
biosensors

Review

Screen-Printed Electrodes: Promising Paper and
Wearable Transducers for (Bio)Sensing

Paloma Yáñez-Sedeño *, Susana Campuzano and José Manuel Pingarrón

Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid,
E-28040 Madrid, Spain; susanacr@quim.ucm.es (S.C.); pingarro@quim.ucm.es (J.M.P.)
* Correspondence: yseo@quim.ucm.es

Received: 19 June 2020; Accepted: 7 July 2020; Published: 9 July 2020
����������
�������

Abstract: Screen-printing technology has revolutionized many fields, including that of electrochemical
biosensing. Due to their current relevance, this review, unlike other papers, discusses the relevant
aspects of electrochemical biosensors manufactured using this technology in connection to both paper
substrates and wearable formats. The main trends, advances, and opportunities provided by these
types of devices, with particular attention to the environmental and biomedical fields, are addressed along
with illustrative fundamentals and applications of selected representative approaches from the recent
literature. The main challenges and future directions to tackle in this research area are also pointed out.

Keywords: screen-printed; electrochemical (bio)sensing; paper; wearable; environmental monitoring;
clinical analysis

1. Screen-Printed Paper Electrodes for (Bio)Sensing

Electrochemical paper-based analytical devices (e-PADs) combine the inherent advantages of
electrochemical detection—such as high sensitivity and low detection limits (LODs), the possibility of
enhancing selectivity by applying different potential values or using modified electrodes, and low
cos—with those of paper—such as porosity, allowing liquid transport by capillarity, high surface
area/volume ratio, and easy waste disposal by incineration [1]. Paper-based platforms are interesting
alternatives to develop disposable, eco-friendly, and inexpensive electrochemical sensors. Lightness
and flexibility are additional characteristics of these sensors, which confer unique exploitable properties
for application in electroanalysis. Since 2009, when Dungchai et al. introduced e-PADs [2], research in
this field has been intensive. Different fabrication procedures [3,4], materials [5], and various practical
aspects [6–8] have been reviewed. Akyazi et al. [9] reported a critical overview on the fabrication
techniques, production limitations, and the commercialization of paper devices.

In addition to general reports, a variety of methods using different configurations of (bio)sensors
and paper-based microfluidic designs as detection platforms have been proposed. With the aim
of providing comprehensive information, Tables 1 and 2 summarize the fundamentals and main
characteristics of relevant electroanalytical methods involving screen-printed paper-based devices
applied to environmental and clinical monitoring, respectively.

2. Screen-Printed Paper Electrochemical (Bio)Sensors

2.1. Environmental Applications

An area in which screen-printed paper electrodes have shown particular relevance is environmental
monitoring (Table 1). Different types of paper impregnated with suitable reagents [10], modified
with metal nanoparticles or carbon nanostructures both in the absence or in the presence [11] of
specific enzymes, have been used to determine contaminants such as heavy metals [12], anions [13],
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and gases [14,15]. For instance, the electrocatalytic activity of polyoxymetalates (POMs) toward
the electrochemical reduction of chlorate was employed to prepare a vanadium-containing POM
([PMO11VO40]5−) for the determination of ClO3

− in soils. Just like in other paper-based designs,
the SPCE brought the electrodes and the paper together to create the appropriate cell volume for the
electrolyte solution, resulting in a thin layer cell for electrochemical detection [10]. Moreover, in this
particular application, paper also acted as a filter for soil analysis. Using chronocoulometry, a LOD of
0.31 mg mL−1 ClO3

−was achieved. Using a similar configuration, a disposable gas-sensing paper-based
device (gPAD) was fabricated in origami design, integrating in a single device activated carbon as
the gas adsorbent and the electrochemical detection consisting of a screen-printed graphene electrode
modified with copper nanoparticles. Both NO and NO2 (as NOx) were detected with the same current
responses measured by differential pulse voltammetry (DPV) achieving LODs of 0.23 vppm and
0.03 vppm with exposure times of 25 min and 1 h, respectively. Relative standard deviation (RSD)
values less than 5.1% (n = 7 devices) for 25, 75, and 125 vppm NO2 were reported, and the gPAD was
applied to detect NOx in air and exhaust gases from cars [14].

