (≥94%) and
dangerous values in the range 80–90%, which are most frequently observed in domiciliary
monitoring or outpatient clinics. Values under 80% need immediately a monitoring in a
hospital setting.

The study was approved by the Chieti University Ethical Committee (district of Chieti
and Pescara during the session no. 6 of 11 March 2021- Protocol number: 01M2020-CH.LMD).

All participants gave their written informed consent.

2.2. Materials

BrOxy M is a Class IIa, CE-marked, medical wearable device, with a size of a wrist-
watch. It consists of a bracelet with an adjustable strap that allows the device to be adapted
to the subject’s wrist (Figure 1), a charging base (Figure 2), and a medical software for
Personal Computer. The sensor that detects photoplethysmographic signals is on the inner
face of the device (see Figure 1). It is suggested to apply this sensor about 3 or 4 cm from
the wrist, close to the ulna, preferably on the portion of skin that covers a visible blood
vessel. The device is then applied to the subject’s wrist by fastening the strap so that the
fastening is firm, but not excessively tight. The adhesion between the skin and the device is
ensured by a single-use, medical grade, double-sided adhesive film.
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Figure 1. View of the wearable BrOxy M. The cover of the device is in contact with the subject and 
integrates the photoplethysmographic sensor and the recessed area for the application of the 
disposable adhesive (medical grade) used to stabilize the fixing of the sensor. 

Figure 1. View of the wearable BrOxy M. The cover of the device is in contact with the subject
and integrates the photoplethysmographic sensor and the recessed area for the application of the
disposable adhesive (medical grade) used to stabilize the fixing of the sensor.

Thanks to the sensor (mod. MAX 30102, produced by Maxim Integrated®) placed
on the side in contact with the skin of the subject’s wrist, BrOxy M is able to acquire
photoplethysmographic signals in the frequency of red (660 nm) and infrared (880 nm)
light and memorize them, with a sampling frequency of 50 Hz and a resolution of 18 bits.
According to the product intended use, registration of photoplethysmographic signals
using BrOxy M can occur for up to 24 h having a 16 Mbytes memory and a Li-Ion battery
with a capacity of 900 mAh. In this study, signal registration occurred for a maximum of
around 35 min for each enrolled subject. At the end of the signal registration phase, BrOxy
M will be placed on the one-station charging base. Recorded signals were automatically
transferred to the PC in use for the study and archived in an electronic medical record set
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up for each enrolled subject. The signals recorded by the device were then processed by a
Sponsor delegate with the software for medical use provided by Life Meter S.r.l.
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Figure 2. Front (left) and rear (right) view of the BrOxy M device charging base. The charging
base is used to carry out wireless charging of the Li-Ion battery integrated into the BrOxy M device.
Moreover, the charging base connects via USB to the PC and via Wi-Fi to the BrOxy M device, acting
as a bridge for downloading the recorded signals and to manage the device during all operational
phases (memory cancellation, device status check, device calibration, fixing on the subject, and start
or stop recording).

The raw signals recorded have been analyzed on the PC by the BrOxy M software that
integrates an algorithm that operates according to the following processing steps:

1. From the signals recorded with the triaxial accelerometric sensor, the jolt (i.e., the
derivative in time of acceleration) is calculated as shown in the following equation:

j[t] =
√

x[t]2 + y[t]2 + z[t]2 −
√

x[t− 1]2 + y[t− 1]2 + z[t− 1]2

where j[t] is the instantaneous jolt value at the time t and x, y, and z are the in-
stantaneous values of the tri-axial acceleration (arbitrary units) detected from the
accelerometer sensor at time t and t − 1.

2. The time intervals relating to an absence of movement are selected by applying an
experimentally determined threshold (threshold value = 18 arbitrary units) on the
absolute value of jolt.

3. By selecting the red and infrared (IR) signals within the time intervals related to
the quiet state of the subject, appropriate bandpass filtering (digital ant causal finite
impulse response (FIR) filter of 50th order, bandwidth from 0.5 Hz to 3 Hz) is applied
to extract a relevant section of signal that allows to calculate your heart rate.

