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Clinical assessments often use complex picture description tasks to elicit natural speech

patterns and magnify changes occurring in brain regions implicated in Alzheimer’s

disease and dementia. As The Cookie Theft picture description task is used in the

largest Alzheimer’s disease and dementia cohort studies available, we aimed to create

algorithms that could characterize the visual narrative path a participant takes in

describing what is happening in this image. We proposed spatio-semantic graphs,

models based on graph theory that transform the participants’ narratives into graphs

that retain semantic order and encode the visuospatial information between content units

in the image. The resulting graphs differ between Cognitively Impaired and Unimpaired

participants in several important ways. Cognitively Impaired participants consistently

scored higher on features that are heavily associated with symptoms of cognitive decline,

including repetition, evidence of short-term memory lapses, and generally disorganized

narrative descriptions, while Cognitively Unimpaired participants produced more efficient

narrative paths. These results provide evidence that spatio-semantic graph analysis of

these tasks can generate important insights into a participant’s cognitive performance

that cannot be generated from semantic analysis alone.

Keywords: Alzheimer’s disease, dementia, speech biomarkers, cognition, semantic analysis, cookie theft, graph

theory

INTRODUCTION

Asking patients to describe a complex picture is a mainstay of clinical assessment tasks in
aphasia, and increasingly so in the context of cognitive decline and dementia (1). This task is
straight-forward to elicit, and its successful completion requires the ability to scan the scene,
retrieve and sequence the relevant semantic symbols, and draw inferences about relationships
and causation among the objects in the scene (2). The complexity of the cognitive-linguistic
processing required for an accurate and comprehensive description makes the task an ideal
candidate to magnify early and mild changes associated with medial temporal lobe and frontal
lobe pathology (3).
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The Cookie Theft picture description task from the Boston
Diagnostic Aphasia Examination (4) is the most commonly
elicited task, both clinically and in research and across a broad
range of cognitive-linguistic conditions (2). The black and white
line drawing portrays a kitchen scene, in which a mother is
absentmindedly drying dishes at the sink while the running
water overflows onto the floor. Behind her is her son, who
stands atop a wobbly stool stealing cookies from a cookie
jar for himself and for his sister, who holds out her hand
in anticipation. The curtained window above the sink opens
to a yard scene. Typically, transcripts of the spoken picture
descriptions are coded by hand by trained individuals to tag
parts of speech, content information units (CIUs) (content units,
semantic relevance), empty speech, repetitions, among others; as
well as acoustic measures extracted from speech recordings (1, 5–
7). These data have been used to detect preclinical changes in
cognitive-linguistics and differentiate among dementia etiologies
such as Alzheimer’s (AD), frontotemporal dementia (FTD),
dementia due to Parkinson’s disease (PD) and dementia with
Lewy bodies (DLB) (8–10).

While there is nothing particularly special about The Cookie
Theft picture itself—and indeed it has been criticized and even
revised for being outdated and culturally non-inclusive (11,
12)—the original picture from the BDAE enjoys the status
of having been used to elicit spontaneous speech data in
the largest Alzheimer’s disease and dementia cohort studies
to date (13–15). As such, these picture description data are
incomparable in their potential, in joint consideration with
other biomarkers and data, to provide for increasingly earlier
detection of pathological changes in AD and other dementias.
Preclinical detection is essential for the development of disease
altering interventions (16).

While the promise of cognitive-linguistic and acoustic metrics
in the analysis of picture descriptions is high, these approaches
leave important information on the table. In particular, they
underspecify the ways in which the patient navigates the visual
scene to “describe everything that is happening in the picture,”
per the task instructions. Describing a picture has been shown
to invoke the expected cortical pathways underlying semantic
retrieval and production for the objects in the picture (anterior
temporal lobe, inferior frontal gyrus, and sensorimotor cortices),
but also to pathways linking aspects of the parietal lobe with
posterior cortical circuits activated for visual processing of a
picture (3). There is a growing body of evidence that the parietal
lobe is among the earliest sites for neurodegenerative AD change;
changes in visuospatial abilities may differentiate AD from other
dementias (17, 18).