The nerve agent VX gas is prohibited as a chemical warfare agent. Since it cannot be used in
research experiments, dimethyl methylphosphonate (DMMP) is utilized as a model. A conductive paper
prepared with poly(aniline) (PANI) nanofiber and graphene sheet was used to detect DMMP at parts per
billion within few seconds. The intermolecular forces between the cellulosic paper and the conductive
additives were improved by using the copolymer poly(vinylbutyral-co-vinyl-alcohol-co-vinyl acetate)
(Figure 1). The resulting sensor exhibited a detectable level of 3 ppb and a response time of 2 s [15].
In this field, strategies consisting of electrodes screen-printed onto a filter paper support allows
enzymes and other reagents to be pre-loaded into the cellulose network. An illustrative example
is the paper-based wearable electrode constructed for the detection of mustard agent, one of the
most dangerous chemical warfare agents (CWAs). It is an origami-like device where the detection is
based on the inhibitory effects of the analyte toward the enzyme choline oxidase. The amperometric
responses were measured at a carbon black/Prussian blue nanocomposite distributed on the electrode
surface and profiting its electrocatalytic activity for H2O2 reduction. A Keithley 2400 current source
meter (Keithley Co., Cleveland, OH, USA) was used to measure the electrical properties and sensing
performance of the conductive papers. The LOD attained in the aerosol phase was 0.019 g min m−3 [11].
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Figure 1. Fabrication process of conductive paper containing sensor patterns for dimethyl
methylphosphonate (DMMP) based on poly(aniline) (PANI)/graphene composite. Reproduced and
adapted with permission of American Chemical Society [15].

A carbon-nanotubes-based ink prepared with sodium dodecyl sulfate (SDS) and chitosan (CS)
absorbed onto cellulose fibers was used to prepare a paper electrode for the determination of Pb2+ trace
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levels in water samples. Square-wave anodic stripping voltammetry (SWASV) using a bismuth film
prepared by in situ plating of Bi into the CNT-CS-SDS paper electrodes made the determination of Pb2+

in the presence of Bi (10–200 ppb) with a LOD of 6.74 ppb possible [12]. Furthermore, a paper-based,
disposable electrochemical platform was developed for the determination of nitrite. Graphene
nanosheets and gold nanoparticles were assembled to form a three-dimensional structure onto mixed
cellulose ester (MCE) filter papers, leading to thin layer rather than planar diffusion behavior of nitrite
at the paper-based electrode. The resulting platform provided larger currents compared to conventional
gold or glassy carbon electrodes and, consequently, allowed an improved sensitivity. Importantly,
this design effectively avoided the fouling arising from the adsorption of oxidation products thus
allowing the determination of nitrite in environmental samples such as waters and industrial sewage.
The calibration curve at +0.74 V covered a wide concentration range of 0.3–720 µM, and the LOD was
0.1 µM (S/N = 3) [13].

Contamination of water by microbial pathogens leading to water-borne diseases requires strict
controls in drinking water resources, particularly in poor regions, to reduce mortality incidence.
Although not included in Table 1, various methods related to the detection of microorganisms should
be highlighted. For instance, a simple low-cost paper-based impedimetric sensor for the detection
of bacteria in water was prepared using carbon electrodes screen-printed with a conductive ink onto
a commercial hydrophobic paper. Concanavalin A covalently immobilized onto the carboxylated
electrode surface was used as the biorecognition element due to its ability to selectively interact with
mono- and oligo-saccharides on bacteria. In this method, the hydrophobicity of the cellulose paper used
as a substrate prevented any unspecific adsorption. The biosensor was applied to bacterial cultures
from sewage sludge that were grown in synthetic water, then filtered and enumerated for defining the
stock solution. The calibration plot showed an increase in the charge transfer resistance (RCT) over the
103 to 106 colony forming unit (CFU) mL−1 range, with an estimated LOD of 1.9×103 CFU mL−1 [16].
A fast-flow paper-based electrochemical sensor was developed by Channon et al. for the label-free
detection of virus particles [17]. West Nile viruses were detected by electrochemical impedance
spectroscopy using antibody functionalized Au microwires, achieving a LOD of 10.2 particles in 50 µL
of cell culture media. The sensing approach is easily controllable by means of a smartphone and
may presumably be applied to a range of biological targets. Toxins secreted from pathogens can
also be detected in bacterial cultures using paper-based electrochemical sensors. This is the case of
pyocyanin, a toxin solely produced by Pseudomonas aeruginosa, whose detection was performed using
an inexpensive approach involving electrode printing of carbon ink on photo paper and square wave
voltammetry [18]. It is worth noting that some authors have also exploited the bacterial enzyme
activity (expression of β-glucosidase by Enterococcus spp. and the production of β-galactosidase and
β-glucuronidase by E. coli) for their determination at paper-based electrochemical sensors [19].