4. From the same raw signals, the following components are extracted:

a. RED_DC = continuous part of the red signal (mean value calculated from the
epoch of red signal);

b. RED_AC = alternating part of the red signal (root mean square value from the
epoch of red signal filtered as in point 3);
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c. IR_DC = continuous part of the infrared signal (mean value from the epoch of
IR signal);

d. IR_AC = alternating part of the infrared signal (root mean square value calcu-
lated from the epoch of IR signal as in point 3);

5. From these parameters we calculate the value of the gamma parameter with the
equation shown below:

γ =
ln
(

IR_AC
IR_DC

)
ln
(

RED_AC
RED_DC

)
6. From the value of γ we calculate the SpO2 using the following equation:

SpO2 = a·γ2 + b·γ + c

where a, b and c are experimentally calculated and constant parameters for each subject
analyzed (a = −44.6, b = 5.9; c = 108.1).

Where a, b and c are experimentally calculated and constant parameters for each
subject analyzed.

Each SpO2 measurement is corrected by means of the intra-subject calibration pro-
cedure described in the patents WO2019/193196 A1 and WO2021/069729 A1 (see below,
paragraph 2.5, point b). This technical procedure allows for every subject to extract after a
90-s finger recording an average value of SpO2

finger), which is needed to calculate a specific
value—offset—between finger and wrist measurement. Immediately afterwards, the BrOxy
M device is placed on the wrist of the subject (as described above) and signal recording
is started, keeping the subject at rest condition. SpO2 measurements for the first 90 s of
wrist recordings allow the calculation of the wrist reference SpO2 value (SpO2

wrist) which
is used to calculate the intra-subject calibration offset as:

SpO2
offset = SpO2

finger − SpO2
wrist

Finally, the following correction applies to each SpO2 measure obtained from
wrist signals:

SpO2
compensated = SpO2 + SpO2

offset

The used reference device was the pulse oximeter Nellcor™ Bedside Respiratory
Subject Monitoring System model PM1000N (Covidien LLC, Minneapolis, MN, USA). It is
a CE marked device routinely used in the hospital environment for monitoring subjects
while they are in bed or performing a walking test. It is traceable to co-oximeter SaO2 values.
The NellcorTM requires the use of the Nellcor™ Adult XL SpO2 Sensormod. MAXALI
(sterile, single use only), that allows the storage of the displayed measurements of HR and
SpO2, and their downloading on a PC memory via USB.

2.3. Participants

Inclusion criteria for participants were being between the age of 18 and 50 years and
having: (1) healthy status with no evidence of any medical problem (ASA Physical Status
Classification I); (2) positive new Allen’s test; (3) intact and healthy skin on the selected
wrist; (4) wrist circumference between 15 and 20 cm; (5) normal ECG; (6) the ability to
understand/execute the required study procedures, as well as to write an informed consent
to the study.

Participants were excluded if they had: (1) altered hemoglobin parameters (αHb ≤ 10 gr/dl
or COHb ≤ 3%or MetHb ≤ 2%); (2) any cardiovascular or pulmonary pathology in medical
history; (3) any episodes of respiratory infection in the past 30 days; (4) any experience of
dyspnea hospitalization in the past 2 months; (5) comorbid condition(s) thought to affect
adversely the participation in the study (e.g., cardiac, neurological, musculoskeletal or psy-
chological impairments), including allergy to adhesive tapes; (6) chronic drug intake known
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to interfere with gaseous exchanges or to induce changes in cardiac frequency; (7) body
mass index <18 kg·m2; (8) participation in interventional studies with a medicinal product
or a medical device in the past 30 days. Women were excluded if they were pregnant.

It was estimated that a minimum target of 12 subjects, resulting in at least 200 data
pairs, was sufficient to evaluate SpO2 accuracy with 95% of statistical power at 0.05%
significance level.

2.4. Definition of Valid Measurement

A “valid measurement” is defined as a measurement obtained under the follow-
ing conditions:

1. Signal compliant with quality control for both the reference and BrOxy M;
2. No movement above the predefined threshold for both the reference and BrOxy M.

