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Adoptive T cell immunotherapy has demonstrated clinically relevant efficacy in treating
malignant and infectious diseases. However, much of these therapies have been focused
on enhancing, or generating de novo, effector functions of conventional T cells recognizing
HLA molecules. Given the heterogeneity of HLA alleles, mismatched patients are ineligible
for current HLA-restricted adoptive T cell therapies. CD1 and MR1 are class I-like
monomorphic molecules and their restricted T cells possess unique T cell receptor
specificity against entirely different classes of antigens. CD1 and MR1 molecules present
lipid and vitamin B metabolite antigens, respectively, and offer a new front of targets for
T cell therapies. This review will cover the recent progress in the basic research of CD1,
MR1, and their restricted T cells that possess translational potential.
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Introduction

Given their central role in numerous diseases, T cells have become the focus and mediators of
many immunotherapies. T cell immunotherapy has had impressive success in treating malignant
and infectious diseases. Currently, there are several methods of using T cells as therapy. T cells are
cultured and/or engineered ex vivo and adoptively transferred into the patient, or T cells are directly
targeted in vivo by vaccination or biological compounds. Regardless of the approach taken, these
immunotherapies generate a de novo T cell-mediated immune response and/or enhance preexisting
functions, which are often suppressed in patients. Adoptive T cell transfer therapy offers unique
advantages and has been considerably tested in numerous trials. The modern approach to this
method allows the personalization of T cells through the desired ex vivo activation, expansion, and
genetic modification, followed by infusion back into the patient (1). As part of this method, we are
able to produce a large number of long-livedmemory T cells with defined functions, which last up to
years in the patients after infusion depending on the expansion protocol (2). The T cells can also be
genetically engineered to express recombinant T cell receptors (TCRs) or chimeric antigen receptors
(CARs) to specifically target tumor or pathogen-associated antigens. Whereas CARs are only able
to target surface molecules, TCRs recognizing peptide antigens presented on HLA are able to target
the large repertoire of intracellular antigens.

In the past and current TCR-directed adoptive T cell transfer therapies, most trials have been
focused on conventional T cells restricted to one HLA allele. The human HLA gene locus is vastly
varied between individuals (3), and although conventional T cell therapies have aimed to target
common alleles such as HLA-A2, a significant portion of HLA-mismatched patients cannot benefit
from this type of treatment. Therefore, the heterogeneity of HLA alleles represents a major barrier
to the applicability of current TCR-directed adoptive T cell therapies. With the recent advancements
in the field of CD1, MR1, and their, respectively, restricted T cells, these molecules are becoming
attractive targets of immunotherapy. These molecules offer the advantage of being monomorphic
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FIGURE 1 | Overcoming HLA-restriction of adoptive T cell therapy by
targeting monomorphic CD1 and MR1. Current T cell therapies targeting
HLA–peptide complexes only benefit patients expressing the compatible HLA
allele, which limits its applicability. CD1 and MR1 are monomorphic
antigen-presenting molecules, and T cell recognizing CD1/MR1 can target the
same antigen complex in patients expressing different HLA. Requirements for
the success of such therapy and challenges faced in the field are discussed in
the text.

antigen-presenting molecules that are conserved across humans,
as well as the ability to present completely different classes of
antigens other than peptides (4). Therefore, targeting CD1 and
MR1 will broaden the applicability of adoptive T cell therapy
(Figure 1).

The MHC class I homolog CD1 family of molecules contains
four antigen-presenting members in humans, CD1a–d, and only
one inmice, CD1d (5).Many of theCD1 studies have been focused
on invariant natural killer T (iNKT) cells (type I NKT) found in
both humans and mice. These cells are defined by their invariant
TCRα and semi-variant TCRβ gene usage, and the recognition
of the canonical ligand, α-galactosylceramide (α-GalCer) (6).
The nature of type II NKT cells, which comprise the remain-
der of CD1d-restricted T cells that do not recognize α-GalCer,
and CD1a–c-restricted T cells have become better understood
in recent years. MR1 is also an MHC class I homolog present-
ing vitamin B metabolites. MR1–antigens complexes are recog-
nized by mucosal-associated invariant T (MAIT) cells, which are
another group of evolutionarily conserved αβ T cells found in
high numbers in humans (7). Like iNKT cells, they express an
invariant TCRα chain that is paired with an oligoclonal TCRβ
chain repertoire (8). These molecules and cognate T cells will be
discussed further in details below.

