
viruses

Review

Chickpea chlorotic dwarf virus: An Emerging
Monopartite Dicot Infecting Mastrevirus

Surapathrudu Kanakala 1,* and Paul Kuria 2

1 Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50010, USA
2 Kenya Agricultural and Livestock Research Organization, Nairobi 00200, Kenya; kuriapk@gmail.com
* Correspondence: kanakalavit@gmail.com or kanakala@iastate.edu

Received: 8 November 2018; Accepted: 4 December 2018; Published: 21 December 2018
����������
�������

Abstract: Chickpea stunt disease (CSD), caused by Chickpea chlorotic dwarf virus (CpCDV) is a threat to
chickpea production leading to yield losses of 75–95%. Chickpea chlorotic dwarf virus is a monopartite,
single-stranded circular DNA virus in the genus Mastrevirus and family Geminiviridae. It is transmitted
by Orosius albicinctus in a circulative (persistent) and nonpropagative manner. Symptoms of CSD
include very small leaves, intense discoloration (yellowing (kabuli type) and reddening (desi type)),
and bushy stunted appearance of the plant. Presently, CpCDVs occurs in Africa, Asia, Australia, and
the Middle East, causing extensive losses on economically important crops in in the families Fabaceae,
Asteraceae, Amaranthaceae, Brassicaceae, Cucurbitaceae, Caricaceae, Chenopodiaceae, Leguminosae,
Malvaceae, Pedaliaceae, and Solanaceae. High frequency of recombinations has played a significant
role in the wide host range, diversification, and rapid evolution of CpCDVs. This review highlights
the extensive research on the CpCDV genome diversity, host range, plant–virus–insect interactions,
and RNA interference-based resistance of CpCDV, providing new insights into the host adaptation
and virus evolution.
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1. Introduction

Chickpea (Cicer arietinum L.) is an important pulse crop grown and consumed all over the world.
As the world’s population rises, the demand for grain legumes is also rising, and it is a permanent
challenge to meet increasing demands. However, abiotic and biotic factors affect plant growth and
pose a threat to sustainable agriculture and food production. Pathogens include fungi, bacteria, viruses,
nematodes, and mycoplasma [1,2]. Several insect-transmitted viruses have been known to cause
diseases in chickpea under field conditions: aphid-transmitted (virus in the families Bromoviridae,
Luteoviridae, Nanoviridae, and Potyviridae) and leafhopper-transmitted (virus in the family Geminiviridae)
viruses can lead to significant economic loss [3]. Among the leafhopper-transmitted viruses reported
in chickpea, the most important and threatening viral disease is chickpea stunt disease (CSD).

CSD was recognized as a serious endemic problem in India as early as the 1970s [4]. The viruses,
pea leaf roll virus in Iran [5]; subterranean clover red leaf virus (SCRLV), a strain of soybean dwarf
virus, and beet western yellows virus (BWYV) in California [6,7]; as well as BWYV and bean leaf roll
virus (BLRV) in Spain [8] were found to be associated with the chickpea stunt disease and discoloration
symptoms. In India, BLRV was thought to be associated with the disease until 1993. CSD was first
identified in India, and later the virus causing disease was identified as CpCDV and was shown to be
transmitted in a persistent manner by the leafhopper O. albicinctus [9]. A survey showed CSD to be
prevalent in the Indian states of Andhra Pradesh, Gujarat, Haryana, Madhya Pradesh, and Punjab,
causing 75–95% losses in yield [10–12]. Later, Nahid et al. (2008) [13] in Pakistan and Kanakala et al.

Viruses 2019, 11, 5; doi:10.3390/v11010005 www.mdpi.com/journal/viruses

http://www.mdpi.com/journal/viruses
http://www.mdpi.com
https://orcid.org/0000-0003-4702-3990
http://www.mdpi.com/1999-4915/11/1/5?type=check_update&version=1
http://dx.doi.org/10.3390/v11010005
http://www.mdpi.com/journal/viruses


Viruses 2019, 11, 5 2 of 15

(2012) [14] in India characterized the CpCDV, which was identified as one of the etiological agents of
stunt disease belonging to the genus Mastrevirus of the family Geminiviridae.