The quality control of the signal is carried out automatically by the HR and SpO2
calculation algorithm and is based on the following conditions:

1. Starting from the signals, through appropriate band-pass filters, the following compo-
nents are calculated as follows:

a. RED_DC = continuous part of the red signal;
b. RED_AC = alternating part of the red signal;
c. IR_DC = continuous part of the infrared signal;
d. IR_AC = alternating part of the infrared signal;

2. Average values of RED_DC and IR_DC have to be in the expected range, deter-
mined empirically;

3. If the previous point occurs, peak-peak amplitude values of RED_AC and IR_AC
have to be in the empirically determined acceptability range;

4. If the previous condition is verified, the correlation coefficient calculated between
IR_AC and RED_AC has to be higher than the empirically determined threshold.

The algorithm used to recognize the time windows to be excluded for motion artifacts
is organized with the following steps:

1. Control of the amplitude of photoplethysmographic signals: the amplitude of the
alternating component of red and infrared signals (obtained by filtering signals with
an anti-causal high-pass filter must not exceed a threshold determined empirically);

2. Control of the correlation between photoplethysmographic signals and accelerometric
signals: the module of accelerometric signals recorded on three orthogonal axes of

space (Ax, Ay and Az) is calculated as |AXYZ[t]| =
√

Ax[t]2 + Ay[t]2 + Az[t]2 and,
subsequently, it occurs that:

a. The correlation between |AXYZ[t]| and (photoplethysmographic) signal recorded
in the red frequency is less than a certain threshold derived empirically;

b. The correlation between |AXYZ[t]| and (photoplethysmographic) signal recorded
in the infrared frequency is less than a certain threshold derived empirically.

3. If the conditions in point 1 and 2 occur, the time window from which to derive heart
rate and SpO2 data is excluded from the collection of data deemed useful in the
context of the study.

At this point, verified all the above conditions, the values of SpO2 and HR are calcu-
lated for the signal windows considered. These values are considered acceptable if the
following conditions occur at the same time:

• Heart rate values between 40 and 180 bpm
• SpO2 values between 80 and 100%

2.5. Study Protocol and Sample

Each subject undergoing the test respected the following procedure:

(a) Sitting with the right arm leant on the table, breathing room air for 30 min
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(b) Calibration of sensor: this procedure requires the distal phalanx of a patient’s finger
(e.g., index finger) to be placed on the photoplethysmographic sensor on the BrOxy
M wearable device in order to record 90 s of red and infrared signal. Using the
recorded signals, the calibration algorithm is applied as described in the patents
WO2019/193196 and WO2021/069729 (see Supplementary File S1).

(c) BrOxy M positioning (see Section 2.2);
(d) Positioning of the single use sensor MAXALI of the reference device on the fingertip

of index finger of the right hand warning the subject not to move arm and hand
(e) Positioning of a single use nose clip to block the nasal airflow and start of test with

the following experimental procedure: mouthpiece with sterile filter connected to a
Hans Rudolph valve (one way air valve), whose inspiratory way, through a Douglas
bag tubing 1.5 m long, is connected in sequence—according to time set afterwards
reported, through a single channel tubing valve, to 4 (four) Douglas bag 100 lt each,
continuously supplied by 4 cylinders each containing a different O2 concentration
(see Table 1 after the following paragraph).

Table 1. Study protocol.

Plateu n. Range SpO2 (%) Inhaled Solution Plateu Duration N. of Measures of SpO2 and
HR Extracted from Recordings

(I) 95–100 (target 97%) Ambient air (medical air) 2.5-’ 8

(II) 90–94 (target 92%) O2 15% + N 85% 2.5-’ 8

(III) 85–89 (target 87%) O2 13% + N 87% 2.5-’ 8

(IV) 80–84 (target 82%) O2 11% + N 89% 2.5’ 8

Total 32 measures

The aim of the test was to obtain 4 different plateaus.
For each subject, four different saturation plateaus have been set up (i.e., at 97%,

