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Abstract

Traditionally the gene expression pathway has been regarded as being comprised of independent steps, from RNA
transcription to protein translation. To date there is increasing evidence of coupling between the different processes of the
pathway, specifically between transcription and splicing. To study the interplay between these processes we derived a
transcription-splicing integrated network. The nodes of the network included experimentally verified human proteins
belonging to three groups of regulators: transcription factors, splicing factors and kinases. The nodes were wired by
instances of predicted transcriptional and alternative splicing regulation. Analysis of the network indicated a pervasive
cross-regulation among the nodes; specifically, splicing factors are significantly more connected by alternative splicing
regulatory edges relative to the two other subgroups, while transcription factors are more extensively controlled by
transcriptional regulation. Furthermore, we found that splicing factors are the most regulated of the three regulatory groups
and are subject to extensive combinatorial control by alternative splicing and transcriptional regulation. Consistent with the
network results, our bioinformatics analyses showed that the subgroup of kinases have the highest density of predicted
phosphorylation sites. Overall, our systematic study reveals that an organizing principle in the logic of integrated networks
favor the regulation of regulatory proteins by the specific regulation they conduct. Based on these results, we propose a
new regulatory paradigm postulating that gene expression regulation of the master regulators in the cell is predominantly
achieved by cross-regulation.
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Introduction

The operation of a functioning living cell depends on its ability

to tightly regulate its different pathways. Most of this regulation is

done by proteins that control the function of many other genes (or

themselves in the case of autoregulation). Transcription factors

(TFs) are the most abundant regulators in eukaryotic cells,

controlling transcription of genes and playing a key role in many

important cell functions [1]. Transcriptional regulation is usually a

combinatorial effect of multiple TFs binding to regulatory

elements in promoter or enhancer regions [2]. Splicing regulation

is coordinated mainly by splicing factors (SFs) that bind to short

regulatory motifs on the pre-mRNA, called splicing factor binding

sites (SFBS), usually located in close proximity to the splice sites

[3].

Over the past decade, there has been growing evidence of

coupling and interconnectivity between the different steps of the

gene expression pathway, specifically between RNA transcription

and RNA processing [4–6]. The physical coupling between the

different steps is known to be mediated by the CTD (C-Terminal

Domain) of the largest subunit of RNA polymerase II that is

recruited to the transcription complex by specific TFs [7]. This

coupling is required both for efficient gene expression in higher

eukaryotes and for enabling rapid response to diverse signaling

events in the cell [8]. Alternative splicing (AS) events are known to

play an important role in modulating the activity of TFs [9]. In a

recent study, it was shown that an AS event within a TF mRNA

encoding a DNA-binding protein alters the transcription regula-

tory network controlling the transition between pluripotency and

differentiation in embryonic stem cells [10]. In another study,

changes in AS patterns of TFs triggered by the activation of signal

transduction pathways were shown to play an important role in

development. In the latter study, the authors found that 40% of

the genes that underwent AS changes also showed changes in

transcription, supporting extensive cross-talk between the pro-

cesses [11]. While the gene expression pathway is largely

regulated by TFs and SFs, their activity is modulated by, among

other things, post-translational modifications (PTMs). PTMs such

as phosphorylation can switch the function of TFs, as was recently

shown for CEBPB [12]. PTMs have also been shown to influence

splice site selection, changing the spliceosome composition and

changing the sub-cellular localization of regulatory proteins [13].

Since AS can remove or insert short fragments in a protein, it may

also alter the phosphorylation pattern of the protein, thus
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suggesting another important role for AS in modulating the gene

expression pathway.

Most recent knowledge from high-throughput experiments on

transcriptional and splicing regulation provides a pair-wise

relationship between a specific regulatory factor and its targets

[14–16]. However, the complex interaction between the genes and

the environment governing the cellular response cannot be

understood at the level of individual interactions, but could rather

emerge through the intricate interplay between the different

regulators and their target genes. Understanding the complex

interactions between the diverse regulators in the cell is crucial for

unraveling the gene regulatory network in multicellular organisms,

such as humans, as well as for helping to reveal the causes that

render disease states. In recent years, many regulatory networks

have been reconstructed to study this complex interplay between

gene expression regulations. Most of the work in this direction has

focused on transcription regulation in single-cell organisms, such

as E. coli [17,18] and S. cerevisiae [19–22]. In addition, several

attempts have been made to integrate transcription networks into

other regulatory networks. This approach has revealed elements of

integration between a transcription regulatory network and

splicing regulatory networks during the meiotic gene expression

program in S. cerevisiae [23]. In a recent systematic study

integrating transcription and phosphorylation networks in differ-

ent species, the authors suggest a positive correlation between the

species’ complexity and the degree of cooperation in the network

[24]. The complexity of the human regulatory network and a lack

of experimental data explain why only a few studies to date have

attempted to systematically explore regulatory networks in

humans. One such study is the TF-microRNA network [25]

based on predictions of transcription regulation and microRNA

target regulation. This study revealed a scale-free behavior in

which a small number of microRNA-TF pairs regulate large sets of

common targets.

In this study, we focus on an integrated network of transcrip-

tional and splicing regulation in humans. Our results show

extensive wiring of the regulatory genes, specifically by AS

regulation. Most strikingly, the network reveals that the subgroup

of SFs has significantly higher density of splicing inedges (predicted

alternative splicing regulatory interactions) compared to the

subgroup of TFs, while transcriptional regulation is much more

dense towards the TFs. Consistent with the network results, we

found that the subgroup of kinases has significantly higher density

of predicted phosphorylation sites relative to TFs and SFs. Taken

together, our results indicate that cross-regulation within func-

tional groups is significantly more prevalent than cross-talk

regulation between groups, supporting the hypothesis that these

functional groups are consistently under similar regulatory

constraints. This new regulatory paradigm may point to a more

general principle whereby a biological process is controlled

predominantly by the entities that compose it.

