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Abstract

Background: Although the number of newly detected leprosy cases has decreased globally, a quarter of a million new cases
are detected annually and eradication remains far away. Current options for leprosy prevention are contact tracing and BCG
vaccination of infants. Future options may include chemoprophylaxis and early diagnosis of subclinical infections. This study
compared the predicted trends in leprosy case detection of future intervention strategies.

Methods: Seven leprosy intervention scenarios were investigated with a microsimulation model (SIMCOLEP) to predict
future leprosy trends. The baseline scenario consisted of passive case detection, multidrug therapy, contact tracing, and
BCG vaccination of infants. The other six scenarios were modifications of the baseline, as follows: no contact tracing; with
chemoprophylaxis; with early diagnosis of subclinical infections; replacement of the BCG vaccine with a new tuberculosis
vaccine ineffective against Mycobacterium leprae (‘‘no BCG’’); no BCG with chemoprophylaxis; and no BCG with early
diagnosis.

Findings: Without contact tracing, the model predicted an initial drop in the new case detection rate due to a delay in
detecting clinical cases among contacts. Eventually, this scenario would lead to new case detection rates higher than the
baseline program. Both chemoprophylaxis and early diagnosis would prevent new cases due to a reduction of the infectious
period of subclinical cases by detection and cure of these cases. Also, replacing BCG would increase the new case detection
rate of leprosy, but this effect could be offset with either chemoprophylaxis or early diagnosis.

Conclusions: This study showed that the leprosy incidence would be reduced substantially by good BCG vaccine coverage
and the combined strategies of contact tracing, early diagnosis, and treatment of infection and/or chemoprophylaxis
among household contacts. To effectively interrupt the transmission of M. leprae, it is crucial to continue developing
immuno- and chemoprophylaxis strategies and an effective test for diagnosing subclinical infections.
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Introduction

The global new case detection rate of leprosy has dropped

considerably during last century, but with approximately 250,000

new cases detected annually, leprosy is far from being eradicated

[1]. Currently, the primary strategy for controlling leprosy is case

detection and treatment with multidrug therapy (MDT). Although

new interventions are under development, their potential impact on

disease control is unknown. Recent clinical trials have indicated that

a single chemoprophylactic dose of rifampicin given to individuals

in contact with newly diagnosed leprosy patients could protect these

contacts against leprosy disease [2]. The results with a single dose of

rifampicin are very comparable to trials with dapsone that were

conducted in the pre-MDT era. A meta-analysis showed that the

combined results from the randomized controlled trials favored

chemoprophylaxis to placebo with 2–4 years of follow-up (relative

risk 0.59, 95% (CI) 0.50–0.70) [3]. The advantage of a single dose of

rifampicin is that it is only given once, while dapsone prophylaxis is

given for at least 2 years. Furthermore, new tests are under

development for identifying subclinical infections [4].

Other recent developments however, are cause for concern. For

example, the integration of leprosy control activities into general

health care programs has in many countries led to the cessation of

active case finding and contact tracing. Consequently, diagnosis is

delayed and patients are therefore infectious for a longer period

causing more people in contact with patients to become infected.

Another concern is that a new vaccine may replace the current

Bacillus Calmette-Guérin (BCG) tuberculosis vaccine, which is

given to infants to prevent tuberculosis (TB), but which also

protects against leprosy [5]. An update on progress describing new

TB vaccine candidates that are currently entering clinical trials has

recently been published [6]. Most are pre-exposure vaccines and

will most likely prevent TB disease. Such vaccines are intended

either to replace BCG (recombinant live vaccines) or to be given
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after BCG prime as boosters (protein adjuvant formulations or

recombinant viral carriers). New and more specific TB vaccines

may not induce cross-immunity to the bacterium responsible for

leprosy, Mycobacterium leprae [6,7]. It was recently pleaded that new

candidate vaccines must be developed taking both diseases into

account, and that the current TB candidate vaccines should be

assessed for their potential to protect against leprosy as well as

against TB [8]. Therefore, the effect of new leprosy interventions

strategies should be tested in the context of other related

developments, such as possible changes to BCG.

Although the short-term effectiveness of new interventions can

be assessed in trials, extrapolation to long-term effectiveness in the

general population is difficult, due to the complex impact on

transmission dynamics. Hence, dynamic simulation models are

necessary to assess the possible impact of different intervention

strategies on future trends in the new case detection rate of leprosy.

We have developed a microsimulation model that simulates the

transmission and control of leprosy (the SIMCOLEP model),

taking into account the population structure of households [9].