To date, the only clinical trials involving CD1 and MR1 have
been utilizing iNKT cells as a cellular adjuvant by activating them
via α-GalCer. Many mouse studies implicated roles for iNKT
cells in tumor regression (9) and antimicrobial immunity (10).
Unfortunately, many of these findings have not been translated
well to humans. In the published clinical trials, when cancer
or chronically infected patients were treated with iNKT cells
activated by α-GalCer, alone or pulsed on antigen-presenting

cells (APCs), only limited efficacy was observed (11–19). Based
on the experiences that led to effective adoptive T cell therapy
targeting HLA, T cell therapies targeting CD1 and MR1 can be
improved. In this review, we will address how CD1 and MR1
can be targeted more effectively in diseases by examining the
three constituents of successful adoptive T cell transfer therapy,
which are the knowledge of (1) disease-associated target antigen
complexes, (2) TCRs that recognize these complexes specifically
without eliciting harmful autoimmunity, and (3) the optimal
function of the responding T cells.

The Targets

To target CD1 or MR1 in diseases, their expression on the patho-
logical tissue of interest is necessary. However, the presence of
antigen-presenting molecule alone is not enough. An effective T
cell therapy should ideally target diseased tissue specifically, with
minimal autoimmune response against healthy tissues. Therefore,
understanding the nature of antigens presented during pathologi-
cal and steady state is required to safely and efficiently target CD1
and MR1 in diseases (Table 1).

Pattern of Expression of CD1 and MR1
The CD1 family of lipid-presenting molecules can be sepa-
rated based on patterns of expression into two groups. Group 1
includes CD1a, CD1b, and CD1c, and is mainly found on profes-
sional APCs and developing thymocytes, with CD1a more strictly
restricted to Langerhans cells (20, 25, 50). Group 2 only includes
CD1d and is expressed widely on many tissues (31, 32). Similar
to CD1d, MR1 is expressed at the transcript level in many tissue
types (45), but the detection of surface MR1 expression has been
challenging. A newly developed mAb against murine MR1 was
able to stabilize and enhance its transient surface expression (51).
However, the MR1 surface expression pattern on human healthy
and pathological tissues is largely unknown.

All CD1 molecules can be found on various leukemia and
lymphomas, although the exact expression pattern varies between
patients (29, 52, 53). In addition, CD1d can be found on subsets
of medulloblastoma, multiple myeloma, and renal cell carcinoma
patients (54–56). Other cells in the tumor microenvironment that
suppress anti-tumor immunity and/or promote tumor growth also
express CD1 molecules. For example, tumor-associated mono-
cytes and macrophages, which are associated with poor prognosis
in neuroblastoma patients, were found to express CD1d and could
be targeted by iNKT cells in a mouse model (57). Targeting CD1d
on both the tumor cells and the supporting stromal cells could be
an effective approach.

In infections, CD1d expression can be downregulated by viral
immune evasion mechanisms of human immunodeficiency virus
and herpes simplex virus (58, 59). Similar to MHC class I, surface
CD1d expression on epithelial and immune cells is upregulated
in inflammatory conditions and can be induced by interferons
(60). Yakimchuk et al. recently demonstrated that CD1b andCD1c
molecules are upregulated on Langerhans cells of Lyme disease
patients compared to healthy samples. In vitro, all group 1 CD1
molecules on monocytes could be upregulated by stimulation
with extracted Borrelia burgdorferi lipids via TLR-2 as well as IL-
1β (61). The expression of CD1 and MR1 molecules need to be
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TABLE 1 | Characteristics of CD1 and MR1 antigen-presenting molecules and their, respectively, restricted T cells in humans.