92%,87% and 82% SpO2), waiting for 30” before starting to keep the SpO2 level on each
plateau for 2.5′ in order to obtain in post-processing 8 couples of instantaneous values of
SpO2 measured from BrOxy M and from the reference device. These measurements have
been at least 20” away from each other, for a total of 32 measurements for each subject, as
summarized in the following Table 1 and diagram (Figure 3).
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From the records carried out on the 12 subjects enrolled in the clinical protocol, 423 data
pairs were obtained. Since one of the aims of this work is to quantify the accuracy of
estimation of the SpO2 obtained by BrOxy M with reference to the SpO2 measured by the
reference device, the outliers were removed by discarding data pairs that provided an error
that differed from the error average by more than twice the standard deviation. Afterwards,
the hypothesis that the errors came from a standard normal distribution was confirmed by
means of a Kolmogorov-Smirnov test (5% level of significance, p = 0.059).

With regard to the efficacy of the device on subjects with dark pigmentation of the
skin, in order to be able to meet FDA guidelines for pulse oximeters [41], as subsequently
detailed and illustrated in the results, at least 2 darkly pigmented subjects (Fitzpatrick
scale, Type V–VI) were included and more than 15% of the measurements were carried out
on them.

2.6. Statistical Analysis

Statistical analysis was performed with SPSS, Statistical Package for the Social Sciences
(SPSS Inc., Chicago, IL, USA), following the standard ISO 80601-2-61:2017 (EE.3. Procedure
for non-invasive laboratory testing on healthy adult volunteers). The accuracy is stated in
terms of the root-mean-square (ARMS) difference between the readings of the BrOxy M and
the standard readings of the NellcorTM, as follows:

ARMS =

√√√√√ n
∑

(n−1)
(SpO2BrOxy − SpO2Nellcor)

2

n

which corresponds to the standard deviation (SD) of the mean difference.
Mean error (bias) was quantified as mean (BrOxy M SpO2minus Nellcor SpO2).
SpO2 is considered normal (when measured at sea level) for values≥95%, mild hypoxemia

for values between 94% and 91%, moderate hypoxemia for values between 90% and 86%,
and severe hypoxemia for values <85%. Considering that SpO2 < 94% has been associated
with pathophysiological and clinical consequences (these latter become increasingly more
serious and life-threatening with lower values), analyses were performed also in two
subgroups of standard oxygen saturation: SpO2 ≤ 94%, and SpO2 ≤ 90%.

As regards HR, the mean absolute percent error (MAPE = average of the absolute
percent difference between HR BrOxy and HR Nellcor/HR Nellcor) was also calculated to
provide a gauge of measurement error of BrOxy M.

The comparison between BrOxy M and NellcorTM was evaluated by using (1) the
Pearson correlation coefficient and the concordance correlation coefficient (perfect positive
agreement at 1); (2) the paired t test 0 to determine whether the mean difference between
the two instruments is zero (presence/absence of proportional bias); (3) the Bland-Altman
analysis to evaluate the agreement between experimental and standard readings. [42].

If the two methods are comparable, then differences should be small, with the mean
of the differences (bias) close to 0; (4) multiple regression analysis to evaluate possible
significant associations of the difference with sex, age, BMI, and skin pigmentation.

By basing on two desaturation cut-off (94% and 90%), sensitivity, specificity, posi-
tive/negative predictive values were calculated, and Cohen’s Kappa coefficient was used
to evaluate the agreement between the two pulse oximeters (agreement: 0.01–0.20 slight,
0.21–0.40 fair, 0.41–0.60, moderate, 0.61–0.80 substantial, 0.81–1.00 almost perfect or perfect).
The significance level, that is the probability of rejecting the null hypothesis when it is true,
will be set to 0.05 (two-sided, corresponding 5% risk of concluding that a difference exists
when there is no actual difference).