The use of biological indicators to determine the toxicological effect of environment pollutants is
an interesting research area where microorganisms combined with paper-based electrochemical sensors
provide important advantages. In this context, a µPAD for highly integrated biotoxicity measurements
was prepared involving screen-printing with conductive carbon ink and chromatographic paper.
The µPAD contained three functional units for injection, separation, and detection zones with
hydrophobic barriers. The E. coli cell incubation and the fluid-cell separation were integrated as
special microfluidic units, and an interesting scheme for determination making use of inhibition
of the microorganism respiratory chain was utilized. The procedure involved the addition of
benzoquinone (BQ) to react with the electron or hydrogen carriers including enzymes, co-enzymes,
prosthetic groups, or co-factors, which compose the respiratory chain, to form hydroquinone (HQ).
When toxic environment inhibits the cellular respiratory chain, the quantity of HQ decreases leading
to lower electrochemical current. The relationship between toxicant and HQ production provided the
fundamentals for the biotoxicity assay. As proofs of concept; two heavy metals, Cu2+ and Pb2+ in
water and soil; the antibiotic penicillin in soil; and the pesticides acetamiprid, triazolone, and acephate
in vegetable juices were detected [20].
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Table 1. Screen-printed paper electrochemical (bio)sensors for environmental applications.

Configuration Technique and Method Detection Analyte/Sample Analytical
Characteristics Ref.

Origami gas-sensing paper-based with
CuNPs/SPGE

Gas absorption and electrocatalytic oxidation of
NO2 reduced form in the presence of CuNPs DPV (nitrite) NOx/air, exhaust

gases from cars 0.03 vppm [14]

Origami paper based multiple biosensor
with BChE, AP or Tyr Detection of TCh, 1-naphthol or 1,2-benzoquinone Differential

amperometry
paraoxon, 2,4-DCPA,

atrazine
L.R: 2–100 ppb

LOD: 2 ppb [21]

PANI/G/PEO/p(VB-co-VA-co-VAc) on
cellulosic paper Conductive paper with printed sensor patterns Resistance changes nerve gas (DMMP) L.R.: 3–30,000 ppb

LOD: 3 ppb [15]

ChOx/PB/CBNPs/office paper SPE Inhibition of ChOx activity Amperometry (H2O2) Sulphur mustard
(Yprite)

L.R: 1–4 mM
LOD: 0.9 mM [11]

Microfluidic device with chromatographic
paper/CE BQ mediated E. coli respiration Amperometry (HQ) pesticides/soils,

vegetables
LOD: 37.5 µg g−1

(triazolone)
[20]

G/AuNPs/mixed cellulose ester filter paper Direct electrochemical oxidation DPV (NO2
−) nitrite/waters L.R: 0.3–720 µM

LOD: 0.1 µM [13]

CNTs/Chit/SDS/cellulosic paper with
electrodeposited Bi

Anodic stripping previous accumulation at −1.2 V
for 240 s SWASV Pb2+/waters

L.R: 10–200 ppb
LOD: 6.74 ppb [12]

G/CNTs/ionic liquid/cellulosic paper with
electroplated Bi

Anodic stripping previous accumulation at −1.3 V
for 300 s SWASV Cd2+, Pb2+/wood L.R: 1–50 µg L−1

LOD: 0.2 µg L−1 [22]

[PMo11VO40]5−/Whatman #4 filter
paper/SPE

Direct electrochemical reduction CV ClO3
−/soil L.R: 0.312–2.5 mg mL−1

LOD: 0.15 mg mL−1 [10]

CB/Prussian Blue paper-based SPE Reagent-free nitrocellulose membrane with
enzyme substrate BTCh

Differential
amperometry

nerve agents
(paraoxon)

L.R: up to 25 µg L−1

LOD: 3 µg L−1 [23]

CNFs or rGO/AuNPs Whatman Grade 1 cellulose paper modified by ink
(bottom side) and nanomaterials (upper side)

LSV after
preconcentration at

+0.2 V vs Ag for 600 s
Hg(II)/river waters L.R: up to 1.2 µM

LOD: 30 nM [24]

SiNs/paper/rGO/SPCE Paper-based immunocapture assay with anti-EE2 SWV EE2/ waters L.R: 0.5–120 ng L−1

LOD: 0.1 ng L−1 [25]

carbon black ink/filter paper SPE Direct electrochemical oxidation SWV BPA/waters L.R: 0.1–0.9; 1–50 µM
LOD: 0.03 µM [26]

AP: alkaline phosphatase; BChE: butyrylcholinesterase, CB: carbon black; Chit: chitosan; CFU: colony forming unit; ChOx: choline oxidase; CNF: carbon nanofibers; DCPA:
2,4-dichloro-phenoxyacetic acid; DMMP: dimethyl methylphosphomate; E. coli: Escherichia coli; EE2: ethinyl estradiol; EIS: electrochemical impedance spectroscopy; G: graphene;
HQ: hydroquinone; LOD: limit of detection; L.R: linear range; CNTs: carbon nanotubes; PANI, polyaniline; PB, Prussian Blue; PEO, polyethylene oxide; p(VB-co-VA-co-VAc):
poly(vinylbutyral-co-vinyl alcohol-co-vinyl acetate); rGO: reduced graphene oxide; SPE: screen-printed electrode; SPGE: screen-printed gold electrode; SDS: sodium docecylsulfate; SiNs:
silica nanoparticles; SWASV: square-wave anodic stripping voltammetry.