Antigen-presenting
molecule

Pattern of surface expression Nature of antigens presented Cognate TCRs Frequency of cognate T cells

CD1a Restricted [thymocytes, professional
APCs, Langerhans cells, Ref. (20)]

Mycobacterial lipopeptide, and
self apolar lipids (21, 22)

Diverse TCRs ~Up to 20% of CD4+ and
CD4−CD8− T cells (23, 24)

CD1b Restricted [thymocytes, professional
APCs, Ref. (25)]

Mycobacterial lipids (26, 27) GEM [TRAV1-2–TRAJ9,
Ref. (28)], and diverse TCRs

~Up to 1.5% of CD4+ and
CD4−CD8− T cells (23)

CD1c Restricted [thymocytes, professional
APCs, Ref. (25)]

Mycobacterial lipids and self
lysophospholipid (29, 30)

Diverse TCRs ~Up to 7% of CD4+ and
CD4−CD8− T cells (23)

CD1d Widely expressed [e.g.,
hematopoietic, gastrointestinal, and
reproductive tissues, Ref. (31, 32)]

Bacterial and self glycolipids,
plasmalogens, phospholipids
(33–44)

iNKT (mostly TRAV10–
TRAJ18 paired with TRBV25),
and diverse TCRs (38)

~Up to 3% of CD4+ and
CD4−CD8− T cells (23)

MR1 Unknown [widely expressed at the
mRNA level, Ref. (45)]

Small molecule metabolites (46,
47)

TRAV1-2 paired with TRBV20
or TRBV6 TCRs (48)

~1–10% of total T cells (48, 49)

Antigens listed only include those that have been identified and validated. Frequency is among peripheral blood T cells in healthy humans.

better characterized for different diseases, since understanding the
surface expression pattern on infected or transformed cells in vivo
is essential for CD1- or MR1-restricted immunotherapy.

Antigens Presented by CD1 and MR1
Several studies have shed light on the disease associated and
natural antigens presented by CD1 molecules. The ability of
group 1 CD1 molecules to present foreign mycobacterial anti-
gens, such as dideoxymycobactin, glucose monomycolate, and
mycolic acids, has been well established (21, 26, 27, 30). These
antigens are uniquely derived from the bacteria and are not found
in the absence of infection. Lepore et al. discovered a novel
tumor-associated self-lipid antigen presented by CD1c. Methyl-
lysophosphatidic acid was found 100-fold higher in acute B lym-
phoblastic leukemia and acute myeloid leukemia cells compared
to normal B cells or monocytes, and stimulated T cells in a CD1c-
dependent manner (29). Although this lipid was also found at
elevated levels in dendritic cells, it nevertheless demonstrated the
existence of tumor-associated lipid antigens. In addition, some
studies have characterized changes in the lipidome of transformed
cells (62, 63). Therefore, it is likely that more tumor-associated
lipid antigens exist and possibly shared across different patients
and cancers. The nature of antigenic self-lipids presented by CD1a
were also recently elucidated by de Jong et al. Using a CD1a-
restricted T cell line, the group showed that apolar lipids lacking
hydrophilic functional groups such as squalene and triacylglyc-
eride were antigenic when presented by CD1a (22).

CD1d is able to present several microbial derived α-linked
glycolipids, which are potent activators of iNKT cells (33, 34).
For virus-derived lipid antigens, none have been identified to
date. However, Zeissig et al. demonstrated that hepatitis B virus-
infected human hepatocytes stimulated iNKT cell lines signif-
icantly more than non-infected, and this was attributed to the
enrichment of virus-induced endogenous antigenic lysophos-
pholipids (35, 36). Several new stimulatory lipid ligands rec-
ognized by type II NKT cells have also been discovered. Tat-
ituri et al. demonstrated that bacterial and mammalian phos-
phatidylglycerol and diphosphatidylglycerol were able to stimulate
murine type II NKT hybridomas, but not iNKT cells (37). Nair
et al. identified β-glucosylceramide and glucosylsphingosine lyso-
glucocerebroside as antigens for human and mouse type II NKT

cells. The circulating levels of these two lipids are elevated in
patients with Gaucher’s disease. The group stained PBMC with
CD1d tetramer loaded with either of the two lipids, and found
that the tetramer positive cells did not express the invariant NKT
TCR, indicating that they were not type I iNKT cells. Their
frequencies were, in fact, much higher than α-GalCer tetramer
positive cells. Monocyte-derived DCs pulsed with each antigen
were able to expand the respective tetramer positive popula-
tion (38), validating their stimulatory capacity for type II NKT
cells.