The model has been quantified by data from northwest

Bangladesh in 2003. Very detailed data were available for that

year from a large randomised controlled trial of chemoprophylaxis

with single dose rifampicin (the COLEP study) that was being

conducted at the time [2,10–13]. This is an area with a well-

organized leprosy control program and with a decreasing trend in

new case detection since the mid-19909s. Regardless, the current

case detection rate remains one of the highest in Bangladesh, 2–3

per 10,000 population. We applied our model to the situation in

this area as a starting point for exploring the potential impact of

seven different intervention strategies on the detection of new cases

of leprosy over a 50-year period.

Methods

Ethics statement
For the COLEP trial (ISRCTN 61223447), on which the data

of this modeling study is largely based, ethical clearance was

obtained from the Ethical Review Committee of the Bangladesh

Medical Research Council in Dhaka (ref. no. BMRC/ERC/

2001–2004/799). All subjects were informed verbally in their own

language and invited to participate. Written consent was requested

from each adult. For children consent from a parent or guardian

was given.

The model
The microsimulation model simulates the life history of fictitious

individuals [9]. These individuals are members of a household that

is formed, changes, and dissolves during the simulation. Individual

household movement occurs during adolescence and after

marriage. Some married couples start living in the household of

the parents-in-law, and will form their own separate household

after on average 12 years. The life span of individuals is drawn

from a life-table at birth; the number of newborn individuals

maintains the simulated population growth rate equal to the

observed population growth rate; newly born individuals are

placed into the household of their mothers; and mothers are drawn

from the population of married women and weighted with an age-

dependent fertility function.

An individual that is susceptible to leprosy is defined as an

individual that developed leprosy sometime during their lifetime,

after acquiring the infection. The large majority (say 80–95%) of

the population is assumed not to be susceptible to leprosy [14–

16].The remaining 5–20% of the population is susceptible. For

these individuals, it is assumed that 80% undergoes a self-healing

infection and is never infectious to other individuals, that is 20%

will become chronically infected and infectious [16].

The mechanisms underlying leprosy susceptibility are currently

unknown [9]. Therefore, the model used six hypothetical

mechanisms: Random (no mechanism, but each individual has a

fixed probability of being susceptible); Household susceptibility (all

susceptibles live in a fraction of households, within these

susceptible households a fraction of inhabitants is susceptible);

Dominant (susceptibility is inherited by a dominant gene); Recessive

(susceptibility is inherited by a recessive gene); Household & dominant

(50% of susceptibility is determined by the Household and 50% by a

dominant gene); Household & recessive inheritance (50% of suscepti-

bility is determined by the Household and 50% by a recessive).

As described in a previous paper [9], the model was unable to

identify one single mechanism that could best explain the observed

data. However, for Random it turned out that 20% susceptibles

provided the best fit, whereas this was 10% for the other

mechanisms. For Household this 10% was established by assuming

on average 25% of the households contain on average 40%

susceptible individuals.

The quantification of the model is based on the leprosy situation

in 2003 and the control program of the last decades in the

Nilphamari and Rangpur districts of Bangladesh [9]. This control

program consisted of passive case detection, with in 2003 an

average detection delay of 2 years, treatment with MDT, and

active tracing of people in contact with patients. Contacts are

examined annually for three consecutive years. In this area, BCG

vaccination was routinely given to newborn infants. Since the

introduction of the BCG vaccination in 1974, the coverage had

gradually expanded to 80% in 1990 and remained at that level in

2003 [17]. BCG had a protective effect of 60% [18].

For a full and detailed description of the model, we refer to our

previous paper [9].

Intervention strategies
In the study we considered seven potential intervention

scenarios for the future control of leprosy. The baseline scenario

Author Summary

Leprosy is a contagious disease that will remain prevalent,
despite the declining number of patients worldwide over
the last century. With approximately 250,000 new cases
detected annually, leprosy is far from being eradicated.
Leprosy can be treated with drugs after disease detection.

Some cases can be prevented with a tuberculosis vaccine
(BCG) that cross-reacts with the bacterium responsible for
leprosy, but this vaccine might be replaced in the future.
Furthermore, preventive drugs can reduce the number of
new cases among people in contact with infectious
patients, but this strategy has not yet become established
in common practice. Also, a new test is under develop-
ment for the detection of infections before the appearance
of symptoms.

In this study, we used a computer model to assess the
effectiveness of seven possible leprosy control activities.
Our results showed that the decline in incidence of leprosy
would slow down or halt with the introduction of a new
tuberculosis vaccine that is ineffective against leprosy.
However, this effect could be offset by the implementation
of effective tests for early diagnosis or the routine
administration of preventative drugs to contacts of
patients.