The family Geminiviridae comprises monopartite or bipartite circular single-stranded circular
DNA (ssDNA) viruses characterized by their 22 × 38 nm2 germinate particles comprised of two
joined incomplete icosahedra (T = 1) encapsidating an ssDNA genome molecule of about 2.8 kb [15].
The family is further divided into nine genera (i.e., Becurtovirus, Begomovirus, Capulavirus, Curtovirus,
Eragrovirus, Grablovirus, Mastrevirus, Topocuvirus, and Turncurtovirus) on the basis of host range,
insect vector, genome structure, organization, and genome-wide pairwise sequence identities [16].
The genomes of the genus Mastrevirus consists of a single component (monopartite) of circular ssDNA,
of 2.5–2.7 kb length. Mastreviruses are transmitted by leafhoppers in a circulative (persistent) and
nonpropagative manner [16].

Mastrevirus is the second-largest genus in the family Geminiviridae, with 37 species [16] known
to infect either monocotyledonous or dicotyledonous plants in association with ssDNA satellite
molecules [17,18], of approximately half the size of their helper virus genome. As dicot-infecting
mastreviruses are important pathogens in agriculture, this review will mainly focus on the new
discoveries, diversity of CpCDVs, geographical distribution, host range, interaction with satellite
molecules, and role of recombination in CpCDV complex evolutions and new strategies for
their management.

2. Disease Symptoms

The symptoms of the disease caused by the dicot-infecting mastreviruses are yellowing, stunting,
and dwarf symptoms in tobacco when infected by Tobacco yellow dwarf virus (TYDV) [19]. Bean yellow
dwarf virus (BeYDV, now CpCDV-B [20]) in French bean causes stunting, chlorosis, and leaf curling
symptoms [21]. The characteristic CSD symptoms are extreme stunting, shortening of internodes,
reduction of leaf lamina, bushy and brittle appearance of plants, phloem browning in the collar region,
leaf reddening in the case of indigenous types (desi), and yellowing in introduced (kabuli) types [9].
Field chickpea plants were found with symptoms like chlorosis, leaf smalling, and reddening of
the chickpea leaves in Pakistan [13] and India [14] (Figure 1b,c). The yield loss is nearly total if the
infection occurs in the early stage of growth; if infection occurs at the flowering stage, the yield loss is
75–90% [10].

CpCDV

(a) (b) (c)

(d) (e) (f)

Figure 1. (a) Schematic diagram of the CpCDV genome representing virion and complementary open
reading frames, Movement protein (MP), Capsid protein (CP), and Replication associated protein
A and B (RepA and RepB), LIR and SIR—large and small intergenic regions. Intron and stemloop
region are indicated. Chickpea plants showing (b) leaf reddening and (c) leaf smalling; stunting and
proliferation of axillary shoot.

In 2013, hot pepper plants growing in India showed stunting and upward leaf curling [22].
CpCDV-A infected different squash plants (Cucurbita pepo L.) with severe infections showing leaf
curling, yellow mottling, stunting, and reduced fruit set were observed in Egypt [23]. Watermelon fruits
showing the symptoms hardness and discoloration of the flesh, whitish inserts, and deformation of
fruits and seeds was observed in the Tunisia area [24]. Similarly, CpCDV-C infected field spinach plants
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showed typical symptoms including leaf curling, vein thickening, and yellowing [18]. More recently,
tomato and papaya plants infected with CpCDV showed severe symptoms of leaf dwarfing, curling,
and yellowing in Central and Eastern Burkina Faso [25].

3. Genome Organization and Protein Functions

3.1. Genome Organization

The genome of CpCDV consists of a single component (monopartite) circular ssDNA, 2.5–2.7
kb. There are four open reading frames (ORFs), two on the virion sense strand (ORF V1, capsid
protein; ORF V2, movement protein) and two ORFs in the complementary sense strand (ORF C1:
C2), from which the replication initiation protein is expressed by transcript splicing (Figure 1a) [26].
The genome codes for movement (ORF V2 nt co-ordinates 133–411, 10 kDa) and capsid protein (ORF
V1 nt co-ordinates 424–1161, 26.6 kDa) on the viral strand and replication initiation protein (ORF
C1/C2, nt co-ordinates to 2324–1320, 36.3 kDa) on the complementary strand. The large intergenic
region (LIR) of ~308 nt contains a characteristic stem loop structure with the invariant nonanucleotide
sequences (TAATATT↓AC). However, a rare nonanucleotide TAATGTTAC was uncovered in LIR of
CpCDV isolated from watermelon in Tunisia [24]. The LIR also contains the TATA boxes and CA motifs.
The putative Rep-binding site, “TGGAGGCA” is present as a tandem repeat 106 nt upstream of the
nonanucleotide loop. There is a small intergenic region (SIR) at the 3′ end of V1 and C2 ORFs. A short
complementary sense DNA primer containing 5′ ribonucleotides is found encapsidated along with the
genomic DNA. This primer is complementary to sequences in the SIR region of the genome [27].