In the current study, we sought to develop algorithms that
would allow us to characterize the ways in which participants
navigate the visual scene using the large set of The Cookie
Theft transcripts in the combined Wisconsin Registry for
Alzheimer’s Prevention (WRAP) + DementiaBank databases.
We conjectured that by tracking the spatial movement paths
from semantic object to semantic object, the results would reflect
a culmination of visuospatial, attentional, and organizational
capabilities. To that end, we apply graph theory and introduce
the concept of spatio-semantic graphs—mathematical models that

encode the sequential listing of content units in a transcript
and their relative spatial position in The Cookie Theft image.
Previous studies have shown the value of analyzing the lexical
sequence via visual analyses and automatic speech recognition on
recorded Cookie Theft descriptions to classify participants as AD
or as healthy (19), and via natural language processing of dream
reports to objectively differentiate normal and dysfunctional
flows of thought (20). Along this line of research, we introduce
this new graph-based representation with the aim of generating
mechanistic and interpretable features capable of sensitively
capturing early and emerging cognitive decline. We explore the
distribution of these features on existing large-scale corpora to
determine if they differ between clinical and control groups in
ways that match performance expectations. By restricting our
analysis to the transcripts alone to generate these graphs, we
unlock additional value from the large amount of data already
available to researchers in existing corpora.

MATERIALS AND METHODS

Data
The data for this study accessed 1,058 audio recordings
from the WRAP database and 291 audio recordings from
the DementiaBank (DB) Pitt Corpus database. WRAP is a
longitudinal, observational cohort of individuals in midlife,
enriched for parental history of AD. WRAP began in 2001;
participants attend study visits every 2 years in which they
provide detailed health and lifestyle data, as well as undergo
comprehensive neuropsychological testing [see (14) for complete
description of WRAP]. Speech sample collection including
Cookie Theft picture descriptions began in 2012. The Pitt Corpus
from DementiaBank (https://dementia.talkbank.org) consists of
audio-recorded data collected as part of a larger protocol
administered by the Alzheimer and Related Dementias Study
at the University of Pittsburgh School of Medicine (13). All
data used in this study were transcripts from the first available
audio recordings of The Cookie Theft picture description
task only. Control data from DB (n = 99 participants)
were combined with Cognitively Unimpaired-Stable participant
data from WRAP [n = 836; (21)]; participants with AD
from DB (n = 193) were combined with MCI participants
from WRAP (n = 26). The combined dataset includes four
possible diagnoses: Cognitively Unimpaired-Stable (CUS) (935),
Cognitively Unimpaired-Declining (CUD) (181 from WRAP),
Impaired but not MCI (14 from WRAP), and MCI/Dementia
(219). Further participant characteristics, including average age,
years of education, and PACC3 scores are included in the
Supplementary Material.

Content-information-units (CIUs) used in this study were
adapted from Croisile et al. (22), further defined by our group
in Mueller et al. (6), and include a total of 23 Subjects, Objects,
and Actions/Facts (see Supplementary Material).

Constructing Spatio-Semantic Graphs
From Transcripts
All participant transcripts were processed in Python. The 23 CIUs
were manually assigned (x, y) coordinate pairs on a pixel scale
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FIGURE 1 | (A) The image used in the cookie theft picture description task overlaid with the CIUs at their approximate assigned coordinate locations. Dotted lines

indicate the quadrant splits in the image. (B) Definitions for the CIU labels. (C) Examples of a Healthy Control participant’s and (D) an AD participant’s descriptions

transformed into spatio-semantic graphs. Nodes are labeled the same as in panel A and are colored according to quadrants in which nodes fall. Starting and ending

nodes are labeled to the right of the corresponding nodes for both participants. While both participants reach the same number of unique nodes mentioned, the AD

participant’s description has inefficient pathing with several repeats, cross quadrant transitions, and a larger total path distance traveled [(4), Used with Permission].

on a picture of The Cookie Theft (the copy used was 546 ×

290 pixels). Figures 1A,B show a schematic of the approximate
relative positions (and the descriptions) of the assigned CIUs
overlaid on The Cookie Theft image.

Transcripts from the WRAP and DB databases already have
CIUs manually labeled, and these labels and their order of
occurrence in the transcript were extracted and automatically
encoded with the corresponding coordinate pairs. Next, the
NetworkX package was used to transform the CIUs with
their corresponding features, including coordinate pairs, and
orderings into a set of nodes and edges that can be analyzed
and visualized as a graph (23). The graph nodes represent the
23 CIUs in the image and the graph edges encode the order in
which CIUs were mentioned in the transcript by the participant
and the relative spatial location between two connected CIUs
(via a Euclidean distance between two nodes connected by an
edge). Additionally, each CIU was attributed a quadrant of the
picture. Quadrant information was also processed in NetworkX

to analyze and visualize participants’ transitions between and
within quadrants of the picture. In this representation, the nodes
in the graph represent the quadrants of the image and the
edges represent how the participant is moving across different
quadrants as they describe the picture. Examples of transformed
participant transcripts as graphs are also shown in Figures 1C,D.