Modeling Leprosy Interventions
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was the current leprosy control program in the Bangladesh study

area, as described above. The other scenarios were modifications

of the baseline control program. These other six scenarios were: 1)

no contact tracing; 2) with a single chemoprophylactic dose of

rifampicin, which cured 50% of subclinical cases, for each

individual in contact with a leprosy patient [2]; 3) with diagnosis

of subclinical cases with a sensitivity of 70% [19] followed by

effective treatment; 4) with all newly born infants in the population

receiving a new (hypothetical) tuberculosis vaccine that is

ineffective against leprosy instead of BCG (no BCG); 5) with the

combination of no BCG and chemoprophylaxis; and 6) with the

combination of no BCG and early diagnosis with effective

treatment.

In our intervention scenarios, contact tracing, chemoprophy-

lactic treatment and early diagnosis were performed only on

household members. Contact tracing was repeated three times in

three consecutive years with a 10% probability of loss to follow-up

and a 90% of symptomatic cases being detected. Early diagnosis

was performed in the same schedule as the contact tracing with

three consecutive visits to the household. Chemoprophylactic

treatment was given only once after examination, in which 90% of

symptomatic cases will be detected.

The simulation of interventions was started based on the

quantification of 2003, because a detailed data set [16] was

available from the COLEP study conducted during that period.

The Bangladesh districts at the time when the COLEP study took

place can be seen as fairly representative for other areas in the

Indian subcontinent with regard to demography, socio-economic

condition, cultural tradition and the organization of the health

system, including the leprosy control program. The prevalence

rate of leprosy at the time was well above the WHO elimination

target of 1 per 10,000 population, which was also the case in many

areas in India around the year 2000.

Results

Table 1 shows the predicted new case detection rates at 25 years

after the initiation of the interventions. Under the baseline control

program, the different mechanisms that determined susceptibility

showed up to three-fold differences in the predicted number of

cases per 100,000 people. In Figure 1, the trends in the new case

detection rates over 50 years are shown for all seven interventions.

All susceptibility mechanisms give qualitatively comparable trends.

When the intervention scenarios were ordered after 50 years by

the amount of reduction in new case detection rates, the order was

as good as identical for all mechanisms; i.e. early diagnosis lowest;

then no BCG & early diagnosis; then chemoprophylaxis; then

baseline; then no BCG & chemoprophylaxis together with no

contact tracing; and finally no BCG had the highest new case

detection rate.

Both the cessation of contact tracing and the replacement of

BCG vaccine by a tuberculosis vaccine ineffective for leprosy (no

BCG) would have detrimental effects on the rate of decline in

leprosy (Figure 2). Twenty-five years after introduction of the

ineffective vaccine (no BCG), the new case detection of leprosy was

approximately 1.5 times higher than the baseline (Table 1). The

cessation of contact tracing was predicted to have a smaller

impact, with a marked drop in detection of new leprosy cases

during the first few years. This sudden drop was due to the

reduced number of examinations of people in contact with

patients; thus, these cases would not be detected until later,

through passive detection (self-reporting).

Both chemoprophylaxis and early diagnosis were predicted to

have substantial effects on the new case detection of leprosy

(Figure 2). With no BCG, chemoprophylaxis would partially

compensate for the predicted increase in new case detection rates.

Furthermore, early diagnosis was predicted to more than

compensate for the adverse effects of a leprosy-ineffective

tuberculosis vaccine, and reduce the rate of new case detection

compared to the baseline. The effects were more promising with

the ongoing presence of the BCG vaccine. Under those conditions,

at 25 years after the introduction of chemoprophylaxis, the new

case detection rate was predicted to be 25% lower than baseline

control. Moreover, with the introduction of early diagnosis, the

new case detection rate was predicted to halve the baseline

incidence after 25 years (Table 1).

Early diagnosis of infection allows the detection of subclinical

cases, of which part would be detected later or never at all. These

subclinical cases are added to the number of detected cases. This is

seen in the results of this intervention. The introduction of early

diagnosis would increase the total number of detected cases in the

first 18 years, simply because of the detection of previously

undetectable subclinical cases. Over time however, the total

number of new cases (subclinical and clinical) would finally drop

below the number detected in the baseline control program

(Figure 3). In Figure 3, we show that the new cases detected under

the chemoprophylaxis intervention strategy drop immediately

below the level of the baseline control program. The additional

effect of chemoprophylaxis is that additional new infections are

prevented on top of the cure of subclinical infections. These

additional prevented infections are due to a shorter infectious

period of the cured subclinical infections. To illustrate this effect

we show in Figure 3 the clinical and the subclinical cases that were

cured by the chemoprophylactic intervention. During the first 10

years, this total number of newly detected cases plus cured cases is

equal to the number of newly detected cases under the baseline

control program, but afterwards the number of cases plus cured

subclinical cases in the chemoprophylaxis intervention group

drops under the baseline control program, indicating the

prevention of new infections.