Results

Combining splicing and transcriptional regulation in an
integrated network

To study the interplay between transcriptional and splicing

regulation, we sought to concentrate on the main players in the

process – the transcription and splicing factors. As a first step, we

compiled a subset of experimentally verified transcription and

splicing factors belonging to diverse protein families. In addition,

we generated a non-redundant set of all human kinases [26].

Overall, the network was comprised of 257 nodes, of which 110

regulatory genes/proteins act as both regulators and targets in the

network (20 SFs, and 90 TFs) and 147 nodes representing kinases

acting as targets only. All of the nodes in the network were wired

by two types of regulatory edges representing transcriptional and

AS regulation. Full details regarding the network wiring is given in

the Materials and Methods section. Briefly, an edge from a SF to

any other factor was added if the gene coding to that factor had an

AS event and a human-mouse conserved binding motif of the SF

was found flanking the splicing event region (Figure 1A). To define

a conserved SFBS, we employed our recently developed SFmap

algorithm [27]. SFmap implements the COS(WR) algorithm,

which computes the probability of a sequence to bind a given SFs

based on the experimentally verified consensus motif, as well as

information derived from its sequence environment and the

overall conservation of the site. SFmap exploits two major

attributes of functional SFBSs: their propensity to be grouped

into clusters of similar motifs and their evolutionary conservation

[28]. In our previous study, we showed that when employing

SFmap on high-throughput experimental binding data obtained

by cross-linking immunoprecipitation (CLIP) of two independent

SF2/ASF (known also as SFRS1) [29] and NOVA [30] factors, we

detected a significant enrichment of the predicted motifs in the

experimentally selected sequences relative to a set of random

sequences [28]. To verify the SFmap algorithm on more recent

experimental data, we applied it on CLIP data for the

polypyrimidine tract binding protein (PTB) [31] and binding data

for the quaking (QKI) splicing factor obtained by the PAR-CLIP

method [32]. Employing SFmap using the published motifs for the

latter SFs, we predicted a significant hit of the motif in 75% and

71.4% of the binding targets of PTB and QKI, respectively. Here,

again, we detected a significant enrichment of SFmap predicted

binding sites among the experimentally selected sequences relative

to random sequences (p-value = 1e-16 for both PTB and QKI),

reinforcing the strength of the method to detect true positive

binding sites. Furthermore, in order to define an edge from a TF

to any other factor, we followed the approach recently used for

generating a microRNA-TF regulatory network [25]. We required

the existence of a conserved binding motif of the regulating TF

within the promoter region of the gene coding to the regulated

factor based on the human/mouse/rat conserved sites extracted

from UCSC TFBS sites table [33]. Overall, wiring the 257 nodes

resulted in a complex three-layer network. The upper layer

(‘source’) contained SFs and TFs with outedges regulating the

Author Summary

The operation of a living cell depends on its ability to
regulate its different functions. The master regulators in
the cell are proteins, which control the function of many
other genes by several mechanisms. Transcription factors
can differentially activate or repress the transcription of
genes by binding to their regulatory elements. A second
major mechanism of gene expression regulation occurs at
the level of alternative splicing. Alternative splicing is
regulated by splicing factors that bind to short regulatory
motifs on the RNA and dictate the final gene architecture.
To date there is increasing evidence of coupling between
transcription and splicing. In this study, we modeled a
network integrating the two regulations. Analysis of the
network indicated that splicing factors were more often
regulated by alternative splicing while transcription factors
were more extensively controlled by transcriptional regu-
lation. Overall, we postulate that regulatory proteins in the
cell are controlled preferentially by the specific regulation
they conduct.
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middle and lower levels. The second, middle layer had a mixture

of inedges and outedges of transcriptional and AS regulation to

and from the factors. The third, lower layer (‘sink’) included TFs,

SFs and kinases with transcription and splicing inedges (Figure 1B).

Next, we studied the network characteristics, concentrating on

global properties, specifically clustering coefficient and sparseness.

The clustering coefficient was 0.37, which is significantly higher

compared to 1,000 random networks having a similar degree

distribution (z-score = 41.51, p-value,2.2e-16). This suggests that

the integrated splicing-transcription network tends to create tightly

knit groups as was found for other regulatory networks [34,35].

Furthermore, we calculated the sparseness of the network, which

ranged from 0 to 1, 0 being the most sparse. In our integrated

network, the sparseness was 0.1, consistent with the highly sparse

Figure 1. Schematic representation of the integrated network construction. (A) Three representative examples of different types of
regulatory interactions in the integrated network. On the left are illustrations of the network interactions: red and blue arrows represent splicing and
transcription regulation, respectively, accordingly large red and blue circles represent SF and TF nodes, respectively. On the right are sketches
illustrating how each interaction was defined: small red and blue circles represent predicted splicing or transcription binding motifs, respectively. The
color of the transcript illustrated is as follows: red for genes belonging to the SF group, blue for genes belonging to the TF group and yellow for
genes belonging to the kinase group. The top row demonstrates the splicing regulatory interaction between two SFs, the middle row demonstrates
the transcription regulatory interaction between two TFs, and the bottom row represents splicing and transcription interactions of a node belonging
to the kinase group. (B) Illustration of the network architecture: the top row represents the source layer, including two types of nodes (SF, TF) with
only outedges of splicing and transcription (source), the middle row includes two types of nodes (SF, TF) having both inedges and outedges (mixed
layer), and the bottom row includes three types of nodes (SF, TF and kinases) having only inedges (sink).
doi:10.1371/journal.pcbi.1002603.g001
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nature of regulatory networks. This is presumably an adaptive

feature that is more robust to loss of an edge in the course of

evolution [35].