Biosensors 2020, 10, 76 5 of 29

2.2. Clinical Applications

Sensitive and selective sensors constructed with screen-printed electrode (SPEs) have been
developed for different analytes of clinical relevance. These sensors exhibit great advantages allowing
fabrication of attractive designs for single and multiple determination even in the absence of biological
elements. In this context, the special features of paper as support material for the preparation of
diagnostic devices, together with those of screen-printed platforms, represents an important advance for
easy self-testing and point-of-care (POC) assessment. Table 2 summarizes the analytical characteristics
and the main properties of some recent and representative methods applied to analytes of clinical
interest in biological samples [27–60]. Some selected examples are discussed below.

An illustrative example is a wax-printed paper-based device reported by Martins et al. [27] for
the electrochemical detection of 3-nitrotyrosine (3-NT), a biomarker of oxidative stress. The paper
was modified to become a hydrophobic support, and then carbon and silver conductive inks were
applied to generate a three electrode-system on a small spot. Square wave voltammetry (SWV)
was employed to determine 3-NT in a range from 500 nM to 1 mM with a low LOD of 49.2 nM.
More recently, a disposable paper-based printed electroanalytical strip has been reported for the rapid
and high-throughput detection of glutathione in blood [28]. The detection involved a thiol-disulfide
exchange reaction giving an electroactive product easily oxidizable at a Prussian Blue/carbon black
nanocomposite screen-printed onto a wax-patterned filter paper. The resulting configuration, where the
paper provides a reagents-free device, allowed the detection of glutathione up to a concentration 10 mM,
with a LOD value of 60 µM, and was employed to quantify blood glutathione at physiological levels.

Hydrogen peroxide is an important biomarker associated with respiratory and pulmonary
diseases such as asthma and lung cancer. A disposable cellulose paper-based electrochemical sensor
integrated into a commercial respiratory mask was reported for on-site testing of H2O2 in exhaled
breath (Figure 2) [29]. The device involved a Prussian-Blue-mediated carbon electrode for H2O2

detection and a carbon blank electrode for subtracting the background currents. In the presence
of the analyte, the oxidation product formed from Prussian Blue was electrochemically reduced
providing amperometric responses related to the H2O2 concentration. This configuration did not
exhibit influence from environmental conditions or interferents due to differential measurements.
In addition, the use of paper as flexible substrate and hygroscopic porous support eliminated the need
for additional membranes.
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Figure 2. (A) Schematics of fabrication steps and (B) computer-aided design (CAD) drawing of
the disposable cellulose paper-based electrochemical sensor for on-site testing of H2O2 in exhaled
breath with poly-methylmethacrylate (PMMA) carrier. (C) Model of a filter extension for respiratory
mask. (D) Image of respiratory mask with the commercial filter extension with customized sidewalls,
containing the sensor chip. Reproduced and adapted with permission of American Chemical Society [29].
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Table 2. Screen-printed paper electrochemical (bio)sensors for clinical applications.

Configuration Technique and Method Detection Analyte/Sample Analytical Characteristics Ref.

Fe(CN)6
3−/banana peel

tissue/SN-MPTS/paper
L-Tyr oxidation catalyzed by tyrosinase and

mediated by Fe(CN)6
3− DPV L-Tyr/plasma L.R: 0.05–600 µM

LOD: 0.02 µM [39]

MWCNTs/THI/AuNPs/SPE Label-free microfluidic paper based
immunosensor with immobilized anti-E2 DPV (THI) 17β-estradiol

(E2)/serum
L.R: 0.01–100 ng mL−1

LOD: 10 pg mL−1 [40]

(NH2-G)/THI/AuNPs/SPE Label-free microfluidic paper based
immunosensor with immobilized anti-BNP Amperometry BNP/serum L.R: 0.05–30 ng mL−1

LOD: 12 pg mL−1 [41]

rGO/THI/AuNPs/SPE Label-free microfluidic paper based
immunosensor with immobilized anti-FSH DPV (THI) FSH/serum L.R: 1–100 mIU mL−1