Discussion

This study used a microsimulation model to compare the future

outcomes of different leprosy intervention programs. The baseline

program consists of passive case detection, treatment with MDT,

contact tracing, and infant BCG vaccination. The predicted rate

of decline in new case detection depends on the intervention

scenario chosen over the next 50 years. Early diagnosis and/or

chemoprophylaxis added to the baseline program can result in a

considerable reduction in the new case detection rate. Further-

more, these interventions were predicted to compensate for the

adverse effect of replacing BCG by a leprosy-ineffective tubercu-

losis vaccine.

Our microsimulation modeling approach was able to capture

individual (stochastic) processes. Complex infection dynamics

could thus be simulated on an individual basis. Aggregating the

model outcomes enabled the analysis of trends at the population

level. The quantification of the model was based on an area,

Nilphamari and Rangpur districts in Bangladesh, where leprosy is

highly endemic and which has a well-organized control program

[10]. The chemoprophylaxis intervention parameters were based

on the COLEP trial conducted in this population [10]. Because of

the COLEP study, a large amount of very detailed information

was available for this population directly prior to the trial that

started in 2003 [11]. We did not use data after 2003, because the

impact of the chemoprophylactic intervention (a randomised

controlled trial) is difficult if not impossible to mimic in our model.

Modeling Leprosy Interventions
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Table 1. Predicted new case detection rates (per 100,000) at 25 years after the introduction of the indicated intervention scenario
for six mechanisms of leprosy susceptibility as described in [9].

Intervention Mechanism determining susceptibilty

Random Household Dominant Recessive
Household &
dominant

Household &
recessive

Baseline control 3.4 4.0 10.4 8.2 5.6 4.6

No BCG 4.6 5.5 15.0 11.9 7.6 6.4

No contact tracing 3.8 4.1 10.5 8.5 5.5 4.8

Chemoprophylaxis 2.8 3.2 6.9 5.9 4.1 3.4

Early diagnosis 1.1 2.1 2.7 2.6 2.1 2.0

No BCG & chemoprophylaxis 3.6 4.0 10.5 8.5 5.9 5.1

No BCG & early diagnosis 1.2 2.5 3.7 3.7 2.9 2.8

The results are average of 100 runs of the simulation model.
doi:10.1371/journal.pntd.0001330.t001

Figure 1. Predicted decline of the new case detection rate with seven intervention scenarios and six mechanisms of leprosy
susceptiblity since start of intervention strategy. The baseline program (black line) included passive detection, multidrug therapy, contact
tracing, and an infant leprosy-preventative BCG vaccination given at the population level. The other six intervention strategies included the baseline
program and, introduction of a new tuberculosis vaccine ineffective against leprosy replacing BCG (red); no tracing of household contacts (orange); a
single chemoprophylactic dose of rifampicin that cured 50% of subclinically infected contacts (yellow); early diagnosis of 70% of subclinically infected
contacts in each of 3 consecutive annual examinations (green); chemoprophylaxis plus introduction of a tuberculosis vaccine ineffective against
leprosy (blue); and detection of subclinically infected contacts plus introduction of a tuberculosis vaccine ineffective against le-pro-sy (purple). Results
are the average of 100 runs of the simulation model for each scenario and susceptibilty mechanism.
doi:10.1371/journal.pntd.0001330.g001

Modeling Leprosy Interventions
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The use of our microsimulation model is limited to interventions

on a household basis. A future challenge would be to extend the

modeling to interactions between households. This requires data

from molecular epidemiology studies, for which techniques only

recently have been developed and field tested [20,21]. Our objective

in this study was however to compare interventions that are most

Figure 2. Predicted new case detection rates for six intervention scenarios relative to the baseline control program. For each
intervention scenario simulations with different mechanisms of susceptibility to leprosy, as defined in our previous paper [9] are performed. For each
intervention scenario, the two dotted lines show the smallest and largest deviations from the baseline control program. The solid line shows the
median of all susceptibility mechanisms. Results are the average of 100 runs of the simulation model.
doi:10.1371/journal.pntd.0001330.g002

Modeling Leprosy Interventions
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feasible, namely targeting household members. The main uncertainty

in our modeling is the mechanism that causes susceptibility to leprosy.