It was previously suggested that TF genes undergo, on average,

more AS events compared to other human genes. In a recent

comparative genomic study of the human and mouse genome, it

was shown that approximately 30% of human TFs and 20% of

mouse TFs had at least one isoform with a different domain

composition, the DNA-binding domains being the most variable

domain. These data suggested that the specific function of TFs and

their expression levels are highly determined both by AS and

transcriptional regulation [9]. We compared the number of

alternative spliced isoforms for the different groups of regulatory

proteins in our network. As shown in Figures 2 and S1, while the

median length and number of exons do not differ significantly

between SFs and TFs (p-value = 0.2, Mann-Whitney (MW) test),

SFs had significantly more AS events per factor both when the AS

events were derived from Dataset A, which was based on splicing

sensitive microarrays (p-value = 6e-4, MW test), and from Dataset

B, which was derived from RNAseq data (p-value = 4.5e-6, MW

test). Interestingly, while the kinase genes in the network were

found to be significantly longer having a larger number of exons

compared to SFs and TFs (p-value = 8.6e-8, 5.2e-11, respectively,

MW test), the number of AS events per kinase was still, on

average, much lower than for SFs (Figure 2 and S1).

Splicing versus transcriptional regulation density among
the network’s subgroups

We further examined the inedge density among the different

protein subgroups, first analyzing the transcription and AS edges

independently. As illustrated in Figure 3A and detailed in Dataset

S1, we found a significantly higher density of transcription inedges

per TFs compared to their density towards the other subgroups (p-

value = 1.2e-3 and 3.8e-7 when comparing to SFs and kinases,

respectively, MW test). Interestingly, in a previous study by Balaji

et al. [17] in which a combinatorial network of TFs was analyzed

in yeast, the authors noticed a similar trend of co-regulatory

association of TFs to the subgroup of TF genes in their network.

Strikingly, the same phenomenon was found in our integrated

network for AS regulation; here, we observed a significantly higher

density of splicing inedges towards SFs compared to other nodes in

the network (Figure 3B and Dataset S1). Specifically, we noticed a

significant difference between splicing inedge density to SFs

relative to TFs (p-value = 2.3e-4, MW test) as well as between inedge

density to SFs relative to kinases (p-value = 2.7e-3, MW test). Very

similar trends were observed for the network derived from Dataset

B (Figure S2 and Dataset S2). When examining the kinases as a

group, we noticed that the kinases exhibited a similar density of

transcription inedges as the SFs (Figure 3A) while the splicing

inedge density per kinase did not differ significantly from the

average density per TF (Figure 3B). As summarized in Figure 3C,

the average number of transcription inedges to TFs (8.360.75)

and splicing inedges to SFs (4.060.7) was the highest among each

type of interactions. Nevertheless, cross-talk interactions between

regulatory proteins belonging to different subgroups were also

observed in the network, i.e., transcription inedges to SFs and

kinases (5.362.2 and 3.360.3 for SF and kinases, respectively) and

splicing inedges to TFs and kinases (0.9560.22 and 160.15 for TF

and kinases, respectively). As demonstrated, the density of the

latter interactions was significantly lower than the density of the

cross-regulation interactions. To verify that the distinct distribu-

tion of the inedge density of splicing and transcription regulation

between the groups differs from what would be expected by

chance, we randomly selected from the network three groups of

nodes of equal size from the original SFs, TFs and kinases groups.

For each random group we calculated the inedge splicing and

transcription distribution. We repeated the procedure 100 times

and calculated average and standard deviation values for the

randomly selected groups. As clearly shown in Table S1, both the

splicing and transcription inedge distributions of the randomly

selected groups could not be distinguished from each other. These

results strongly reinforce that the significant differences observed

for the functional groups (Figure 3 and Table S1) are not expected

by chance and plausibly reflect inherent differences in the

regulation of these different functional groups.

To further study the relationship between splicing and

transcriptional regulation in the network, we counted the number

of splicing inedges versus transcription inedges per node in each of

the target groups. As illustrated in Figure 4, we noticed that the

correlation between AS and transcriptional regulation differs

between the different target groups. For the subgroup of SFs

(Figure 4A), we observed an overall positive correlation between

splicing inedges and transcription inedges towards the targets

within the subgroup (r = 0.3, Spearman’s rank correlation (SC)).

Whereas, when considering the subgroup of TFs (Figure 4B), we

noticed a weak negative correlation (r = 20.25, SC), i.e., a factor

regulated by higher density of transcription inedges has a weaker

density of splicing inedges, and vice versa. Finally, consistent with

the previous analysis, we noticed an overall lower density of

splicing and transcription inedges towards the subgroup of kinases

(Figure 4C) with a weak negative correlation (r = 20.18, SC).

Similar results were obtained for Dataset B (see Figure S3).