Extracting Features From Spatio-Semantic
Graphs
After transforming the participant transcripts into nodes and
edges, several features from the graph were calculated. These
features were extracted from the graph representation and the
relative spatial position of the CIUs in the image. Additionally,
metrics based on quadrant transitions were calculated from
participants’ transitions within and between these collective
nodes. The features, their calculation, and their interpretation are
described in Table 1.
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TABLE 1 | Feature descriptions.

Features Calculation Interpretation

Avg. X Average x position of all mentioned nodes The average horizontal position across all CIUs mentioned by the

participants. (0,0) is the top left corner of the cookie theft image. Repeated

CIUs are counted.

St. Dev. X Standard deviation of x positions of all

mentioned nodes

This reflects how widely spread the participants’ mentioned CIUs are across

the horizontal space. A smaller standard deviation is a less disperse

narrative, and vice versa.

Avg. Y Average y position of all mentioned nodes The average vertical position across all CIUs mentioned by the participants.

(0,0) is the top left corner of the cookie theft image. Repeated CIUs are

counted.

St. Dev. Y Standard deviation of y positions of all

mentioned nodes

This reflects how widely spread the participants’ mentioned CIUs are across

the vertical space. A smaller standard deviation is a less disperse narrative,

and vice versa.

Total path distance Sum of all edge lengths The average total distance in pixels covered by each participant’s path

between all mentioned CIUs. When normalizing for unique nodes, a higher

total path distance may indicate a less efficient path.

Total path/unique nodes The total path distance divided by the number

of unique nodes

The average distance between any two mentioned CIUs across all

participants’ narratives.

Self cycles The number of consecutive occurrences of a

node in a transcript

The number of times participants mention the same CIU consecutively. A

higher number of self cycles may indicate fixation or repetition.

Cycles All repeated mentions of nodes, consecutive

and nonconsecutive

The number of times participants repeat a CIU, including consecutively (self

cycles) and non-consecutively. A higher number of cycles may indicate

short term memory lapses or fixation.

Nodes The number of nodes mentioned, including

repeats

The number of times participants mention the CIUs in their narrative,

including repeat mentions.

Unique nodes Total number of nodes mentioned, ignoring

repeats

How many of the 23 CIUs the participants mentioned.

Self cycles (quadrants) The total number of edges connecting nodes

within the same quadrant

The number of times a participant moves between two CIUs within the

same quadrant.

Cross ratio (quadrants) The number of edges connecting nodes in

different quadrants/number of edges

connecting nodes in the same quadrant [self

cycles (quadrants)]

The number of times participants move between two CIUs in two different

quadrants divided by the number of times participants move between two

CIUs in the same quadrant. A higher ratio may indicate a more sporadic or

unfocused narrative.

All calculated and analyzed features are listed in this table, along with their method of calculation and interpretations in the context of cognitive performance.

Statistical Analysis
For the statistical analysis, two sets of ANCOVA models were
used to determine whether there exist group-level differences
in the features in Table 1 between individuals who are
cognitively impaired and cognitively unimpaired and whether
these differences occur at early stages of cognitive impairment.

For the first ANCOVA, the CUS and CUD diagnosis
groups were combined into the Cognitively Unimpaired level
(n = 1,116) of the diagnosis independent variable, and the
Impaired but not MCI and MCI/Dementia diagnosis groups
were combined into the Cognitively Impaired level (n = 233).
For the second set, CUS and CUD were used as the two
levels of the diagnosis independent variable while Impaired
but not MCI and MCI/Dementia groups were omitted. The
purpose of the second analysis was to determine whether the
spatio-semantic graph features capture pre-clinical changes. Each
individual feature was used in its own ANCOVA model as the
dependent variable, with demographic data (Age, Education, and
Gender) as well as the Unique Nodes variable as covariates.
We adjust for Unique Nodes, which is a proxy for the
number of content units in the transcript, as it was expected

to vary between the Cognitively Unimpaired and Cognitively
Impaired groups. To verify this, an initial one-way ANCOVA
was performed comparing how these two participant groups
differed in the number of Unique Nodes mentioned, while
controlling for age, education, and gender. The data for all
ANCOVA models were checked for homogeneity of variance
(or homoscedasticity) using Levene’s test. A significant result
indicates that the null hypothesis that the diagnosis groups
have equal population variances should be rejected. This
violation of one of the assumptions to run an ANCOVA
can lead to a decrease in the power of the test (24). In
the following analyses, our aim is to evaluate whether the
remaining features differ in distribution when compared across
the diagnosis groups.