In terms of steady state self-lipid antigens, iNKT cells recog-
nize phospholipids, plasmalogens, and glycolipids (39–41). Until
recently, it was thought that endogenous mammalian and foreign
bacterial glycolipids differed in the β or α linkage between the
sugar moiety and the lipid. This was due to the fact that mammals
lack the enzyme required to form α-linked glycolipids, which
allowed iNKT cells strongly recognizing α-linked glycolipids to
easily distinguish between self and foreign antigens. However,
two independent groups have reported that a previously identified
endogenous β-linked glycolipid, β-glucopyranosyl ceramide (42),
was contaminated with the rare, but strongly stimulatory α-linked
version (43, 44). Kain et al. demonstrated using α-linked glycol-
ipid specific antibody that mammalian cells likely produced this
class of lipids (44). These findings strongly influence the choice of
antigen for CD1d targeted therapy, since the previously assumed
structural exclusivity of foreign and self-glycolipids may not be so
strict.

Mucosal-associated invariant T cells are activated by bacteria
but the nature of microbial antigens presented by MR1 remained
elusive until recently. Kjer-Nielsen et al. demonstrated vitamin
B metabolites as putative ligands presented by MR1, and solved
the x-ray crystal structure of a folic acid derivative (6-FP) com-
plexed with MR1. This study also showed that, although 6-FP
was not immunogenic in stimulating MAIT TCR transfectants
in vitro, a riboflavin-derivative isolated from the supernatant of
Salmonella culture was able to upregulate MR1 expression on
an MR1-expressing target cell line and activate primary human
MAIT cells (46). The same group also identified byproducts of
an intermediate of the riboflavin synthesis pathway as MAIT
antigens (47). Given the strong influence of gut microbiota on
MAIT cells (64), addressing whether these identified antigens are
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presented only during infection or also at steady state dictates their
therapeutic potential.

The Receptors

The responsible molecule that targets CD1 or MR1 is the TCR.
Clinical trials have confirmed that T cells engineered to express
a recombinant TCR can effectively target cells expressing cognate
antigens in humans. Therefore, understanding the repertoire of
CD1 and MR1-restricted TCRs (Table 1) and their molecular
mechanism of antigen recognition are important for developing
therapy directed at the molecule of interest.

CD1- and MR1-Restricted Invariant T cell
Receptors
Invariant NKT TCRs are the CD1-restricted TCRs that have been
most extensively characterized. In humans, iNKTTCRs are largely
composed of the TRAV10–TRAJ18 invariant TCRα chain paired
with TRBV25 TCRβ chains with a hypervariable CDR3β region.
In mice, they are mainly TRAV11–TRAJ18 TCRα paired with
TRBV13, 29, or 1 TCRβ chains (4). Non-TRAV10 and non-
TRAV11 iNKT cells have also been identified in humans and
mice, respectively, but are generally rare (65, 66). As mentioned
above, successful T cell therapy relies on maximizing on-target
effect, while minimizing off-target autoreactivity. Having disease-
specific antigen is only half of the requirement, since antigen-
specific receptors are also required to distinguish them from
normal tissue antigens. Several studies demonstrated that iNKT
TCRs act as pattern-recognition receptors, unable to distinguish
the lipid antigen presented by CD1d (67–69). This is attributed to
its conserved docking mode on CD1d, where only the germline-
encoded regions of the TCR are involved in recognizing the
lipid antigen, while the single variable region, CDR3β, interacts
with the antigen-presenting molecule (67, 68, 70). Therefore,
the diversity in the TCR is supposed to only impact the overall
affinity to the lipid-CD1d complex, but not antigen selectivity.
This would prevent the isolation of tumor or pathogen-specific
iNKT TCR. However, our group has recently characterized a
large panel of natural human iNKT TCRs and demonstrated
selective antigen recognition of different lipid–CD1d complexes.
Furthermore, it appears that most of the peripheral human iNKT
cells express antigen-selective TCRs (in revision, Chamoto et al.).
Given themany crystal structures of iNKTTCR–CD1d complexes
showing the same docking mode, these newly identified human
iNKT TCRs unlikely possess an alternate docking mode. It is
possible that the hypervariable CDR3β adjust the conformation
of the antigen-recognizing germline portion of the TCR (71),
in a sequence-dependent manner, thus allowing for distinction
between antigens. Intriguingly, mouse and human iNKT TCRs
possess cross-species reactivity for human and mouse CD1d,
respectively (72). It remains to be seenwhethermouse iNKTTCRs
are able to distinguish lipid antigens presented by human CD1d.
HLA-restrictedmouse TCRs have been already tested in the clinic
without causing any toxic xenoreaction in cancer patients (73).