3. Results

A set of 399 data pairs was considered: 73 data pairs between 80% and 86%, 117
between 87% and 93%, and 209 between 94% and 100%. In order to equalize the distribution
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on the three ranges, some data pairs related to the ranges between 87% and 93% and
between 94% and 100% have been excluded in the following ways: for each one of these
two ranges, cyclically, data pairs related to one subject at a time were considered, starting
from the subject number 1 up to the subject number 12, and then starting again; for each
subject’s data pairs, the last acquired data pair was removed. The removal of data pairs was
carried out cyclically until the number of data pairs in the range considered was less than
or equal to 73 (number of ranges between 80% and 86%) Eventually data pairs for analyses
were 219, 84% measured in men (72% with white skin and 28% with black skin), and 30%
in people with black skin [43]. The ISO 80601-2-61:2017 standard, in case of “Procedure
for non-invasive laboratory testing on healthy volunteers” (paragraph EE.3), considers the
target of 200 sets of data pairs to be statistically significant and satisfactory. Table 2 shows
the sample characteristics. The participants in the study were 10 men and 2 women aged
20–51 years, including 8 with white skin and 4 with black skin [43].

Table 2. Sample characteristics.

N (%)

Participants 12
Men 10 (83.3)
Age, years, mean ± SD [range] 37 ± 9 (20–51)
Skin color:

white 8 (66.7)
black (Fitzpatrick scale, type V-VI) 4 (33.3)

BMI, kg/m2, mean ± SD 26.2 ± 3.3

Data pairs 219
Men 183 (83.6)
Age, years, mean ± SD [range] 37 ± 9 [20–51]
Skin color:

white 158 (72.1)
black 61 (27.9)

BMI, kg/m2, mean ± SD 26.1 ± 3.3
BrOxy M SpO2, %, mean ± SD 91.0 ± 6.1
Nellcor SpO2%, mean ± SD 90.8 ± 6.3
Nellcor SpO2 ≤ 94% 147 (67.1)
Nellcor SpO2 ≤ 90% 95 (43.4)
BrOxy M HR, bpm, median [range] 77 (64–122)
Nellcor HR, bpm, median [range] 76 (62–126)

BMI, Body Mass Index; HR, heart rate.

Mean SpO2 was 90.8% (SD 6.1%), as measured with NellcorTM, and it was 91.0% (SD
6.3%), as measured with BrOxy M; 67% and 47% of data pairs included standard values of
SpO2 ≤ 94% and ≤90%, respectively. HR measured with NellcorTM and BrOxy M ranged
from 64 to 122 bpm and 62 to 126 bpm, respectively.

3.1. Differences between the Two Pulse Oximeters

SpO2 readings by the two oximetry devices resulted highly positively and significantly
(p < 0.001) correlated (Figure 4a), with Pearson correlation coefficient 0.91. High correlation
was confirmed by the Lin’s concordance correlation coefficient (CCC 0.91, 95% Confidence
Interval, CI, 0.88–0.93). As concerns HR (Figure 4b), the Pearson correlation coefficient was
0.96 (p < 0.001), and the Lin’s CCC was 0.95 (95% CI 0.94–0.96).
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Figure 4. Correlation plot of (a) SpO2(%) and (b) heart rate (HR, bpm) as measured with BrOxy M
and NellcorTM.

The correlation analysis quantifies the degree to which two variables are related, but
a high correlation does not automatically imply that there is good agreement between
the two devices. The paired T Test 0 provided the mean difference between BrOxy M
and NellcorTM, the standard deviation and the standard error of the difference, along 95%
confidence interval for the mean, and the significance level for the test that the mean of the
difference equals 0 (Table 3).

Table 3. SpO2. Mean error (bias) and accuracy (ARMS) of the BrOxy M, in the whole sample and in
subjects with defined desaturation.

Nellcor SpO2
Bias (95% CI) 1

%
ARMS

%
Lower Limit of Agreement 2

%
Upper Limit of Agreement 3

%

80% to 100% 0.18 (−0.17, 0.54) 2.7 −5.1 5.5
≤94% 0.57 (0.08, 1.06) 3.0 −5.2 6.4
≤90% 0.94 (0.27, 1.61) 3.3 −5.5 7.4

1 Mean difference between BrOxy M SpO2 and Nellcor SpO2; 2 mean – SD × 1.96; 3 mean + SD × 1.96.

The more the average difference is close to 0, the greater the agreement between the
two oximetry devices. In the reference range 80% to 100%, the bias resulted very close to 0
(0.18%), indicating that, on average, the BrOxy M measures 0.18 units more than NellcorTM.
The accuracy was 2.7% (corresponding to the standard deviation of the mean difference).
The paired T test 0 confirmed the hypothesis that the average difference was not different
from 0 (p = 0.31).