We next asked whether the trends we noticed in the integrated

network are supported by experimental binding data. To this end,

we searched for enrichments of GO annotations among the targets

of SFs and TFs derived from available Cross-Linking and

ImmunoPrecipitation (CLIP/CLIP-seq), photoactivatable ribonu-

cleoside-enhanced CLIP (PAR-CLIP) and chromatin immuno-

precipitation-sequencing (ChIP-seq). As shown in Figure 5, we

found that the GO term ‘‘RNA splicing’’ was enriched signifi-

cantly among experimentally verified targets of SFs (p-values = 1.1e-

4, 2.7e-13, 1.7e-5, 5e-3 for PTB [31], FOX2 [36], SF2/ASF [29]

and QKI [32], respectively) while transcription activity was only

weakly enriched for PTB targets (p-value = 3.5e-2). To verify that

the enrichment of the ‘‘RNA splicing’’ term among the SFs targets

in the experiments is not the result of a potentially higher

abundance of splicing related proteins in the data, we took as

control the binding targets of the RNA-binding protein Human

Pumilio 2 (PUM2) extracted from the same cells as the binding

targets of QKI were extracted (Human embryonic kidney (HEK)

293 cells) [32]. In the latter case, we did not observe a statistically

significant enrichment of the ‘‘RNA splicing’’ term (p-value = 6e-2),

supporting that the enrichment of splicing related proteins among

the SFs targets truly reflects the extensive cross-regulation among

this regulatory protein family. We further analyzed ChIP-seq data

from the ENCODE project [37] for nine TFs that were included

in our network. Here, no significant enrichment was observed for

any of the above specified GO terms.

Splicing versus transcriptional regulation density in
tissue-specific subnetworks

The integrated network described above represents putative

regulatory interactions (i.e., splicing and transcription) among the

three regulatory protein groups. Clearly, only one subset of the

interactions is expected to take place in a given tissue or at an

explicit developmental stage depending on the spatial and

temporal expression of the factors. To test whether the general

trend of pervasive cross-regulation observed in the network can be

Cross-Regulation in Integrated Regulatory Networks
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Figure 2. Distribution of gene length, exon number and alternative splicing events among the network genes. (A) Gene length, (B)
number of exons per gene and (C) the histogram representing the normalized frequency of AS events per gene based on [70] for the three subgroups
of network targets: SFs (red), TFs (blue) and kinases (yellow).
doi:10.1371/journal.pcbi.1002603.g002
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Figure 3. Density of transcription and splicing regulation inedges. (A) Distribution of transcription regulation inedges for the three
subgroups of network targets: SFs (red), TFs (blue) and kinases (yellow) (network reconstructed based on Dataset A). (B) Distribution of splicing
regulation inedges for the three subgroups: SFs (red), TFs (blue) and kinases (yellow). (C) A diagram summarizing the transcription and AS predicted
interactions among the three subgroups in the network; the arrows represent interactions across and between subgroups (blue and red arrows for
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detected when considering only interactions between factors

expressed in the same tissue, we constructed tissue-specific

integrated subnetworks for two different tissues, heart and

smooth muscle, in which we found the largest subset of factors

expressed above the background (see Materials and Methods

section and Dataset S2). Overall, the heart subnetwork included

33 TFs and 14 SFs, while the smooth muscle subnetwork

included 40 TFs and 11 SFs. As shown in Table 1, consistent with

the results of the large integrated network, in both tissue-specific

networks we observed a higher density of splicing regulation

towards the SFs while transcription regulation inedge density was

higher among the TFs. Notably, due to the small sample size and

the high diversity in the inedge density among the factors,

statistical significance was detected only for splicing regulation

within the smooth muscle subnetwork using Dataset B (p-

value = 8e-3). Nevertheless, the general trend of cross-regulation

vs. cross-talk regulation was clearly observed among all tissue-

specific subnetworks.

Combinatorial regulation of SFs and TFs as detected from
the integrated network

Previous high-throughput studies have pointed to extensive

coordinated regulation both at the transcriptional and post-

transcriptional levels (as reviewed in [2]). We searched for three

combinatorial binding types: a combination of specific SF-SF,

TF-TF and SF-TF pairs. We mapped the binding sites of all

TFs and SFs for each of the factors in our network and

calculated the preferences for all possible pairs to bind the same

targets (see Materials and Methods section). Overall, we

detected 14 different pairs of SF-SF and five pairs of TF-TF

that were connected to the same genes in a coordinated manner

(Figure 6). Interestingly, we did not detect any preferences of

SF-TF pairs to bind in a coordinated manner, even after

lowering the stringency cutoff. Very similar results were

obtained when performing the analysis on the network

constructed based on Dataset B, with 27 and five significant

SF-SF and TF-TF pairs, respectively (see Figure S4). While in

some cases we did notice a weak sequence similarity between

the binding motifs of the factors that were found to regulate the

same target preferentially, in the majority of cases, the binding

motifs of the different factors within the pair had no overlap.

Overall, the SF subgroup had the highest fraction of genes

(70%) connected by SF-SF pairs, while TF gene subgroup had

the highest fraction of genes (16%) regulated by TF-TF. In the

case of kinases, approximately 30% of the group was targeted

by TF-TF (23%) and SF-SF pairs (6%). Taken together, 80% of

the SF subgroup was connected in a coordinated manner by the

significant pairs (SF-SF and TF-TF). As demonstrated in

Figure 5, the fraction of all genes suggested to be regulated in

a coordinated manner by TF-TF pairs was much lower than in

the case of AS regulation by SF-SF pairs. Among the preferred

pairs regulating the SF group, we found several genes that were

documented previously to regulate splicing in a coordinated

manner. For example, Htra2b and YB-1 were found to act

together in regulating the inclusion of exons v4 and v5 of CD44

[38]. Another example is the TF-TF pair BRN2 and OCT1,

which was found to co-regulate TF targets preferentially; this

pair was previously shown to regulate the transcription of the

human GnRH gene [39].