3.2. The Rep Protein Complex

The Rep protein, which is the only protein responsible for the initiation of replication, is a ~39 kDa
protein comprising ~334 amino acids. In silico analysis of the Rep protein (CpCDV-A, -B, -C, -D, -E,
-F, -G, -H, -I, -J, -K, -L, -M, -N, -O, -P, -Q, -R, and -S strains) revealed the presence of motif I (FLTYP),
motif II (HY/CHALI/VQ or HYHASYS) and motif III (VLD/EYIS) [28,29]. The analysis also revealed
the domain LRCHE at the N-terminal region, which is involved in binding with retinoblastoma
protein (RBR). The NTP-binding sites (Walker A (GPT/NRTGKT or DQL/VVPERQ/P) and Walker
B (NV/IIDDI) [30] motifs which are common to the Rep protein of geminiviruses were also located
in CpCDV. The N-terminal region of the Rep protein is predicted to bind the iteron sequences in the
intergenic region. This region is referred to as the iteron-related domain (IRD) [31] and is present in
the N-terminal region which was identified to be the amino acid residues FRF/LQ in CpCDV.

3.3. The Capsid Protein (V1) and Movement Protein (V2)

The capsid protein (V1) of Mastrevirus, like other geminiviruses, is a multifunctional protein. It is
a structural protein and is required for encapsidation, accumulation of ssDNA, vector-mediated
transmission, nuclear import of genomic DNA, and cell-to-cell movement of the viral genome.
The movement protein encoded by the virion sense strand ORF V2 is positioned upstream of the
capsid protein gene [32].

4. Genetic Diversity, Host Range, and Evolution

4.1. Variants of CpCDV

A total seven dicot-infecting Mastrevirus species have been reported from Australia, the Middle
East, and the Indian subcontinent. Among them, six viruses (Chickpea chlorosis virus (CpCV),
Chickpea chlorosis Australia virus (CpCAV), Chickpea redleaf virus (CpRLV), Chickpea yellows virus (CpYV),
Chickpea chlorotic dwarf virus (CpCDV), and Chickpea yellow dwarf virus (CpYDV)) were characterized
from chickpea and TYDV from tobacco [16]. Recently, Muhire et al. (2013) [20] reclassified these viruses
causing chickpea stunt in Africa and Asia, on the basis of 78% nucleotide identity in the genomic
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DNA and grouped all the South Asian mastreviruses as “Chickpea chlorotic dwarf virus”. The species
demarcation criteria of mastreviruses (www.ictvonline.org) are based on their nucleotide sequence
identity, trans-replication of genomic components, capsid protein characteristics, transmitting vector
species, natural host range, and symptom phenotype. To date, 19 strains of CpCDV (CpCDV A
to S strains) have been reported in this genus. Until 1994, presence of CpCDV was limited to the
Indian subcontinent, but they were later found in the Middle East and Africa. The emergence of new
dicot-infecting mastreviruses have been variously reported in recent years (2013–2017) throughout
South and North Africa, South Asia, and the Arabian Peninsula (Figure 2) [13,14,23–25,33–37].
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Figure 2. Geographical distribution of dicot infecting mastreviruses across the old world. 1. Australia-
CpCAV, CpCV-A,B,C,E,F, CpRLV, CpYV and TYDV; 2. Burkina Faso- CpCDV-Q,R; 3. Egypt- CpCDV-A,
4. Eritrea- CpCDV-C,D,E,F,H,I,K,M,N,O,P; 5. India-CpCDV-C,D; 6. Iran- CpCDV-A; 7. Morocco-
CpCDV-D; 8. Nigeria- CpCDV-S; 9. Oman- CpCDV-F; 10. Pakistan- CpCDV-B,C,D,F,H,I, CpYDV; 11.
South Africa- CpCDV-B; 12. Sudan- CpCDV-C,D,E,F,H,I,K,M,N,O,P; 13. Syria- CpCDV-A,F; 14. Tunisia-
CpCDV-A,H; and 15. Turkey- CpCDV-A; 16. Yemen- CpCDV-F.

4.2. Host Range

Until the last decade, the majority of the mastreviruses were known to infect monocots, with
only a few members infecting dicots. TYDV (syn. bean summer death virus) causes diseases in green
bean (Phaseolus vulgaris) and tobacco (Nicotiana tabacum) in Australia [38–41]. Liu et al. (1997) [21] and
Rybicki and Pietersen (1999) [42] reported a South African geminivirus, BeYDV infecting French beans
showing stunting, chlorosis, and leaf curl symptoms.