Two other subsets of T cells expressing an invariant TCRα
chain have been characterized. Recently identified germline-
encoded, mycolyl lipid-reactive (GEM) T cells are a subset of

CD1b-restricted T cells expressing a TRAV1-2–TRAJ9 TCRα
chain. These TCRs possess a fixed CDR3α length and minor
amino acid variations across different tuberculosis patients.
Clonotypic GEM TCRs recognized either mycobacterial antigen
glucose monomycolate or mycolic acid presented by CD1b. Struc-
tural analysis demonstrated that the footprint of GEM TCRs on
CD1b–antigens resembled conventional TCRs, which explains
their ability to distinguish the two antigens. Furthermore, GEM
TCRs recognized foreign antigens with high affinity and did not
display baseline autoreactivity (28). Thus, they represent a viable
option in targeting these mycobacteria-derived antigens.

Mucosal-associated invariant T cells represent the third group
of T cells with a biased TCR repertoire. Recently developed
MR1 tetramer loaded with the stimulatory riboflavin-derivative
demonstrated that MAIT TCRs also utilize the TRAV1-2 gene,
which is mostly rearranged to TRAJ33, and pairing mostly with
TRBV20 or TRBV6-4 (48). Functional and structural studies on
MAIT TCRs suggested that they possess antigen selectivity, where
stimulation by MR1+ target cells infected by different genus
of microbes specifically enriched different clonal populations of
MAIT cells ex vivo (74). This is consistent with the crystal struc-
tures of MAIT TCR–MR1–antigen complexes, where the TCR
takes a more perpendicular docking mode similar to GEM and
conventional TCRs (75, 76). In these studies, no interactions
were identified between the hypervariable CDR3β of the MAIT
TCR and the two vitamin B metabolite antigens previously iden-
tified. Interestingly, however, this docking mode permitted the
hypervariable region of the MAIT TCR to interact with novel
antigens (47) and a derivative of 6-FP presented by MR1 (77).
In the two subsequent studies, the crystal structures of several
MAIT TCRs–MR1–antigen complexes were solved, showing that
the CDR3β loop directly interacted with the antigen. Collectively,
these evidences support an antigen-selective mode of recognition
by MAIT TCRs.

CD1-Restricted Diverse T Cell Receptors
Non-invariant TCRs recognizing CD1 represent the majority of
the total CD1-restricted TCR repertoire in humans (23, 38). These
diverse TCRs do not appear to possess the conserved parallel
docking mode seen with iNKT TCRs. The crystal structures
of murine type II NKT TCRs recognizing CD1d-self-antigens
demonstrated an orthogonal docking mode similar to the one
classically seen with MHC-restricted TCR (78, 79). The CDR3β
made direct interactions with the antigens, indicating that type
II NKT TCRs, if all similarly possess this docking mode, would
potentially be able to discriminate antigens depending on the
hypervariable CDR3 sequences. Roy et al. performed alanine
scanning on the CD1c molecule presenting mycobacterial phos-
phomycoketide (PM) and measured the dissociation constant for
the mutants against a panel of CD1c–PM reactive clones (80).
The group observed that different point mutations affected the
strength of interaction differently for different TCRs. This would
not be expected if all the TCRs recognized the CD1c complex
in a conserved manner. Whether this variable docking mode
holds true for CD1c presenting other foreign and self-antigens
remains to be tested, and examining the antigen selectivity of
this unpredictable docking mode requires experiments involving
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more antigens. The crystal structure of TCR–CD1a–self ligand
was recently solved with a clonotypic CD1a-restricted TCR. In
this study, although the TCR docked orthogonally onto CD1a, the
recognition of the antigen complex relied on contacts with CD1a
only. This allowed the TCR to recognize various “permissive” self-
ligands that did not disrupt the TCR–CD1a interaction (81). It
will be of interest to see if this is also the case with other CD1a-
restricted TCRs. How diverse CD1b-restricted TCRs recognize
the cognate CD1–antigen complex and their ligand selectivity
remains uncharacterized. CD1c- and CD1d-restricted γδ TCRs
have also been identified (82–84), and offer a separate repertoire
from which to isolate disease-specific receptors. Structural anal-
ysis demonstrated that CD1d-restricted γδ TCRs recognized the
antigen complex also similarly to conventional MHC-restricted
TCRs (85). The germline-encoded CDR1 and CDR2 recognized
the monomorphic CD1d, while the hypervariable CDR3δ was
positioned on top of the ligand. This is highly suggestive of an
antigen-selective mode of recognition. The wealth of potentially
antigen-selective αβ and γδ TCRs recognizing CD1- or MR1-
antigen complexes hold great therapeutic potential for cancer and
infection-specific T cell therapy restricted by CD1 or MR1.