RESULTS

The sections that follow list the results of the ANCOVAs for the
two group comparisons of interest: Cognitively Unimpaired vs.
Cognitively Impaired and CUS vs. CUD.
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TABLE 2 | ANCOVA models for features against two binary comparisons.

Features F p Marginal mean (95% CI):

cognitively unimpaired (n = 1,116)

Marginal mean (95% CI):

cognitively impaired (n = 233)

Avg. x F (1,1288) = 8.8480 0.0030 276 (274, 278) 269 (264, 273)

St. Dev. x F (1,1284) = 10.8191 0.0010 128 (128, 129) 131 (130, 133)

Avg. y F (1,1924) = 1.2897 0.2563 173 (172, 174) 174 (172, 176)

St. Dev. y F (1,1286) = 0.0420 0.8376 70.3 (69.8, 70.8) 70.4 (69.3, 71.5)

Total path distance F (1,1303) = 29.3321 <0.001 1,753 (1,725, 1,782) 1,947 (1,884, 2,010)

Total path/unique nodes F (1,1306) = 52.9473 <0.001 135 (133, 138) 158 (152, 163)

Self cycles F (1,1289) = 1.6172 0.2037 0.476 (0.429, 0.523) 0.550 (0.448, 0.653)

Cycles F (1,1297) = 33.8516 <0.001 3.06 (2.90, 3.22) 4.23 (3.88, 4.59)

Nodes F (1,1289) = 30.7300 <0.001 15.6 (15.4, 15.8) 16.8 (16.4, 17.2)

Self cycles (Quadrants) F (1,1299) = 0.8310 0.3621 6.74 (6.60, 6.87) 6.89 (6.59, 7.19)

Cross ratio (Quadrants) F (1,1294) = 12.1103 <0.001 1.31 (1.26, 1.36) 1.52 (1.41, 1.62)

Unique nodes* F (1,1294) = 74.7424 <0.001 13.1 (12.9, 13.3) 11 (10.5, 11.4)

Features F p Marginal mean (95% CI):

cognitively unimpaired stable

(n = 935)

Marginal mean (95% CI):

cognitively unimpaired

declining (n = 181)

Avg. x F (1,1063) = 0.0506 0.8220 276 (274, 278) 277 (272, 281)

St. Dev. x F (1,1061) = 0.4390 0.5078 129 (128, 130) 130 (128, 131)

Avg. y F (1,1066) = 0.0856 0.7699 172 (171, 173) 172 (170, 174)

St. Dev. y F (1,1062) = 2.8988 0.0889 70.3 (69.8, 70.8) 71.3 (70.3, 72.4)

Total path distance F (1,1077) = 0.9842 0.3214 1,797 (1,767, 1,827) 1,832 (1,768, 1,897)

Total path/unique nodes F (1,1084) = 3.8398 0.0503 136 (133, 138) 142 (136, 147)

Self cycles F (1,1062) = 0.5060 0.4770 0.495 (0.444, 0.546) 0.452 (0.343, 0.561)

Cycles F (1,1068) = 0.1707 0.6796 3.19 (3.02, 3.35) 3.10 (2.74, 3.47)

Nodes F (1,1065) = 0.1265 0.7222 16.1 (15.9, 16.3) 16.0 (15.6, 16.4)

Self cycles (Quadrants) F (1,1073) = 0.0071 0.9328 6.97 (6.82, 7.11) 6.95 (6.63, 7.27)

Cross ratio (Quadrants) F (1,1072) = 0.0896 0.7647 1.32 (1.27, 1.37) 1.34 (1.23, 1.44)

Unique nodes* F (1,1065) = 2.3874 0.1226 13.2 (13.0, 13.4) 12.8 (12.4, 13.3)

The results from the two sets of ANCOVAs are displayed. The top section reports the ANCOVAs comparing the two collective diagnosis groups, Cognitive Unimpaired (consisting of

CUS and CUD) and Cognitive Impaired (Impaired but not MCI, and MCI/Dementia). The bottom section reports ANCOVAs comparing the two Cognitive Unimpaired diagnoses, CUS

and CUD. Each feature is the dependent variable in its corresponding model and demographic data (Age, Education, and Gender) as well as Unique Nodes are covariates. All features

with dark yellow highlights had p values under 0.05 while those with light yellow highlights had p values close to 0.05.