BeYDV/CpCDV-B systemically infects N. benthamiana, N. tabacum, Lycopersicon esculentum, Datura
stramonium, and Arabidopsis thaliana [21]. In Australia, along with chickpea, hosts like faba bean
(Vicia faba), canola (Brassica napus), mustard (B. juncea), coriander (Coriandrum sativum), spotted medic
(Medicago Arabica), subterranean clover (Trifolium subterraneum), and turnip weed (Rapistrum rugosum)
were identified as natural hosts for Chickpea chlorosis virus [43], and three distinct Mastrevirus species are
known to infect dicotyledonous hosts such as chickpea, bean, and tobacco [44,45]. In the past decade,
the importance and diversity of mastreviruses infecting various crops have increased. In addition to
chickpea, CpCDV sporadically affects sugar beet (Beta vulgaris) [46], P. vulgaris (bean), V. faba (fava
bean), Pisum sativum (field pea), Lens culinaris (lentil) [35], cotton [47], pepper [22,48], and the weeds
Sesbania bispinosa [13] and Xanthium strumarium [49].

www.ictvonline.org
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CpCDV has been rapidly extending their host range and spreading to new geographical regions.
In the past six years, reports from the Middle East and Africa have identified CpCDV infection in
various agriculturally important crops. Moreover, further spread has occurred, with recent field reports
of CpCDV in Egypt infecting squash [23]; watermelon in Tunisia [24]; cotton [47], tomato, okra [50,51],
cucumber [52], and spinach [18] in Pakistan; pepper in Oman [48]; Carica papaya in Nigeria and Burkina
Faso [25,33]; V. faba [35] and wild legumes (Acacia spp. Cajanus cajan, Dolichos lablab, Rhynchosia minima)
in Sudan [53]; and Lens culinaris in Sudan and Pakistan [35] (Table 1). Focusing on individual CpCDV
strains, except CpCDV-L, Q, R, and S strains, all strains were characterized from chickpea (Table 1).
More recently, CpCDV-A was characterized from Citrullus lanatus and squash [23,24]. CpCDV-C
has seven new hosts (cucumber, cotton, okra, pepper, beans, lentils, and tomato). The process of
introducing the viral genome into plants mediated by the Ti plasmid of Agrobacterium is termed as
“agroinfection”, which was first demonstrated with maize streak virus (MSV) [54]. Two hosts—mustard
(Family Brassicaceae) and sesame (Family Pedaliaceae, variety Uma)—were found to be agroinfectable
with CpCDV-C (Figure 3f,g). It has been suggested that CpCDV has a broader host range than other
dicot-infecting Mastrevirus species. Overall, CpCDV were identified in eleven different subfamilies
(Asteraceae, Amaranthaceae, Brassicaceae, Cucurbitaceae, Caricaceae, Chenopodiaceae, Fabaceae, Leguminosae,
Malavaceae, Pedaliaceae, and Solanaceae).

Table 1. Geographical distribution and host range of dicot infecting mastreviruses.

Dicot Infecting Mastreviruses Countries Host Plant Species Reference

CpCV
CpCV-A Australia C. arietinum [35,44]
CpCV-B Australia C. arietinum [35,45]
CpCV-C Australia C. arietinum [45]
CpCV-E Australia C. arietinum, P. vulgaris [35,45]
CpCV-F Australia C. arietinum [35]

CpCAV Australia C. arietinum, P. vulgaris [45]

CpCDV

CpCDV-A Syria, Iran, Turkey,
Tunisia, Egypt

C. arietinum, C. lanatus, Squash,
P. sativum [23,24,35,44,45]

CpCDV-B Pakistan, South Africa P. vulgaris, C. arietinum [13,21]

CpCDV-C India, Sudan, Pakistan

C. arietinum, cucumber, G. hirsutum,
G. arboretum, Okra, C. annuum,

V. faba, L. culinaris, S. lycopersicum,
Spinach (S. oleracea)

[11,13,14,18,22,34,35,50–52]

CpCDV-D India, Pakistan, Sudan,
Morocco C. arietinum, P. sativum, L. culinaris [35]

CpCDV-E Sudan C. arietinum, V. faba [34]

CpCDV-F Sudan, Pakistan, Syria,
Yemen, Oman, Eritrea

C. arietinum, Pepper, L. culinaris,
V. faba [34,35,48]

CpCDV-G Eritrea C. arietinum [35]