The mean bias for the subjects with Nellcor SpO2 ≤ 94% was 0.57%, with accuracy
3.0%, whereas corresponding figures for the subjects with Nellcor SpO2 ≤ 90% were 0.94%
and 3.3%, respectively. It is reported in literature that pulse oximeters perform better
at the higher saturation levels compared to the lower end [44]. However, there are no
acceptance criteria associated with different levels of hypoxia, and when presenting the
ARMS, the common methodology is to provide the data across the whole range (i.e., 80% to
100%, in this study).. The standard ISO 80601-2-61:2017 (Annex AA) reports that, based on
clinical experience, SpO2 accuracy ≤4% is acceptable for many monitoring applications.
Corresponding results regarding HR are shown in Table 4. The paired T test 0 confirmed
the hypothesis that the average difference was not different from 0 (p = 0.32). HR MAPE
≤10% is acceptable [45].
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Table 4. Heart rate (bpm). Mean error (bias), accuracy (ARMS), and mean absolute percent error
(MAPE) of the BrOxy M, in the whole sample and in subjects with defined desaturation. Data are
reported in percent.

Nellcor SpO2 Bias (95% CI) 1 ARMS LLA 2 ULA 3 MAPE ± SD
%

80% to 100% 0.25 (−0.24, 0.75) 3.7 −7.1 7.7 3.20 ± 3.3
≤94% −0.01 (−0.65, 0.63) 3.9 −5.2 6.4 3.16 ± 3.4
≤90% −0.39 (−1.12, 0.34) 3.6 −5.5 7.4 3.02 ± 2.7

1 Mean difference between BrOxy MSpO2 and Nellcor SpO2; 2 Lower limit of agreement (mean – SD × 1.96);
3 Upper limit of agreement (mean + SD × 1.96).

Multiple regression analyses indicated no significant association of SpO2 difference
between the two pulse oximeters with sex, age, skin color, and BMI. The results did not
change after selection of data pairs with reference SpO2 ≤ 94% or ≤ 90% (Table 5).

Table 5. Multiple Linear regression analysis with difference (BrOxy M SpO2 minus Nellcor SpO2) as
dependent variable.

r r2 B 95% CI p

SpO2 80% to 100%

0.20 0.041

average 1 0.05 –0.11, 0.01 ns
age 0.01 –0.07, 0.05 ns
sex(ref females) 0.88 –0.21, 1.97 ns
skin color(ref black) 0.16 –1.26, 0.93 ns
BMI 0.11 –0.30, 0.08 ns

SpO2 ≤ 94%

0.23 0.052

average 1 0.06 –0.07, 0.18 ns
age 0.02 –0.10, 0.06 ns
sex(ref females) 1.31 –0.26, 2.89 ns
skin color(ref black) 0.61 –2.26, 1.03 ns
BMI 0.14 –0.40, 1.12 ns

SpO2 ≤ 90%

0.32 0.10

average 1 0.17 –0.08, 0.42 ns
age 0.04 –0.08, 0.15 ns
sex(ref females) 1.66 –0.80, 4.11 ns
skin color(ref black) 0.13 –2.76, 2.50 ns
BMI 0.34 –0.76, 0.08 ns

1 (BrOxy M SpO2 + Nellcor SpO2)/2; BMI, Body Mass Index; ns, not significant.

SpO2 difference was not correlated to HR difference neither in the whole sample
(Pearson r = −0.10, p = 0.13), nor after selecting cases with Nellcor SpO2 ≤ 95% (r = −0.07,
p = 0.39) or ≤90% (r = 0.04, p = 0.68).