*These models were performed with Unique Nodes as the dependent variable instead of as a covariate with all other covariates remaining, and were performed to verify that Unique

Nodes was a useful metric to adjust for in all other models.

Cognitively Unimpaired vs. Cognitively
Impaired
The top section of Table 2 contains the results for the ANCOVAs
performed with the Cognitively Unimpaired and Cognitively
Impaired groups as levels of the independent variable diagnosis,
and Figure 2 contains plots depicting the Marginal Means of
each ANCOVA with a significant result. There was a significant
difference in the mean number of Unique Nodes mentioned after
adjusting for covariates and the model passed Levene’s test of
homoscedasticity, so Unique Nodes was also used as a covariate
for all other models.

Six dependent variables achieved significance at p <

0.05: Average x and Standard Deviation of x, Total Path
Distance/Unique Nodes, Cross Ratio (quadrants), Cycles, Total
Path Distance. Levene’s test revealed unequal variances for all but
the Average x feature.

Comparing the marginal means for these features showed that
the Cognitively Impaired group had a lower Average x position
of mentioned nodes (more left aligned) and higher Standard
Deviation of x compared to the Cognitively Unimpaired group,
as well as a higher Total Path Distance/Unique Nodes, Total
Path Distance, Cross Ratio (quadrants), Number of Cycles, and
Number of nodes mentioned.

Cognitively Unimpaired-Stable vs.
Cognitively Unimpaired-Declining
The bottom section of Table 2 contains the results for the
ANCOVAs performed with the Cognitively Unimpaired-Stable
and Cognitively Unimpaired-Declining diagnoses as levels of
the independent variable diagnosis. As with the first set of
models, Unique Nodes was used as a dependent variable in an
ANCOVA to verify if there was a significant difference. There
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FIGURE 2 | Marginal Means Plots displaying the marginal means for all features with significant results from both sets of ANCOVAs (A–G) Unimpaired vs. Impaired,

and (H) CUS vs. CUD. Marginal means are estimated using model parameters, holding Age, Education, Gender, and Unique Nodes constant.
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was no significant difference found, however we still chose to
use Unique Nodes as a covariate for the other models run
in this group comparison to maintain consistency with the
previous set of models in controlling for this variable. While
no features achieved p-values less than the threshold value of
0.05, the Total Path Distance/Unique Nodes feature had a p-
value close to this threshold value. The marginal means show
that the Cognitively Unimpaired-Declining group had a higher
Total Path Distance/Unique Nodes. Additionally, Levene’s test
failed to reject the null hypothesis that the variances are equal
for this feature.

DISCUSSION

The ability to identify pre-clinical cognitive changes is essential
to the development of interventions that halt or slow irreversible
neurodegeneration. The Cookie Theft picture description task
has been widely studied for its ability to elicit symptoms
associated with early dementia and Alzheimer’s disease (6, 25).
In this investigation, we developed an approach to extract novel
additional information from transcriptions of The Cookie Theft
picture descriptions using graph theory and spatio-semantic
graphs. Ours is not the first study to characterize elicited narrative
paths on The Cookie Theft description task. Mirheidari et al.
used features extracted from speech acoustics and automated
transcripts, which characterized the timing on and between areas
of interest in the picture, to train an automated classifier to label
participants as AD or Healthy Control (19). In contrast, our
contribution is a new representation generated from transcripts
only, resulting in features that capture the visuospatial path
the participant takes as they navigate the content units of the
picture without accounting for timing. Further, we individually
validate the features on a large-scale dataset that contains a
number of subgroups of participants with varying degrees of
cognitive status and progression profiles. This allows us to verify
that performance patterns coincide with expectations informed
by the extant literature on cognition and dementia. A natural
extension of our work is to include the timing information as per
Mirheidari et al. (19). Other notable studies process participant
transcripts from the Cookie Theft Task using natural language
processing methodologies to train classifiers to similar ends
as Mirheidari et al. (26, 27). These studies use co-occurrence
and semantic similarity representations gleaned from transcripts,
with content information units and other linguistic features to
improve classification of patient transcripts as healthy/control or
MCI/AD. While our study encodes CIUs (via the graph nodes)
and their co-occurrence (via the graph edges), we additionally
visualize the transcripts and CIUs in the two-dimensional space
relative to the Cookie Theft picture itself.