Phosphorylation site predictions among the different
target subgroups

Overall, an analysis of our integrated network revealed an

interesting regulatory relationship between AS and transcription,

with a clear tendency of SFs to be more densely regulated by AS

whereas TFs were controlled more by transcriptional regulation.

An interesting conjecture is that regulatory proteins in general

tend to be regulated by the specific regulation they conduct. We

were thus intrigued to examine whether this is also true for the

third regulatory protein group in the network, namely the kinases.

As mentioned above, due to a lack of accurate predictive methods

to uniquely connect a specific kinase to its target, phosphorylation

regulation could not be added as another layer of regulation to the

network. Nevertheless, we could evaluate the phosphorylation

regulation of the different subgroups in the network by predicting

the density (normalized to the protein length) of phosphorylation

sites along the protein sequences belonging to the different

subgroups. Consistent with the previous findings, we found 77% of

the kinases had at least one predicted phosphorylation site

compared to 49% and 42% for SFs and TFs, respectively. As

shown in Figure 7, while only half of the proteins in the SF were

predicted to possess at least one phosphorylation site, in the

majority of these proteins (88%), the region of predicted

phosphorylation sites covered more than 10% of the entire protein

length. As expected, the predicted phosphorylation sites in the

latter group were mainly in the SR domain, which is well

documented to be highly regulated by phosphorylation. Never-

theless, as a group, the kinases had the highest density of predicted

phosphorylation sites suggesting tight post-translational regulation

of their activity.

Protein disorder supports extensive regulation of nodes
in the network

It has been previously postulated that regulatory proteins would

be intrinsically disordered, enabling their interaction with a large

number of diverse targets (as reviewed in [40]). Indeed, it has been

confirmed in human and yeast that TFs tend to be more

disordered relative to other proteins in the proteome [41,42]. In

addition, the amino acid composition and sequence complexity of

splicing factors from the SR protein family were found to be very

similar to other disordered proteins [43]. In an earlier study, it was

also shown that proteins translated from genes undergoing AS

tend to be disordered, enabling structural diversity among the

different protein isoforms [44]. Interestingly, kinases were found to

be two-fold less disordered compared to other regulatory proteins

[45]. We calculated the disorder propensity of the proteins in our

networks belonging to the three regulatory groups, comparing

them to random set of proteins in the human proteome (see

Materials and Methods section). As demonstrated in Figure 8, and

consistent with previous studies, we found that the splicing and

transcription factors in our network were significantly more

disordered compared to the kinases, as well as when compared

to a random set of human proteins (p-values = 4e-4, 1e-4 for SFs

versus kinases and SFs versus random set, respectively, and 2e-16

for both TFs versus kinases and TFs versus random set; MW test).

Similar trends were obtained both when calculating the average

number of predicted disordered residues per protein in each target

group (Figure 8A) and when considering the overall fraction of

transcriptional and splicing regulation, respectively). The average density of inedges per group is shown in numbers within the arrow and is
represented by the color intensity of the arrow. As demonstrated, cross-regulation is far more prevalent than cross-talk for both transcriptional and
AS regulation.
doi:10.1371/journal.pcbi.1002603.g003
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disordered proteins in each subgroup (i.e., defining a protein as

disordered if it included a stretch of minimal 30 disordered

residues) (Figure 8B). Overall, our results confirm that the proteins

in the integrated network are intrinsically disordered, specifically

the TFs and SFs. This is in agreement with the high density of

splicing and transcriptional regulation we observed towards the

SFs and TFs subgroups in the network, which we found to be

tightly controlled by their own regulation.

Discussion

Recent high-throughput experiments and genome-scale analy-

ses have greatly increased our understanding of the interplay

between different steps of the gene expression pathway, revealing

extensive coupling and coordination between transcriptional and

post-transcriptional regulation [2]. Studying the cross-talk between

transcriptional and splicing regulation is thus crucial for unravel-

ing the complex gene expression regulation in higher eukaryotic

organisms. The most apparent observation from the human

integrated regulatory network we reconstructed in this study is the

noticeable preference of regulatory proteins to be regulated via the

specific regulation they conduct, namely cross-regulation. Specif-

ically, we observed that transcription inedges were significantly

denser towards the subgroup of TFs compared to the transcription

inedge density towards SFs and kinases, while the splicing inedges

were much denser toward the subgroup of SFs compared to TFs

and kinases. These results suggest that cross-regulation among

regulatory factors predominates over the regulatory interactions

between the different functional groups(cross-talk).

SFs have been previously shown to autoregulate the expression of

their own transcripts via splicing regulation, as well as to be cross-

regulated by AS [46,47]. The most well-known example is the

autoregulation of Sxl involved in sex-fate decisions in Drosophila [48].