CpCDV-H Sudan, Pakistan, Eritrea,
Tunisia

C. arietinum, P. sativum, L. culinaris,
V. faba [34]

CpCDV-I Sudan, Eritrea C. arietinum [34]
CpCDV-J Eritrea C. arietinum [34]
CpCDV-K Sudan, Eritrea C. arietinum [34]
CpCDV-L Pakistan G. hirsutum, G. arboreum [47]
CpCDV-M Sudan C. arietinum [34]
CpCDV-N Sudan C. arietinum [34]
CpCDV-O Sudan C. arietinum [34]
CpCDV-P Sudan C. arietinum [34]
CpCDV-Q Burkina Faso C. papaya [25]
CpCDV-R Burkina Faso S. lycopersicum [25]
CpCDV-S Nigeria C. papaya [33]

CpYDV Pakistan C. arietinum [36]

CpRLV Australia C. arietinum [44]

CpYV Australia C. arietinum [45]

TYDV Australia Tobacco, Wild radish, P. vulgaris, C.
arietinum, Turnip weed (R. rugosum) [35,38,44]
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Figure 3. Symptoms in various hosts with agro-inoculated CpCDV-C. (a) Chickpea plants showing
extreme reduction in leaf size, stunting, yellowing of terminal leaves, dwarfing and proliferation of
axillary buds, drying, and eventual death. (b) N. benthamiana showing severe stunting, chlorosis,
downward folding of margin and reduction of leaf lamina, (c) N. glutinosa showing severe stunting,
small thick green leaves and backward curling of apical leaves followed by reduction in shoot
elongation; (d) N. tabacum showing thickening of leaves, crumpling, and reduction in leaf lamina.
(e) Tomato plants showing young leaves became thick, dark green and mild backward leaf curling
(f) mustard (Family Brassicaceae) plants showed typical chlorosis, downward marginal folding,
and stunted (g) Sesame (Family Pedaliaceae, variety Uma), produced very severe symptoms with
thickening of leaves, downward folding, crumpling, and reduction of leaf lamina. N. benthamiana
agro-inoculated with CpCDV + ToLCNDV DNA B (h) and CpCDV+CLCuMuB-[IN:Sr:02] (i) showing
typical CpCDV symptoms.

Horn et al. (1993) [11] reported that leafhopper O. orientalis (later names as O. albicinctus)
successfully transmitted the CpCDV to a wide range of hosts belonging to the families Solanaceae,
Leguminosae, and Chenopodiaceae, and they found that the virus was efficiently transmitted with a
median acquisition access period (AAP), inoculation access period (IAP), and latency period (LP) of 8,
2.3, and 27.7 h, respectively. However, leafhopper transmission assays have not been conducted for
all the hosts listed in Table 1 above. Therefore, more studies will reveal the efficacy of leafhoppers in
transmitting CpCDV across multiple hosts.

Infectivity of Cloned Components

The family Geminiviridae consists of viruses which are transmitted by the vector, and most of them
are not sap-transmitted, as the viruses are confined to phloem parenchymatous cells. In these cases,
rubbing of the leaves with DNA does not work, as the viral DNA needs to reach the phloem tissue
for its survival. This problem of virus delivery has been circumvented by Agrobacterium-mediated
delivery of the viral genome.
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N. benthamiana infected with clones CpCDV-A showed typical symptoms of yellowing, stunting,
and crumpling of newly emerging leaves [24,55]. With CpCDV-B inoculation on N. benthamiana,
N. tabacum, L. esculentum, D. stramonium, and A. thaliana plants became stunted, leaves developed
interveinal chlorosis, and they exhibited severe downward curling symptoms [21]. Inoculation of
CpCDV-C on N. benthamiana resulted in intense yellowing and downward leaf curling (Figure 3b) [14].
N. glutinosa showed severe stunting, small thick green leaves, and backward curling of apical leaves
followed by a reduction in shoot elongation (Figure 3c) [14], and N. tabacum resulted in reduced apical
leaves, dark green color, and downward leaf curling (Figure 3d) [14]. Young unfurling leaves became
thick, dark green, and had mild backward leaf curling in CpCDV-C agroinoculated tomato plants
(Figure 3e) [14]. Chickpea plants showed foliar yellowing and reduced leaf size, and plants were
stunted [13].