The first analysis revealed differences between the cognitively
impaired and cognitively unimpaired groups that may reflect
a combination of deficits in visuospatial, attentional, and
organizational abilities. With regard to spatial orientation, the
Cognitively Impaired group described more of the left side of the
picture than the right, in contrast to the Cognitively Unimpaired
group (Average x). This is notable because the right side actually
contains more target CIUs than the left, but its full description

requires more abstract inferences (e.g., the mom doesn’t notice
the children) than does the left side. This finding is corroborated
by a study also using data from the DementiaBank database,
in which many of the spatial neglect features indicated that the
participants with dementia were less perceptive on the right side
of the image (28). The Cognitively Impaired group also showed
more shifts in attention between nodes on the left and right sides
of the picture (higher Standard Deviation of x). This attention
shifting by the Cognitively Impaired group was also evidenced
by the Cross Ratio feature, with a higher number of crossings
between quadrants than staying within a quadrant during their
description, and more sporadic internode transitions and node
repeats than the Cognitively Unimpaired group.

A number of other features seemed to be indicative of poor
organization and perhaps memory deficits in the Cognitively
Impaired group relative to Cognitively Unimpaired. The
Cognitively Impaired group consistently had longer descriptions
overall (Total Path Distance), and longer descriptions to reach
a similar number of CIUs as the Cognitively Unimpaired
group (Total Path Distance/Unique Nodes). This finding aligns
with prior work showing reduced density of information and
increased use of non-specific words in cognitive decline (6, 29,
30). Similarly, the Cognitively Impaired group’s descriptions
tended to repeat nodes more frequently, a finding that The
Cookie Theft task has revealed before (31). Taken together,
these results portray Cognitively Impaired picture descriptions
as less organized and less efficiently constructed than those
of the Cognitively Unimpaired group. This is in keeping with
prior literature.

The second analysis attempted to find features that
distinguished performance between the two Cognitively
Unimpaired groups, CUS and CUD. As both groups are
characterized by normal cognition, any differences that may
implicate cognitive decline would be expected to be subtle
and difficult to detect. We found that one feature, Total Path
Distance/Unique Nodes, approached statistical significance (p
= 0.0503), with marginal means of 136 for CUS and 142 for
CUD. It is of note that this trend is similar to that observed
in the comparison between the Cognitively Unimpaired and
Cognitively Impaired groups. This overall pattern suggests that
spatio-semantic graphs be further explored in preclinical and
mild populations for evidence of early cognitive changes. It is
likely that larger sample sizes are required to adequately assess
the value of these features in these early clinical populations.

It is important to note the limitations in this study. Data
collection for this study involves some labor-intensive steps. In
this implementation, listeners have manually identified CIUs in
the transcripts of spoken participant picture descriptions. Future
work will focus on automated extensions utilizing automatic
speech recognition algorithms to reduce this workload. Next,
population variance is quite heterogeneous between the diagnosis
groups across the two sets of ANCOVAs. Only one of the
features in the Cognitively Impaired vs. Cognitively Unimpaired
models (with the Unique Nodes covariate included) that reached
significance, Average x, passed Levene’s test of homoscedasticity.
As the other features violated this assumption of an ANCOVA,
the probability of significance of those models may be
underestimated (24). The large variance in the Cognitively
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Impaired diagnosis group may stem from a wider array of causes
of clinical impairment, which may be difficult to control for. To
resolve this problem in a future study, it is advisable to balance
the group sizes by increasing the sample size of the clinical
group, as violations of the assumption of homoscedasticity are
less important with equal group sizes. Also, because the primary
purpose of this study was to evaluate the novel approach and
validate its utility for detecting cognitive impairment, there is
no evaluation of the marginal value of these features above and
beyond other language-based features used in machine learning
models of cognitive impairment based on speech (32). Such
an evaluation in follow-on work will determine the extent to
which these features make unique contributions to the models
and improve separability between clinical groups. Finally, we
did not identify statistically significant differences between CUS
and CUD participants using features derived from the Spatio-
Semantic Graphs. We posit that this reflects reduced effect
size when detecting very early cognitive decline. However, as
many of the features are found to be sensitive to differences
in later stages of decline and the group trends approaching
significance in Table 2 are in the correct direction, spatio-
semantic graphs should be further analyzed in larger scale clinical
studies involving participants with very early cognitive decline.
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