LOD: 1 mIU mL−1 [42]

rGO-TEPA/AuNPs/SPE
Microfluidic paper-based immunosensor

with immobilized anti-AFP;
HRP-GNRs-dAb as signal probe

SWV (H2O2/OPD) AFP/serum L.R: 0.01–100 ng mL−1

LOD: 0.005 ng mL−1 [35]

L-Cys-AuNPs/G/SPE Label-free origami paper based
immunosensor with immobilized anti-CRP EIS (Fe(CN)6

3−/4−) CRP/serum L.R: 50–105 ng mL−1

LOD: 15 ng mL−1 [43]

Q-MA/SPGE Label-free microfluidic paper based
immunosensor with immobilized anti-CEA DPV CEA/serum L.R: 1–100 ng mL−1

LOD: 0.33 ng mL−1 [44]

DPA/Ag/G/SPCE Microfluidic plastic-paper based
immunosensor with immobilized anti-AFP EIS AFP L.R: 1–104 ng mL−1

LOD: 1 ng mL−1 [37]

OPANI/G/SPE Label-free microfluidic paper based
immunosensor with immobilized anti-IFN-γ EIS (Fe(CN)6

3−/4−) IFN-γ/serum L.R: 5–103 pg mL−1

LOD: 3.4 pg mL−1 [45]

rGO/THI/AuNPs
Label-free microfluidic paper based
immunosensor with immobilized

anti-CA125
DPV (THI) CA125/serum L.R: 0.1–200 U mL−1

LOD: 0.01 U mL−1 [46]

cMWCNTs/cellulose
paper/SPE

Label-free paper based immunosensor with
immobilized anti-cTnI EIS (Fe(CN)6

3−/4−) cTnI/serum L.R: 0.05–50 ng mL−1

LOD: 0.05 ng mL−1 [47]

Fe3O4@AuNPs@SiO2 MIP
/Whatman paper/CPE 3D-ePAD Direct oxidation LSV serotonin/capsules,

urine
L.R: 0.01–1,000 mM

LOD: 0.002 mM [30]

C/Ag/paper/SPE Label-free detection, current decrease SWV 3-nitrotyrosine L.R: 500 nM–1 mM
LOD: 49.2 nM [27]
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Table 2. Cont.

Configuration Technique and Method Detection Analyte/Sample AnalyticalCharacteristics Ref.

Patterned waxed paper
screen-printed with silver ink

Electrochemical oxidation in the presence of
silver CV chloride/serum,

sweat
L.R: up to 200 mM

LOD: 1 mM [49]

Prussian Blue/paper/SPEs Differential current measurements amperometry H2O2/simulated
exhaled breath

L.R: 5–320 µM
LOD: — [29]

Prussian Blue/C black/wax
patterned wax filter paper Thiol-disulfide exchange reaction Amperometry +0.3 V glutathione L.R: up to 10 mM

LOD: 60 µM [28]

CoPc/G/IL/paper/SPCE Non-enzymatic detection Amperometry +0.7 V glucose/serum,
honey, wine

L.R: 0.01–1.3–5.0 mM
LOD: 0.67 µM [50]

AuNPs/porous paper/SPE Non-enzymatic detection CV glucose L.R: 0.01–5 mM
LOD: 6 µM [51]

ATCh/G/Ag/AgCl ink/wax
printing paper

ATCh hydrolysis by AChE giving TCh
directly oxidized Amperometry/TCh AChE L.R: 0.1–15 U mL−1

LOD: 0.1 U mL−1 [34]

PheDH/paper/ERGO/SPCE Phe hydrolysis by PheDH in the presence of
NAD+ Amperometry/NADH Phe/neonatal blood L.R: 1–600 µM

LOD: 0.2 µM [33]

paper-based wax
printing/CB/SPCE BTCh as substrate of BChE Amperometry/TCh/PB BChE activity/serum L.R: up to 12 IU /mL

LOD: 0.5 IU/mL [52]

MBs/paper microfluidic/SPCE On-chip single-step magneto-immunoassay
with cAb-MBs and poly-HRP-biotin-dAb Amperometry/H2O2/TMB MMP-9/plasma L.R: 0.03–2 ng mL−1

LOD: 0.01 ng mL−1 [53]

AQ-PNA/G-PANI/paper/SPCE PNA-DNA duplexes obstruct electron
transfer from AQ label SWV/AQ HPV/DNA from

SiHa cell line
L.R: 10–200 nM

LOD: 2.3 nM [54]

MB-tagged
TFO/AuNPs/paper/SPCE

filter and copy papers compared for
detection of ssDNA or dsDNA SWV/MB HIV/serum L.R: 3–3,000 nM

LOD: 3 nM ssDNA; [55]

CuO/IL/ERGO/SPCE/PAD CuO/IL delivered from a HP D300 digital
dispenser Amperometry Creatinine/human

serum
L.R: 0.01–2.0 µM

LOD: 0.22 µM [56]

GOx-rGO-TEPA/PB-paper/SPE 3D paper-based microfluidic SPE Amperometry H2O2/PB Glucose/human
sweat, blood

L.R: 0.1–25 mM
LOD: 25 µM [57]

rGO/AuNPs-paper-SPE Wax-patterning on filter paper Whatman
No1; rGO prepared from GO and dopamine SWV uric acid/urine L.R: 2.5–1,000 µM

LOD: 0.74 µM [58]
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Table 2. Cont.