3.2. Bland-Altman Plot

In Figure 5, the Bland-Altman plot shows the average values of simultaneous BrOxy
M SpO2 and Nellcor SpO2(X-axis) versus their differences (Y-axis). The plot quantifies the
mean bias (0.18%) and the limits of agreement (−5.1% to +5.5%), within which 95% of the
differences between the two instruments are included. Figure 6 shows the Bland-Altman
plot for the data pair with Nellcor SpO2 ≤ 94% (a) and ≤90% (b).
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Figure 6. Data pair with Nellcor SpO2 ≤ 94% (a) and ≤90% (b). Bland-Altman plot, showing the
average values of simultaneous SpO2 as measured with BrOxy M and NellcorTM in X-axis versus
their differences in Y-axis. The mean difference (solid reference line) represents the mean error (bias),
and the dashed reference linesare the upper and the lower limits of agreement between BrOxy M and
NellcorTM (−5.2 to 6.4% for a; −5.5 to 7.4% for b).

In the whole range of Nellcor SpO2 (from 80% to 100%) (Figure 5), a difference less
than −4% (underestimation of BrOxy M) was observed in seven cases (3.2%): in five cases
the standard SpO2 was ≤90%, thus making the underestimation irrelevant from a clinical
point of view; the same for the remaining two cases, with Nellcor SpO2 100% and BrOxy M
SpO2 95%. The number of cases in which the standard concentration was overestimated
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was higher (difference > 4%, n = 21, 9.6%): the overestimation regarded 15 subjects with
both Nellcor SpO2 and BrOxy M SpO2 < 90% (difference clinically irrelevant), three subjects
with Nellcor SpO2 ≤ 90% and BrOxy M SpO2 in the range 91–96%, and three subjects with
Nellcor SpO2 between 91 and 92% and BrOxy M SpO2 between 96 and 97%.

In Figure 7, the Bland-Altman plot shows the average values of simultaneous BrOxy
M HR and Nellcor HR (X-axis) versus their differences (Y-axis). The plot quantifies the
mean bias (0.25 bpm) and the limits of agreement (−7.1 bmp to +7.7 bpm), within which
95% of the differences between the two instruments are included.
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as measured with BrOxy M and NellcorTM in X-axis versus their differences in Y-axis. The mean
difference (solid reference line) represents the mean error (bias), and the dashed reference linesare the
upper and the lower limits of agreement between BrOxy M and NellcorTM (−7.1 to 7.7 bpm).

3.3. Sensitivity, Specificity, Positive and Negative Predictive Values

Sensitivity for the ability of BrOxy M to detect Nellcor SpO2 ≤ 94% was 94.4%;
specificity to detect normal saturation (SpO2 > 94%) was 83.1%; positive and negative
predictive values were 91.2% and 88.9%, respectively. Sensitivity for the ability of BrOxy
M to detect Nellcor SpO2 ≤ 90% was 86.9%; specificity to detect SpO2 > 90% was 92.5%;
positive and negative predictive value were 90.5% and 89.5%, respectively. The agreement
between BrOxy M SpO2 and Nellcor SpO2, as expressed by the Cohen’s kappa coefficient,
was substantial for both the cut-off 94% (k = 0.79) and the cut-off 90% (k = 0.80), and very
close to almost perfect agreement (>0.80).

4. Discussion

In this study we evaluated the accuracy of BrOxy M in predicting oxygen saturation
and heart rate as measured by a reference device. The readings by BrOxy M were highly
correlated with the simultaneous measurements obtained with the NellcorTM, a device
routinely used in clinical practice all over the world. The analyses indicated no presence of
proportional bias. The average difference of SpO2 (bias) was very close to zero (0.18%), thus
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indicating good agreement between the two devices; the accuracy (2.7%) was acceptable,
according to the standard ISO 80601-2-61:2017. In 12.8% of cases, SpO2 difference was
greater than 4%, both positive and negative. However, only in 6/219 cases (2.7%) under or
overestimation resulted clinically relevant. The analyses indicated similar results as regards
HR. In earlier studies, sex was found to be a significant predictor for bias, and dark skin
pigmentation resulted in overestimation of arterial oxygen saturation especially at a low
saturation in some pulse oximeters [46–49]. In our study, sex and skin color, as well as age,
and BMI, did not influence the difference between the two devices.

A relevant result was that substantial agreement (very close to “almost perfect”) was
found between BrOxy M SpO2 and Nellcor SpO2 when both the cut-offs 94% and 90%
were considered. Finally, no adverse events related to the use of the device BrOxy M were
observed, besides a temporary slight skin irritation of the wrist.