The Cells

Functional Phenotype of CD1- and
MR1-Restricted T Cells
In the cases of cancer and infection, the ultimate goal of
immunotherapy is to induce cell death in themalignant or infected
cells to control the disease. As mentioned above, iNKT cells have
been targeted with the aim to jump-start the ensuing immune
response that ultimately leads to a cytotoxic cellular response.
However, in mice, multiple functional subsets of iNKT cells par-
alleling MHC class II-restricted T cells have been discovered.
Lee et al. identified NKT1, NKT2, and NKT17 subsets that pref-
erentially secrete IFN-γ, IL-4, and IL-17, respectively, based on
the lineage transcription factor expressed (86). It is unknown
whether the NKT1, NKT2, and NKT17 functional subsets exist in
humans, and if so, the variation in the frequency of the different
functional lineages between individuals needs to be addressed.
A small fraction of suppressive IL-10 secreting iNKT cells was
reported in humans, and their frequency in peripheral blood
ranged over one order of magnitude between individuals (87).
Activation of one or a few particular functional subsets of iNKT
cells by α-GalCer in some of the clinical trials might explain the
lack of efficacy, especially if the activated subset antagonizes a
favorable response. As for the other CD1-restricted T cells and
MR1-restricted MAIT cells, their functions in vivo are largely
unknown but likely resemble Th1 and/or Th17 phenotypes. Ex
vivo or in vitro stimulation studies demonstrated that non-iNKT
CD1-restricted T cells are capable of producing IFN-γ and MAIT
cells producing both IFN-γ and IL-17, both with some capacity
for cytotoxicity and IL-2 production (22, 23, 28, 61, 74, 88–90).
CD1a-restricted T cells are also able to produce IL-22, consistent
with their role in dermal immunity (24). Nevertheless, the fidelity
of much of these functions in vivo remains to be examined before
CD1-restricted T cells and MAIT cells can be used to combat
the appropriate disease. Although a Th1 functional profile is

generally preferred for optimal anti-tumor and viral immunity,
the multifaceted functionality of CD1- andMR1-restricted T cells
can potentially expand their applicability to other diseases.

Large Scale Production of Effector Cells
Once the function of these cells has been established, other aspects
of making adoptive therapy successful need to be considered.
Obtaining a large number of effector cells is important for efficacy.
For example, typically 10–100 billion HLA-restricted T cells are
infused to a single cancer patient, although not all are antigen-
specific, it still represents a sizable number. Depending on the
type of function and the aim of the therapy, fewer cells could be
required. Nevertheless, given the limited number of iNKT cells
in the periphery, it will be necessary to expand this population
for therapy. α-GalCer-based stimulation has been traditionally
used and serves as an effective method to expand iNKT cells,
either pulsed on APCs or in a cell-free system. However, this
method expands all iNKT cells independent of antigen selectivity,
avidity, and functional profile. There is also evidence indicating
that α-GalCer-expanded iNKT cells possess an anergic phenotype
(91). Although other CD1-restricted T cells and MAIT cells are
more numerous in the peripheral blood (23, 24, 48, 49), they will
likely also require ex vivo expansion for therapeutic use (Table 1).
Cell-based artificial antigen-presenting cells (aAPCs) have been
highly effective in expanding conventional MHC-restricted T
cells in preclinical and clinical settings (2, 92–94). Similar aAPCs
expressing different CD1 molecules have been developed and
could stimulate, respectively, restricted T cells (24). It is possible
to improve the capacity of these aAPCs to expand and stimulate
CD1 or MR1-restricted T cells by co-expressing the necessary
costimulatory molecules along with CD1 or MR1, and culturing
in the appropriate cytokine milieu (92).