Configuration Technique and Method Detection Analyte/Sample AnalyticalCharacteristics Ref.

Wax printed amino-functional
graphene (NG)/THI/AuNPs
and PB/PEDOT/AuNPs/SPE

PADs

Label-free aptasensors DPV CEA, NSE/serum

L.R: 0.01–500 ng mL−1 (CEA);
0.05–500 ng mL−1 (NSE);
LOD: 2 pg mL−1 (CEA);

10 pg mL−1 (NSE)

[59]

Wax screen printing patterns
on cellulose

paper/Nafion/Chit/GOx/PB/SPE
3D paper-based microfluidic SPE Amperometry H2O2/PB glucose/sweat L.R.: up to 1.9 mM

LOD: 5 µM [60]

ATCh: acetylthiocholine chloride; AF: alpha-fetoprotein; AP: alkaline phosphatase; AQ-PNA:anthraquinone-labeled pyrrolidinyl peptide nucleic acid; AuNPs: gold nanoparticles; BChE:
butyrylcholinesterase, BNP: B-type natriuretic peptide; BTCh: butyrylthiocholine; cAb: capture antibody; CB: carbon black; CEA: carcinoembryonic antigen; Chit: chitosan; CNFs: carbon
nanofibers; CoPc: cobalt phthalocyanine; CRP: C-reactive protein; dAb: detector antibody; DCPA: 2,4-dichlorophenoxyacetic acid; DPA: diphenylalanine; EIS: electrochemical impedance
spectroscopy; ERGO: elecrochemically reduced graphene oxide; FSH: follicle stimulating hormone; G: graphene; GNR: gold nanorods; HIV: human immunodeficiency virus HPV: human
papillomavirus; HRP: horseradish peroxidase; IL: ionic liquid; MAQ: mercapto-amine quinone-functionalized receptor; MB: methylene blue; MWCNT: multi-walled carbon nanotubes;
NSE: neuronspecific enolase; OPD: o-phenylenediamine; PANI: polyaniline; PB: Prussian Blue; Phe: phenylalanine; Q: quinone; Q-MA: quinone-based mercapto amine; rGO: reduced
graphene oxide; SN-MPTS: 3-mercaptopropyl trimethoxysilane functionalized silica nanoparticles; SPE: screen-printed electrode; SPGE: screen-printed gold electrode; TCh: thiocholine;
TEPA: tetraethylene pentamine; TFO: triple forming oligonucleotides; THI: thionine; TMB: tetramethylbenzidine.
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Molecularly imprinted polymers (MIPs) used as electrode surface modifiers allow high selective
recognition, although they sometimes lack the required sensitivity due to the poor conductivity of
building materials. To improve the analytical performance, nanostructured configurations yielding
larger currents and fast responses have been proposed. The resulting nano-sized MIPs have been
combined with paper-based analytical devices to obtain three-dimensional electrochemical PADs
(3D-ePADs), which provide additional advantages such as lower cost and smaller sample and reagents
volumes. An interesting example is the method involving filter papers prepared by alkyl ketene dimer
(AKD)-inkjet printing of a circular hydrophobic detection zone coupled with screen-printed graphite
electrodes drop coated with Fe3O4@Au@SiO2-MIP nanocomposites (Figure 3), for the voltammetric
determination of serotonin. Linear sweep voltammetry at +0.39 V provided a linear range from 0.01 to
1,000 mM with a LOD of 0.002 mM. The resulting MIPs exhibited strong affinity for the analyte, and the
electrochemical sensor showed electrocatalytic activity toward the oxidation of serotonin. The sensor
was successfully applied to the analysis of pharmaceutical capsules and urine samples [30].
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Figure 3. (A) Synthesis of Fe3O4@Au@SiO2-MIP, (B) preparation of the sensor for serotonin, and (C)
electrochemical detection using the 3D-ePAD. Reproduced and adapted with permission of Elsevier [30].