In 2013, Kanakala et al. (2013) [56] observed differences in symptom phenotype when the viral
genome was delivered through Agrobacterium in comparison with field infection. Kanakala et al.
(2013) [56] showed the proliferation of axillary shoots with very small leaves, intense discoloration,
and bushy stunted appearance of the plant as characteristic symptoms in both kabuli and desi
genotypes tested. The reddening symptom seen in desi type in field conditions was not seen in
agroinoculation. Interestingly, highly susceptible genotypes screened in this study dried after 25 days
post inoculation (dpi). The death of virus infected chickpea plants was not observed under field
conditions. The drying and death in agroinoculated plants might be due to the high concentration
of viral inoculum introduced through direct Agrobacterium inoculations. CpCDV-C agroinoculated
mustard (Family Brassicaceae) plants showed typical chlorosis, downward marginal folding, and were
stunted (Figure 3f). Agroinoculated CpCDV-C in sesame (Family Pedaliaceae, variety Uma) produced
very severe symptoms with thickening of leaves, downward folding, crumpling, and reduction of leaf
lamina (Figure 3g). Similarly, CpCDV-A-agroinoculated watermelons showed yellowish/whitish areas
or stripes in the flesh, which was discolored (i.e., orange instead of red) and, in some cases, displayed
a clearly deformed shape [24].

4.3. Phylogenetic Relationships and Detection of Recombination

Dicot-infecting mastreviruses are widely distributed in the chickpea-growing regions of the
world, including Australia, Africa, the Middle East, and South Asia. Genetic diversity based on the
whole genome visualized two major groups, one with monocot-infecting mastreviruses and the other
one comprises dicot-infecting mastreviruses (Figure 4). Among the dicot-infecting mastreviruses,
two clades were visualized in phylogeny analysis, with one comprising dicot-infecting viruses from
Africa, the Middle East, and South Asia (CpCDV-A to CpCDV-S), and the other clade consisting
of dicot-infecting mastreviruses from Australia (CpRV, CpYV, TYDV-A, CpCAV, CpCV-A, CpCV-B,
CpCV-C, CpCV-E, and CpCV-F) and Pakistan (CpYDV).

Mastreviruses are also well documented for having inter/intra species recombination [57,58].
Analyses of CpCDV sequences have suggested that recombination drives the evolution of this virus.
The recombination analysis performed clearly indicates the presence of (a) inter- and intra-species
recombination; (b) several breaking points within the Rep, CP, and intergenic common region (ICR);
and (c) clear recombination breakpoints, hot and cold spots in Rep and CP genes, respectively [34,35,45].
These frequent exchanges of genomes might have resulted in the creation of new species and strains
that may evolve to threaten agriculture.
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Figure 4. Phylogenetic relationships among infecting mastreviruses. Phylogenetic relationships among the
full-length dicot infecting mastreviruses available in the GenBank. The neighbor-joining method was sued
to construction of the tree with the MEGA 6 software program (http://www.megasoftware.net) and the
reliability of the branches was inferred from a bootstrap analysis of 1000 replicates and only the nodes with
values greater than 50% are labelled. DNA A sequence of the bipartite begomovirus species tomato leaf curl
Palampur virus (ToLCPalV) was included as an outgroup.

4.4. Biology and Interaction of Begomoviruses and Satellite Molecules with CpCDV

Mubin et al. (2012) [49] showed the first co-infection of CpCDV with two begomoviruses (cotton
leaf curl Burewala virus (CLCuBuV) and tomato leaf curl Gujarat virus (ToLCGuV) and two satellites
(tomato yellow leaf curl Thailand betasatellite (TYLCTHB) and potato leaf curl alphasatellite (PotLCA)

http://www.megasoftware.net
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in X. strumarium. Similarly, CpCDV was also identified with CLCuBuV in cotton plants affected by
leaf curl disease [47]. Similar to begomoviruses, some mastreviruses (i.e., Wheat dwarf India virus
(WDIV) and CpCDV) have also been found to be associated with DNA satellite molecules in the field
conditions [17,18]. More interestingly, βC1 has also been shown to be a pathogenicity determinant
for both begomoviruses and monocot-infecting mastreviruses [59,60]. More recently, the association of
CpCDV-C with Cotton leaf curl Multan betasatellite (CLCuMB) and Cotton leaf curl Multan alphasatellite
(CLCuMA) was observed in spinach and its ability to trans-replicate CLCuMB in N. benthamiana was
demonstrated [18].