Among the splicing regulation interactions in our integrated

network, we identified many experimentally verified autoregula-

tions of SFs such as for SC35 [49], SRp20 [50], 9G8 [51], Htra2-

beta [52], PTB [53] and NOVA [54]. We also identified putative

interactions, which, to the best of our knowledge have not yet been

reported, such as the predicted autoregulation of QKI. In addition,

we detected many known interactions between different SR

proteins, for example, the interactions between SF2/ASF and

SRp20 that have been shown to antagonize the autoregulation of

Figure 4. Correlation between splicing regulation inedges and transcription regulation inedges in the integrated network.
Correlations are shown for the three subgroup targets: (A) SFs, (B) TFs and (C) kinases (network reconstructed based on Dataset A).
doi:10.1371/journal.pcbi.1002603.g004

Figure 5. The GO term ‘‘RNA splicing’’ is significantly enriched among experimentally verified targets of SFs. GO enrichment for CLIP
targets of four SFs, SF2/ASF (HEK 293 cells), FOX2 (Embryonic Stem Cells), PTB (HeLa cells) and QKI (HEK 293 cells) for two GO annotation terms:
transcription factor activity (blue) and RNA splicing (red). Bar height represents the statistical significance shown by–log10 of the P-value. The dashed
line marks the level of statistical significance (p-value = 5e-2).
doi:10.1371/journal.pcbi.1002603.g005
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SRp20 [50], as well as interactions between SFs belonging to

different protein families, such as the validated interaction between

hnRNPH/F and SC35 [55] and between QKI and SF2/ASF [56].

Based on the relatively high number of AS events in gene coding

for SR proteins and the extremely high conservation of their

alternative exons, it has been previously suggested that AS plays a

critical role in the regulation of SR protein transcripts across

multiple eukaryotic lineages [57–59]. While many studies have

pointed to the general tendency of SFs to regulate other SFs [47],

our study is the first comprehensive analysis showing the

significant preference of AS regulation towards SFs compared to

other regulatory proteins. The prominent mode of regulation for

SFs to regulate genes involved in splicing is also supported by

RNA-binding data from recent CLIP/PAR-CLIP experiments

conducted in human cell lines in which we found a significant

enrichment of splicing-related GO annotations among the targets

of four different SFs. This is consistent with recent high-

throughput RNA-binding studies that noticed overrepresentation

of RNA processing factors among the targets of SFs (as, for

example, SF2/ASF [60]). Furthermore, indirect evidence of the

tendency of SFs to regulate splicing-related genes has been found

Table 1. Inedge average density for heart and smooth
muscle specific subnetworks.

Regulation type Splicing Regulation
Transcription
Regulation

Target type SF TF SF TF

Muscle (Dataset A) 4.0061.5 2.8860.6 0.7960.3 1.5360.4

Muscle (Dataset B) 7.160.9 5.2261.3 0.4260.2 2.7060.8

Heart (Dataset A) 6.3360.3 2.8860.5 1.8261.2 2.0860.4

Heart (Dataset B) 6.0061.5 3.2060.9 1.0060.7 1.7260.5

doi:10.1371/journal.pcbi.1002603.t001

Figure 6. Combinatorial regulation in the integrated network. (A) Sketch describing the combinatorial relations between SFs (red, on the
right) and TFs (blue, on the left), and the number of combinatorial pairs (p-value,1e-16) found in the network (network reconstructed based on
Dataset A). (B) The frequency of genes in each subgroup target: SFs (red), TFs (blue) and kinases (yellow) regulated by the significant pairs in A: SF-SF
(left) and TF-TF (right).
doi:10.1371/journal.pcbi.1002603.g006
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in other species. For example, in S. cerevisiae it has been shown that

the knockdown of SFs predominantly downregulated the expres-

sion of splicing-related genes [5].

In addition to the noticeably higher inedge splicing density of

the SF subgroup compared to TFs and kinases in our integrated

network, our data suggest that SFs as a group are generally more

regulated, both independently and via combinatorial regulation.

The high density of inedges towards SFs in the network is also

supported by the greater number of exons in the genes within this

subgroup and their high disorder propensity. Moreover, we

observed a strong preference of pairs of SFs and TFs to be

connected to other regulatory proteins in a coordinated manner.

These results are again in agreement with many recent studies

suggesting an important role played by coordinated binding of

transcription [17,24,61] and splicing factors [62–64] on their

mutual targets. Combinatorial regulation may offer elegant

solutions for a quick cellular response when cell conditions change

or for the integration of different signals. In addition, combina-

torial binding can contribute to expanding the functional diversity

achieved by AS [65]). Here, we propose that combinatorial

regulation by SFs is specifically widespread among regulatory

proteins. More so, our results support that the SFs themselves are

significantly more controlled by combinatorial regulation in

comparison to other groups of regulatory factors. We postulate

that SFs tend to tightly control regulatory genes at the post-

transcriptional level in a coordinated manner as a possible

mechanism for their role in ‘fine-tuning’ the gene expression

regulation.