Human C-reactive protein (CRP) is a nonspecific pentameric protein produced by hepatocytes in
the liver upon stimulation by endogenous proinflammatory cytokines. CRP is an important biomarker
for various cardiovascular diseases and its determination requires sensitive and accurate methods
with high selectivity for application in complex clinical samples. Pinyorospathum et al. [31] developed
a single step method for the determination of CRP in human serum involving a AuNP-modified
SPCE self- assembled with PADs tethered with a biomimetic polymer consisting of thiol-terminated
poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC-SH). The approach took advantage of the
specific binding of protomers subunits forming the CRP structure to the phosphorylcholine group
in the presence of calcium ion [32]. Figure 4A shows that PMPC-SH copolymer reacts with AuNPs;
then, [Fe(CN)6]3−/4− current at the resulting PMPC-SH/AuNPs-SPCE is measured by DPV to further
subtracting it from the response in the presence of CRP. Figure 4B–F shows the preparation of the PAD
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in three parts—the middle where SPCE is placed, the green flap for the storage of calcium ions and
dropping the sample, and the purple flap used for the detection with the [Fe(CN)6]3−/4− redox probe.
The current decreased in the presence of CRP and Ca2+ over the 5 to 5,000 ng mL−1 CRP concentration
range with a LOD value of 1.6 ng mL−1. The use of a PMPC-modified surface reduced the nonspecific
adsorption of proteins, and the sensor response was not interfered by bilirubin, myoglobin, or albumin.
The sensor was successfully applied to the determination of CRP in certified human serum.
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Figure 4. (A) Preparation of thiol-terminated poly(2-methacryloyloxyethyl phosphorylcholine)
(PMPC-SH)-AuNPs/SPCE. (B–F) Steps for preparation of the PMPC-SH-AuNPs/SPCE/PAD sensor for
the differential pulse voltammetry (DPV) determination of C-reactive protein (CRP). Reproduced and
adapted with permission of Springer [31].

Electrochemical enzyme paper biosensors (EPADs) have been shown to provide an adequate
microenvironment for direct measurements, while physical adsorption of the enzyme did not affect its
native structure, function, and electrocatalytic activity [32]. An illustrative example is a biosensor for
phenylketonuria (PKU) screening based on the determination of phenylalanine (Phe). The biosensor
was implemented by immobilization of phenylalanine dehydrogenase (PheDH) over paper microzones
placed onto an electrochemically reduced graphene oxide (ERGO)-modified SPCE. The detection
of the NADH formed in the presence of NAD+ provided a sensitive, low-cost, and fast method for
PKU monitoring in neonatal blood samples [33]. An original paper-based biosensor was developed
for the detection of acetylcholinesterase (AChE) [34]. This enzyme catalyzes the hydrolysis of
acetylcholine neurotransmitter and its abnormal function can promote and accelerate the aggregation
of amyloid-betapeptides closely related to Alzheimer’s disease. The bioelectrode was fabricated by
immobilization of acetylthiocholine on a sheet prepared with double adhesive tape. The enzyme
samples were dropped on the backside of the electrode where, after hydrolysis, amperometric detection
was performed and provided a LOD value of 0.1 U mL−1 AChE.

The combination of SPEs with simple paper-based microfluidics (µ-PEI) exhibits several advantages
for the preparation of electrochemical biosensors compared with conventional analytical devices
fabricated with other substrates (glass, silicon, or polymers). The resulting devices are inexpensive,
easy to fabricate, and compatible with a variety of chemical or biochemical applications [35]. Cellulose
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papers with high surface area have become useful substrates in combination with SPEs for prototyping
new point of care testing devices (POCTs) involving microfluidic systems in clinical diagnostics.
Among the recent designs, those involving immunoassays constitute a challenge where the stability
of the immunoreagents and the preparation of a surface capable of promoting electronic transfer to
effectively enhance the assay sensitivity and selectivity, are critical factors. An illustrative method is that
reported for the determination of alpha-fetoprotein (AFP). The method used paper-based microfluidic
channels to integrate sampling, detection, and adsorption zones, as well as an rGO-tetraethylene
pentamine (TEPA)/AuNPs nanocomposite for immobilization of specific AFP antibodies and sensitive
detection (Figure 5) [35]. AFP is one of the most important biomarkers in diagnosing hepatocellular
carcinoma, and in the case of pregnant women, it is the first serologic biomarker to detect birth defects
in a developing baby [36,37]. The immunoreaction was performed by applying the tested solution to
the sample zone and letting it elute slowly to the detection zone where AFP was captured. Then, gold
nanorods decorated with horseradish peroxidase and detector antibodies (HRP-GNRs-Ab2) were
dropped onto the sample zone to form a sandwich-type configuration on the working electrode and
SWV detection was carried out in the presence of H2O2. The calibration plot showed a wide linear
range (0.01–100.0 ng mL−1) with a low LOD value of 0.005 ng mL−1.
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channels to integrate sampling, detection and adsorption zones, and a reduced graphene oxide
(rGO)-tetraethylene pentamine (TEPA)/AuNPs nanocomposite for immobilization of specific AFP
antibodies. Reproduced with permission of Elsevier [35].
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Oher configurations involving label-free paper-based immunosensors with immobilized capture
antibodies have been reported for the detection of hormones [40,42], CRP [43], interferon (IFN-γ) [45],
cancer biomarkers [44,46], and cardiac biomarkers [41,47]. Among them, it is worth mentioning
the platform described by Ruecha et al. [45] involving a paper-based microfluidic device coupled
with a label-free electrochemical impedimetric immunosensor for the detection of IFN-γ in serum.
This multifunctional cytokine, originally characterized by its viral activities, is primarily secreted by
natural killer T cells as a part of the innate immune response to intracellular pathogens [48] and plays
a crucial role related to inflammatory and antoimmune diseases. In Ruecha’s method, a wax-printing
strategy was implemented to fabricate the paper electrode, which was screened with graphene modified
ink to deposit polyaniline (PANI) and further covalent immobilization of the specific anti- IFN-γ
antibodies. The increase of the charge transfer resistance with the cytokine loading provided a linear
relationship with logarithmic concentrations of IFN-γ in the 5–1000 pg mL−1 range with a LOD of
3.4 pg mL−1.