The transmission parameters as well as future trends differ greatly

between these mechanisms [9]. Other parameters will have less

influence on the outcomes than these large differences due to these

mechanisms. Our conclusions remain the same for all mechanisms.

The absence of data on the households in the years prior to the

COLEP trial makes a quantitative validation of the results

impossible. Therefore, the conclusions of our study are only

qualitative, i.e. ranking of the intervention strategies. However,

these can be used to prioritize implementation and fundamental

research into chemoprophylactic treatment and early diagnosis.

Figure 3. Cumulative New cases detected of leprosy per person-year since start of the interventions. Results are the average of 100 runs
of the simulation model.
doi:10.1371/journal.pntd.0001330.g003

Modeling Leprosy Interventions
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We are confident that our results will apply to Bangladesh and

many other regions in the world.

The current leprosy control program in the Nilphamari and

Rangpur districts of Bang-la-desh is more extensive than usual.

The primary advantage of this program is the active tracing of

individuals that had been in contact with newly diagnosed leprosy

patients. Contact tracing is not common in leprosy control

programs. Our modelling showed that contact tracing and

subsequent treatment of newly found patients could, in itself,

contribute to a reduction in the transmission of M. leprae in the

population. Nevertheless, we argue that the qualitative results, i.e.

the ranking of the intervention strategies, will not differ when

implemented in a currrently less intensive control program.

The primary concern of this study was to estimate the relative,

not the absolute, impact of the various interventions and take into

account alternative hypotheses for mechanisms of susceptibility to

leprosy. We compared the results based on different hypothesized

mechanisms for susceptibility, because each of these mechanisms

could be valid [9]. The quantitative results were sensitive to the

mechanism chosen. Nevertheless, when the different interventions

were ordered by the magnitude of effect, that order was identical

for all the mechanisms of susceptibility. Thus, the qualitative

results were robust, and suggested this order of effectiveness for the

different interventions can be generalized.

The new interventions chemoprophylaxis and early diagnosis

(which necessarily include contact tracing) were predicted to have

a clear added impact for leprosy control. We assumed that the

effect of chemoprophylaxis with a single dose rifampicin (SDR)

could prevent 50% of subclinical infections to develop leprosy.

This assumption was based on the outcome of the COLEP trial

and represented the overall effect of SDR in the contacts [2]. In

the trial, this effect of SDR was a 56% reduction in new leprosy

cases after two years for all contacts. The effect of SDR, however,

varied among the different types of contacts, with a 49%

prevention in neighbors, 54% prevention in household contacts,

and 76% prevention in social contacts [2]. Thus, the choice of

contacts to be included in contact tracing and subsequent

chemoprophylactic treatment is very important. Ideally, it should

go beyond the immediate household of the index patient. The

choice of the contact ‘ring’ will likely depend on the acceptance of

contacts to be involved and the feasibility of running an extended

program. Moreover, rather than providing chemoprophylaxis to

all, one would prefer to first test for a subclinical infection and then

treat individuals appropriately.

Our modeling showed that identification and treatment of

subclinical infections among household contacts had the largest

effect in reducing transmission of M. leprae in the population. Part

of the better performance of early diagnosis compared to

chemoprophylaxis was that the early diagnosis strategy comprised

three consecutive annual tests with 70% sensitivity, compared to a

single round of rifampicin with a cure rate of 50%. Thus, more

subclinical cases could be cured after the early diagnosis than with

chemoprophylaxis. Meima et al. [4] showed that a short detection

delay is key to the success of the current MDT-based leprosy

control strategy. Detection of subclinical cases would be a major

improvement because it provides an even shorter detection delay.

As shown in Figure 3, the detection of subclinical cases also

reduced transmission, and the total number of new cases detected

(clinical and subclinical) was predicted to eventually drop below

the number of new cases detected under the baseline control

program.

Our study shows that BCG may have an important effect on the

reduction of the case detection of leprosy. Previously, Meima et al.

[4] showed, just as in this study, that BCG vaccination may have a

large impact on the expected incidence of leprosy in the

population. The current knowledge about the effect of the BCG

vaccination on leprosy strongly supports maintaining the current

BCG vaccination practice [5,22]. Alternatively, a leprosy-specific

compound should be added to an improved tuberculosis vaccine in

leprosy endemic areas.

Conclusions
We showed that the leprosy incidence would be reduced

substantially by good BCG vaccine coverage and the combined

strategies of contact tracing, early diagnosis, and treatment of

infection and/or chemoprophylaxis among household contacts.

To effectively interrupt the transmission of M. leprae, it is crucial to

continue developing immuno- and chemoprophylaxis strategies

and an effective test for diagnosing subclinical infections.
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