However, our attempts to trans-replicate tomato leaf curl new Delhi virus (ToLCNDV) DNA B
and betasatellite (CLCuMuB) by CpCDV-C in N. benthamiana showed only typical CpCDV symptoms
and no trans-replication (Figure 3h,i). The presence of both ToLCNDV DNA B and CLCuMuB was
not detected in molecular tests performed (data not shown). Similarly, co-inoculation of WDIV with
CLCuMuB showed that CLCuMuB was not maintained by WDIV in wheat [17]. Since it is well
known that geminivirus-encoded Rep protein binds to iterons, which plays a key role in initiating
the replication of viral DNA [31], a specific betasatellite with compatible iteron–iteron-like sequences
with CpCDV is needed to understand their interactions. It is still unknown whether CpCDV can
trans-replicate CLCuMuB or any other betasatellite. Until now, there is no information available about
the frequency of these associations in CpCDV epidemics.

5. Virus–Vector Interactions

Members of the genus Mastrevirus are transmitted by leafhoppers (family Cicadellidae).
The leafhopper vector of the CpCDV causing the stunt disease in India was identified as O. albicinctus
by Horn et al. (1994) [9]. Horn et al. (1993) [11] reported that leafhopper O. albicinctus successfully
transmitted the CpCDV to a wide range of hosts belonging to the families Solanaceae, Leguminosae,
and Chenopodiaceae, and they found that the virus was efficiently transmitted with a median
acquisition access period (AAP), inoculation access period (IAP), and latency period (LP) of 8, 2.3,
and 27.7 h, respectively. By serial transmission, they also showed that the vector can transmit
the virus for most of their lifespan after a two-day AAP. There was similarity between CpCDV
transmission with those conditions given for MSV [61] and BCTV [62–64]. More recently, Akhtar et al.
(2011) [65] demonstrated that CpCDV is successfully transmitted by O. albicinctus. Its presence was
detected in inoculated chickpea plants, and the vector was confirmed by double antibody sandwich
enzyme-linked immunosorbent assay (DAS-ELISA) test using specific polyclonal antibodies. Further
studies on CpCDV–leafhopper transmission assays will reveal the alternative inoculum sources and
CpCDV epidemics.

6. Detection and Diagnosis

The symptoms caused by mastreviruses in graminaceous hosts are often similar to symptoms
caused by abiotic agents like nutritional deficiencies. In the case of dicot-infecting mastreviruses, it is
difficult to distinguish a mastrevirus-infected plant from plants affected by other pathogens. In these
circumstances, it is necessary to have virus-specific diagnostic reagents to detect the virus present in
naturally infected plants. The diagnostics are also required to detect the virus in the insects visiting the
plants in order to identity the vectors. Serological diagnostic methods such as DAS-ELISA, dot-blot
ELISA, and tissue-blot immunoassay (TBIA) have been developed to detect the presence of CpCDV
from infected field plant samples and viruliferous vector [10,46,65,66].

Over the past decade, rolling circle amplification (RCA) and restriction fragment length
polymorphism (RFLP) has been extensively used to identify geminiviruses in most virus-infected
plants. RCA was developed using the bacteriophage varphi 29 DNA polymerase, and was central
in revolutionizing the detection and diagnosis of geminiviruses [67]. This technique is widely
used to efficiently detect and characterize most of the dicot-infecting mastreviruses from field
samples [13,14,34,35,45]. PCR-based methods involving gene-specific primers have also been
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developed and shown to efficiently detect CpCDV in infected plant tissues [13,14,46]. In addition, a
pair of abutting primers have been utilized to amplify full-length dicot-infecting mastreviruses from
Phi29 DNA polymerase-enriched DNA samples [45].

Kanakala et al. (2013) [56] detected CpCDV from field plants with a dot-blot hybridization method
using a radiolabeled probe. Full-length replicative forms of CpCDV in agroinoculated plants were
also detected using CpCDV-specific probes [13,14,18]. Recently, significant reductions in the costs of
next-generation sequencing have accelerated use of deep sequencing for the detection and discovery
of new strains of CpCDV [25,33]. Improved molecular techniques and whole-genome sequencing
approaches for rapid detection of new viruses infecting chickpea offers new understanding of the
evolution of CpCDV and its isolates.

All these molecular methods corroborate the importance of the extensive Mastrevirus diagnosis
and control vector population to transmit disease. The relationships between mastreviruses infecting
different host species need to be understood to develop management strategies that will prevent
the further emergence of new viruses. An extensive global sampling and metagenomics analysis
using next-generation sequencing of these viruses will identify the global diversity of dicot-infecting
mastreviruses and inform better strategies for diagnostics and disease management.