Overall, consistent with many examples of feedback regulation

in the gene expression pathway (such as in the sxl example [48]),

our data suggest that cross-regulation among the master regulators

of the pathway is highly predominant. This phenomenon was also

strengthened by phosphorylation site prediction analyses we

conducted on the proteins (nodes) belonging to the different

subgroups in the network, demonstrating that kinases as a group

are more tightly regulated by phosphorylation in comparison to

transcription and splicing factors. These latter results are in

agreement with the well-known knowledge that kinases self-

modulate each other’s function and activity through phosphory-

lation events [66] and are consistent with recent large-scale

proteomic analyses showing significant enrichment of kinases in

the human kinome [67]. The prevalent cross-regulation within the

functional groups observed in our integrated network can explain

recent findings showing distinctive functional characteristics

(mRNA and protein half-lives) for each of the regulatory groups

in the network; proteins involved in transcriptional regulation

having unstable mRNA and unstable proteins, proteins regulating

RNA splicing having unstable mRNA and stable proteins; and

proteins involved in phosphorylation having stable mRNA and

unstable proteins [68]. Our network results showing that the

different members within each group tend to be regulated by the

same cohort of regulators is consistent with the experimental

observations that they all tend to have the same expression pattern

(i.e., mRNA stability and protein levels). Taken together, the

network results and the experimental observations from the

transcriptomic and proteomic data support the hypothesis that

these regulatory protein groups are consistently under similar

regulatory constraints. Notwithstanding, in addition to the

tendency for extensive cross-regulation within each subgroup, we

observed a significant number of interactions between factors (i.e.,

SF regulating TF via alternative splicing and vice versa). Among

these interactions, we observed a putative splicing regulation

Figure 7. Predicted phosphorylation sites for proteins belonging to the three subgroups SFs, TFs and kinases. Height of the bars
represents the frequency of proteins from each target group predicted to possess at least one phosphorylation site according to DisPhos using the
‘‘exact fragment’’ stringency level. The subset of proteins in each group for which the coverage of the predicted phosphorylation sites was over 10%
of protein length is highlighted in dark gray.
doi:10.1371/journal.pcbi.1002603.g007
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Figure 8. Protein disorder among the nodes of the network. (A) Frequency of predicted disordered residues per protein length for SFs, TFs,
kinases and random human proteins. (B) Fraction of proteins with long disordered regions among the SFs, TFs, kinases and random protein
subgroups.
doi:10.1371/journal.pcbi.1002603.g008
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between the SF SRp55 and the TF Pax6 known to regulate eye

development in vertebrates. An interaction between the D.

melanogaster SR protein B52/SRp55 and eyeless (the Drosophila

homolog of Pax6) has been previously shown to control eye

organogenesis and size in Drosophila [69]. Interestingly, based on

our network, we predict that the human Pax6 gene is also

regulated by the SR protein SF2/ASF while Fic et al. could not

confirm the homologous interaction in Drosophila [69]. Overall, we

predict many putative interactions in the network between SFs

and TFs, arguing that this type of cross-talk regulation may play a

unique role in the gene expression pathway, for example, in

directing stem cell pluripotency [10] or deriving a specific

developmental program [11]. While cross-talk interactions were

clearly less abundant in our network, we postulate that they may

be key players in tissue specificity and development. Clearly,

modeling and testing other integrated networks of regulatory

factors in different human tissues and other species will be required

to better understand the relative contribution of cross-regulation

and cross-talk interactions to modulating gene expression in high

eukaryotic systems.

Materials and Methods

Network construction
Integrated network. The SF group was comprised of 20

most extensively studied SFs belonging to the two major protein

families, SR proteins and hnRNPs, for which experimental

information on their binding sites was available [28]. An edge

from SFi to any other factor j (where i runs from 1 to 20 and j from

1 to 257) was added if factor j had an AS event and a human-

mouse conserved binding motif of SFi was found flanking the

splicing event region. The splicing events in the network were

defined based on two independent datasets: ‘‘Dataset A’’ based on

expression data from splicing microarrays from Castle et al. [70]

and ‘‘Dataset B’’ derived from RNA-seq data from Katz et al.

[71]. The SFBSs were predicted using the SFmap [28] algorithm

with medium stringency (see http://sfmap.technion.ac.il/manual.

html). Three types of AS events were considered: cassette exon,

alternative 39 and alternative 59. For cassette exon events, splicing

motifs were searched within 100 nt of the immediate upstream

intron, the entire exon and 100 nt of the flanking downstream

intron. For alternative 39 splicing events, splicing motifs were

searched within 100 nt of the upstream intron and the entire exon

flanking the event. In alternative 59 splicing events, motifs were

searched in the entire exon and 100 nt of the flanking downstream

intron.

The TF nodes in the network were chosen from the human-

mouse-rat conserved TFBS factors table of the UCSC genome

browser, hg18 version, including 90 TFs that have experimentally

verified motifs [33]. The transcription regulation edges were

defined based on the existence of a conserved TF binding site in

promoters of genes in the network based on the TFBS sites table.

Thus, an edge from TFi (where i runs from 1 to 90) exists only if

the binding motif of that TF was found in the promoter region of

any factor j (where j runs from 1 to 257). Promoters were defined

as 5 kb upstream to the transcription start site of the genes (as

defined in [25]). The kinase group was composed of 147 human

kinase proteins downloaded from kinbase (http://kinase.com/

kinbase) based on Manning et al. [26].

Tissue-specific networks. To construct the tissue-specific

network, expression data from Human GNF1H Gene Atlas based

on Human Genome U133A 2.0 Array [72] was incorporated. The

expression data for each of the factors in the entire network were

normalized by extracting the expression values of all genes in the

tissues available from the array and calculating the average gene

expression for the tissue. Factors were included in the tissue-

specific network if their expression was above average. The heart

and smooth muscle tissues were chosen as these tissues had the

largest subset of factors (from the entire set of factors in the

network) that were expressed above the average. For the heart

tissue, 33 TFs and 14 SFs were included (nine and four of which

had AS events, respectively). For the smooth muscle tissue, 40 TFs

and 11 SFs were included (eight and three of which had AS events,

respectively). Putative interactions between nodes in the network

were calculated as in the integrated network.

Calculating network properties
Clustering coefficient. The clustering coefficient, or transi-

tivity, is the measurement of interactions within cliques in the

network. It is a function of the number of neighbors of each node

and triplets of nodes. The global clustering coefficient is the sum of

all clustering coefficients Ci, where i runs from 1 to N (the number

of nodes in the network), and is defined as the fraction of closed

triplets that exist among its nearest neighbors relative to the

maximum number of triplet types among all neighbors. See

Formula 1.