Which could be the use of a wearable and reliable pulse-oximeter able to record
continually signals in real life?

Since many years we have known that monitoring subjects with pulmonary and car-
diac diseases at home can decrease hospital admissions, emergency department visits and
hospital length-of-stay [50–55], while increasing the patients’ quality of life [56]. A signifi-
cant reduction of costs from telemonitoring in comparison to usual care was shown in heart
failure [57,58]. The same advantages have been demonstrated in COPD subjects [26] with
a technology easily accepted by subjects, even in decreasing emergency-room visits [28].
In cardiac and respiratory chronic diseases, early diagnosis can be challenging, and acute
episodes of exacerbation can more or less rapidly modify the health status of subjects. The
availability of a continuous monitoring of the vital parameters, both during the normal
daily activities and the sleep period, could catch the first signs of a chronic disease.

The results of the present study indicated the BrOxy M performs such as another
well-established device in use for a long time. It is user-friendly, fully wearable, and not
hampering normal daily activities. Furthermore, it can record both SpO2 and HR.

Given its peculiar structure, BrOxy M can be worn without any trouble by the subject
at any time of day or night. Using the specific software, it is possible to download the
signals stored in the BrOxy M device, view, archive, and export them. These signals can be
used as inputs for algorithms with diagnostic purposes to describe the physiological state
of the subject.

Although the algorithms integrated in the BrOxy M software apply a particular auto-
matic calibration procedure of the SpO2 estimation parameters, as described in patents WO
2019/193196 A1 and WO 2021/069729 A1, in order to overcome the difficulties introduced
by reflection photoplethysmography, a feature to be emphasized is that BrOxy M does
not use any AI procedures to give the outputs, such as neural network or any kinds of
linear/non-linear regressors. Other devices (such as Withings ScanWatch, wrist reflection
pulse oximeter) [38] use neural networks to process the signals to provide the SpO2 estimate
by means of a “black box” approach. Similar to in other fields of medicine, the use of AI,
while suitable for the majority of cases, can lead in some cases, lying out of the population
data used to train the machine, to untoward results [59]. In fact, FDA requires a dedicated
regulatory pathway with a careful evaluation of the risks linked to the use of devices using
neural networks and other algorithms based on AI [60].

Limitations

A potential limitation of our study could be that accuracy of BrOxy M was evaluated,
in comparison to another pulse oximetry, which represented the gold standard, without
performing arterial blood gas. The NellcorTM is a CE marked device normally used in
the hospital environment, and it is traceable to co-oximeter SaO2 values. The acceptable
agreement demonstrated between the BrOxy M and NellcorTM should guarantee adequate
reliability of the results. It should be pointed out that the comparison with the arterial
oxygen saturation (SaO2) calculated, and not directly measured in an arterial blood gases
sample, may not represent the right choice since arterial oxygen partial pressure (PaO2),
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fluctuates during the respiratory phases. The present study was conducted in a controlled
environment with a well-established protocol and methodology to collect SpO2 and HR
measurements during specific plateaus of SpO2 in healthy participants. Its design may limit
the generalizability of the results to real-world situations. In future works, the accuracy
of BrOxy M should be tested in real-life conditions (i.e., at home, in hospital, and during
rehabilitation), on specific populations such as subjects with COPD or obstructive sleep
apnea, or to diagnose and monitor subjects with cardiac and respiratory diseases.

5. Conclusions

Our study, aimed at evaluating the performance of a new device in comparison with a
reference, CE marked, medical pulse-oximeter, showed an acceptable accuracy (according
to the standard ISO 80601-2-61:2017) for both SpO2 and HR, independently of gender, age,
skin color, and BMI. Furthermore, the agreement between BrOxy M and NellcorTM, as
concerns SpO2 cut-off equal to 94% or 90%, resulted very close to be almost perfect. No
proportional biases were detected. No relevant adverse effects occurred.

Our study is important because a device such as BrOxy M able to monitor finely
and reliably subjects’ vital parameters at rest and during exercise at home, in real life,
continuously for 24 h can fulfill unanswered needs in the management of chronic cardiac
and respiratory conditions.
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