Memory and Longevity
The longevity of infused T cells in vivo is also an important factor
in clinical success. It has been demonstrated that central memory
T cells are more effective than terminally differentiated T cells
in adoptive T cell models of cancer and chronic viral infection,
owing to their prolonged survival and effector output (95). iNKT
cells are well-known for their pre-primed effector memory phe-
notype, immediate after maturation and in the absence of antigen
exposure, which allows their rapid response. Majority of iNKT
cells do not express L-selectin (6), a key marker of naïve and
central memory phenotype. Although the in vivo turnover rate
of peripheral and adoptively transferred iNKT cells is unknown,
their effector memory phenotype does not suggest prolonged
persistence to the extent of central memory conventional T cells.
By contrast, a significant portion of type IINKT cells were recently
described to possess a naïve-like phenotype, expressing L-selectin
and CD45RA (38). This strongly suggests that they could poten-
tially differentiate to long-lived central memory T cells. In fact,
CD1-restricted T cells in general, excluding iNKT cells, seem to
possess a naïve T cell phenotype (23). Likewise, MAIT cells in
PBMCexpress centralmemorymarkers and start to demonstrate a
memory phenotype as early as the age of 3months in humans (89).
Whether the expression pattern ofmemory phenotypemarkers on
these unconventional T cells confer the same cellular longevity as
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conventional MHC-restricted T cells need to be evaluated. Fur-
thermore, the memory phenotype of CD1- and MR1-restricted
T cells can be altered during ex vivo expansion, as seen with
conventional T cells, where they lose their survival capacity after
repeated stimulation and subsequent expansion (96). The aAPC
system developed can be a useful tool to expand these cells, while
maintaining the desired memory phenotype (2, 97).

Mix and Match – Building the Best Therapy

In the age of genetic engineering reaching ever higher levels of
feasibility and safety, cellular immunotherapies are no longer lim-
ited by the inherent constraints of the naturally existing immune
system. The aforementioned problems of iNKT cells in therapy
(e.g., apparent lack of antigen and functional specificity, and
shortage of numbers) can be overcome by extrinsically modifying
cell-intrinsic properties. Heczey et al. recently demonstrated that
introducing a CAR targeting GD2, a tumor-associated surface
ganglioside, to sorted and expanded human iNKT cells can redi-
rect their specificity independent of CD1d. Importantly, the CAR
contained the 4-1BB signaling domain and biased the iNKT cells
to a Th1 phenotype upon antigen engagement (98). This approach
is an example of how to overcome the inherent limitations of
iNKT cells. Conversely, CD1 andMR1 can be targeted by redirect-
ing conventional MHC-restricted T cells with TCRs recognizing
CD1/MR1-antigen complexes of interest. This would be one of
the most practical and translatable methods of targeting CD1
and MR1 currently, since transducing T cells with recombinant
TCRs is a fairly well-established methodology to redirect T cell
reactivity and has been used inmany trials (99). Themajor barrier
to this would be to identify the appropriate TCRs capable of selec-
tively recognizing diseased tissues, as discussed above, which will
represent the rate-limiting step to target CD1 and MR1 through
conventional T cells. Combining cell-based therapy targeting
CD1 and MR1 with small-molecules (100), checkpoint blockade

reagents, or other biologics could also prove to be beneficial. Anti-
CTLA4mAb treatment combinedwith adoptiveHLA-restricted T
cell therapy indeed demonstrated greater efficacy than adoptive
T cell therapy alone (2). Lastly, CD1, MR1, or MHC-presented
antigens, if they are expressed simultaneously or in combinations
on the target cells, can be targeted together to minimize the
immune escape routes of the malignant or infectious agents, since
these three classes of antigen-presenting molecules likely present
ligands derived from non-overlapping molecular pathways.

Concluding Remarks

Adoptive cell therapy of MHC-restricted T cells has undoubtedly
produced impressive clinical responses in chronically infected
and cancer patients. Use of T cells targeting lipids and small
molecule metabolites presented by CD1 and MR1 as a T cell graft
will broaden applicability of T cell therapy to more diseases and
patients without the limitation of HLA restriction. The research
areas pivotal for successful adoptive CD1- and MR1-restricted T
cell therapy, which are already underway, are to better characterize
the pattern of expression of CD1 and MR1 molecules, identify
disease-associated antigens processed and presented by CD1 and
MR1 molecules, and isolate cognate TCRs or T cells with the
desired function that recognize these antigen complexes but not
others. Although the biology of CD1- and MR1-restricted T cells
and their receptors require further study before being tested in
clinical trials, they represent an exciting venue of therapeutic
potential in the near future.
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