Clustering coefficient~
1

N

XN

i~1
Ci ðFormula 1Þ

The clustering coefficient was calculated with igraph package

version 0.5.4 using GNU R statistical software (http://cneurocvs.

rmki.kfki.hu/igraph).

Sparseness. Sparseness was defined as the number of

network edges (E) over the maximum number of possible edges,

which is defined as the numbers of edges squared (Emax = E2). See

Formula 2.

sparseness~
E

E2
ðFormula 2Þ

In order to test the network properties, 1,000 random networks

were constructed with the same number of nodes and the same

average number of edges (degree) using igraph package version

0.5.4 using GNU R statistical software (http://cneurocvs.rmki.

kfki.hu/igraph).

Gene ontology and motif enrichment analysis
CLIP data analysis. SF2/ASF CLIP data were taken from

the supplementary data of [29]. FOX2 CLIP data were

downloaded from FOX2ClipSeq table at the human genome

browser [33]. PTB CLIP data were taken from [31]. QKI and

PUM2 PAR-CLIP data were taken from the supplementary data

of [32]. For each set of targets, we searched for GO term

enrichment using DAVID [73].

To validate SFmap motifs against CLIP/PAR-CLIP data, we

ran SFmap on the set of experimentally binding sequences

downloaded from [31,32] using the same parameters used to

generate the network. As control we used 1,000 sequences from

the middle of the introns extracted randomly from the human

genome version hg18. All analyzed sequences (selected from the

experiments and the control) were 41 nucleotides in length. The

Fisher Exact Test (based on hypergeometric distribution) was

applied to examine whether the motifs predicted by SFmap were

significantly enriched in the experimentally binding sequences

relative to the random set of sequences.

ChIP-seq data analysis. Data for the ChIP-seq analysis

were taken from the wgEncodeRegTfbsClustered table of the

Cross-Regulation in Integrated Regulatory Networks

PLoS Computational Biology | www.ploscompbiol.org 13 July 2012 | Volume 8 | Issue 7 | e1002603



UCSC genome browser [33] based on the ENCODE project [37].

We analyzed the data for nine TFs included in the network: USF1,

NFBK, C-Myc, HNF4a, IRF4, p300, PAX5, POU2F2 and

TCF12. GOrilla was further applied to search for enrichment of

GO terms [74].

Phosphorylation site prediction
Prediction of phosphorylation sites in SFs, TFs and kinases was

carried out by DisPhos [75] using the ‘‘exact fragment’’ stringency

level. The ‘‘exact fragment’’ stringency level is based on matching

the exact fragment of 25 amino acids in another protein with a

known phosphorylation site to the predicted phosphorylation site.

For each protein group, the average number of proteins with at

least one phosphorylation site was calculated. Furthermore, the

frequency of amino acids predicted to be involved in a

phosphorylation site were calculated for each protein. The number

of predicted sites was normalized to the protein length.

Disorder prediction
Prediction of disordered residues in SFs, TFs, kinases and a

random set was carried out with VSL2B [76] software using 0.75

as the cutoff for disordered residue. For each protein, the average

number of disordered residues per protein length was calculated.

Disordered proteins were defined if they included at least one

disordered continuous segment of 30 amino acids. Calculations for

the random set were carried out 10 times on 250 proteins chosen

randomly from uniprot http://www.uniprot.org/.

Combinatorial regulation of SFs and TFs
The hyper geometric distribution test was used to detect

preferences of pairs to co-regulate the same target genes in the

network. For each pair of factors in the network (SFs and TFs), the

number of targets regulated independently and by both factors was

calculated. Specific pairs of factors that were found to bind the

same targets preferentially were selected (p-value cutoff for the

hyper geometric distribution test was defined as 1e-16). To

compare results between the different target groups, we calculated

the relative frequency of genes within each group that were found

to be wired by each significant pair in a coordinated manner.

Supporting Information

Dataset S1 Splicing and transcription inedges for each node in

the integrated regulatory network.

(XLS)

Dataset S2 Normalized expression data for network genes in

smooth muscle and heart tissues from the GNF atlas.

(XLS)

Figure S1 Histogram representing the normalized frequency of

AS events per gene based on RNAseq data from Dataset B in three

target groups: SFs (red), TFs (blue) and kinases (yellow).

(TIF)

Figure S2 Distribution of splicing regulation inedges in the three

subgroups of network targets: SF (red), TF (blue) and kinases

(yellow) (network reconstructed based on Dataset B).

(TIF)

Figure S3 Correlation between splicing regulation inedges and

transcription regulation inedges in the integrated network.

Correlations are shown for the three subgroups of network targets:

(A) SFs, (B) TFs and (C) kinases (network reconstructed based on

Dataset B).

(TIF)

Figure S4 (A) Sketch describing the combinatorial relations

between SFs (red, on the right) and TFs (blue, on the left), and the

number of combinatorial pairs (p value,1e-16) found in the

network (network reconstructed based on Dataset B). (B) The

frequency of genes in each subgroup target: SFs (red), TFs (blue)

and kinases (yellow) regulated by the significant pairs in A: SF-SF

(left) and TF-TF (right).

(TIF)

Table S1 Average splicing and transcription towards SFs, TFs

and kinases in the integrated regulatory vs. average splicing and

transcription towards SFs, TFs and kinases in randomly selected

groups and their standard deviation.

(PDF)
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