7. Management Strategies

7.1. Host Plant Resistance

In the past decade, an upsurge of chickpea viral diseases has been experienced, resulting in
economic losses of chickpea production across the growing regions. Successful plant breeding
programs for disease resistance depend on the successful identification of sources of resistance and
the incorporation of resistance genes into commercial varieties [68,69]. Chickpea stunt disease is
widespread in the old world, and causes considerable yield loss. The disease has been recognized
as a serious challenge to chickpea cultivation, and resistance-breeding programs are being taken up.
However, they are dependent on natural occurrences of the disease, as evaluation by inoculation
through the vector is often cumbersome. At present, evaluation of CpCDV resistance is conducted on
the basis of field screening of chickpea germplasm.

Among 10,000 germplasm lines screened for resistance to stunt disease, two lines (GG669 and
ICCC10) were found to be field-resistant to CpCDV [12]. More recently, Kanakala et al. (2013) [56] has
developed an agroinoculation technique to screen chickpea genotypes against CpCDV. This technique
involves the construction of a complete tandem repeat CpCDV construct and the delivery of full-length
CpCDV into germinated chickpea seed through Agrobacterium tumefaciens. Over 70 genotypes screened
genotype SCGP-WR-29, which showed resistance in the field condition but exhibited 80% incidence
under agroinoculation. Three agroinoculated genotypes (L-550, GNG-1499 (Gauri), and IPC 09-07)
showed virus resistance and did not express any symptoms, and plants remained alive compared to
susceptible genotypes. More interestingly, resistant plants were shown to be virus-free under PCR
tests. These kinds of resistance screening tests have yet to be adopted to generate CpCDV-resistant
cultivars on a wide scale. In the same study, an objective scoring to assess the response of chickpea
genotypes to CSD by agroinoculation of CpCDV construct was also developed.

7.2. Genetic Engineering Approaches

RNA interference (RNAi) is a very promising strategy that has been employed to control both
plant viruses and insect vectors [70,71]. Hairpin RNAi constructs containing sequences of CpCDV Rep
and MP genes were stably expressed in N. benthamiana to provide immunity to CpCDV inoculation [72].
Baltes et al. (2015) [73] demonstrated a novel strategy for engineering resistance to BeYDV/CpCDV-B
with a clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR-Cas)
prokaryotic immune system. Transgenic N. benthamiana plants expressing CRISPR-Cas reagents and
challenged with BeYDV had reduced virus load and symptoms [73]. However, until now, there have
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been no reports on the transgenic control of any dicot-infecting Mastrevirus in chickpea. This will
require significant progress in tissue culture and transformation technologies to CpCDV-resistant
chickpea genotypes.

Similarly, RNAi has been successfully demonstrated in other leafhopper insect vectors.
Silencing/knockdown of insect genes laccase-2/peptidoglycan recognition protein (PGRP-LC) resulted
in significant mortality in leafhoppers [74,75]. Until now, there have been no RNAi-based silencing
experiments studied in Mastrevirus insect vector. The identification of such candidate genes and the
development of transgenic plants expressing dsRNA/SiRNA that target insect genes are necessary to
control insect virus transmission under field conditions. Recent genome editing tools like CRISPR/Cas9
are highly suggested to modify virus/vector genes in order to develop effective resistance against
CpCDV/O. albicinctus.

8. Future Prospects

CpCDV continues to be a threat to chickpea production worldwide. Although the virus was first
reported in India in the year 1993, today CpCDV has been reported in Africa, the Middle East, and
Australia, because of the polyphagous and widespread insect vector. At present, mixed infections, the
emergence of new strains, and inter/intra recombinations among CpCDV strains/species might have
increased its host range and caused new epidemics. Some major questions remain to be answered
concerning (1) Mastrevirus–satellite interactions, (2) virus–host–insect interactions, (3) insect vector
and its endosymbiont’s efficacy in virus transmission, and (4) the discovery of CSD-resistant chickpea
varieties. Considering the continuing new reports of CpCDV strains from new hosts and regions of
the world, and given the importance of the fourth most widely grown pulse, continued research is
needed to understand the biology, ecology, and epidemiology of CpCDV and its insect vector.

Over the past few years, a very low number of resistant chickpea varieties were screened through
virus inoculations [12,56]. One possible new strategy that we can consider for engineering resistance
against chickpea-infecting geminiviruses is genome editing through CRISPR/Cas9. Some recent
studies exploited CRISPR/Cas9 technology, and could impart molecular immunity in single/mixed
geminivirus infections by targeting the most conserved nonanucleotide sequence (TAATATTAC)
present in the LIR or coding regions of the viral genome [73,76–78]. Finally, pathogen-derived resistance
strategies or gene editing methods need to be utilized to facilitate the development of chickpea cultivars
with resistance to chickpea stunt disease.
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