Although the number of paper-based electrochemical biosensing platforms has increased in
the last few years, the vast majority of the reported methods involve the use of enzymes and
antibodies as recognition elements, and so far, they have not been expanded to nucleic acid-based
assays. In this context, Liu et al. [38] prepared a paper modified with signal molecule-labelled DNA
and a screen-printed electrode along with target recognition solutions to achieve the detection of
multiple biomarkers. The method is based on the target-induced synthesis of Mg2+- dependent
DNAzyme for catalyzing the cleavage of substrate DNA from paper, taking advantage of the
high specific target-triggered polymerization/nicking and DNAzyme-catalyzed signal amplification.
The performance of this method was evaluated using a microRNA recognition probe for lung
cancer-specific miR-21, a phosphorylated hairpin probe for targeting alkaline phosphatase (ALP),
and a DNA aptamer for carcinoembryonic antigen (CEA). Ferrocene-labeled DNA (Fc-DNA) was
immobilized on paper by functionalizing it with aldehyde groups and further Schiff-based reaction
(Figure 6A). Then, the paper-electrochemical biosensor was prepared by sticking the Fc-DNA modified
paper onto a plastic slide and carbon nanotubes modified SPE. As an example, the fundamentals
of miR-21 detection are illustrated in Figure 6B. After incubation with the recognition solution that
contains the ssDNA probe (P1), KF polymerase and nicking endonuclease Nt.BbvCI, the polymerization
via KF activity is initiated to extend the 3’-end, providing dsDNA with recognition site for endonuclease
whose activity to cut one strand of dsDNA generates new replication sites. Then, the Mg2+-dependent
DNAzyme strand is displaced and released. This cycle produces a large amount of DNAzyme strands
that fold into the catalytically active loop structure and bind to immobilized Fc-DNA resulting in the
release of DNAzyme strands and cleaved Fc-shorter ssDNA from the paper, which diffuses to the
surface of CNTs-SPE giving a DPV response.

Among paper-based electrochemical DNA sensors, configurations developed for the detection of
human papillomavirus (HPV) [54] and human immunodeficiency virus (HIV) [55] are particularly
relevant. Teengam et al. [54] reported a graphene-PANI modified electrode with immobilized
anthraquinone-labeled pyrrolidinyl peptide nucleic acid probe (AQ-PNA) for the detection of a synthetic
14-base oligonucleotide target with the sequence of HPV type 16 DNA by electrochemical measurement
of the AQ response by SWV. A linear range of 10–200 nM and a LOD value of 2.3 nM were obtained.
The performance of this biosensor was tested with the detection of PCR-amplified DNA. On the other
hand, Cinti et al. [55] developed a series of paper-based strips for the electrochemical detection of single
and double stranded DNA, which were successfully applied to a synthetic PCR amplified dsDNA
sequence related to HIV in serum samples. Paper-based AuNPs-SPE platforms and triplex forming
oligonucleotides (TFO) including Methylene Blue (MB) were used as the recognizing probes.
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3. Wearable Printed Electrodes for Biosensing Applications

Due to the booming research activity in the field of wearable and/or flexible printed electrodes,
excellent reviews have been recently reported highlighting the versatility and tremendous potential
of these devices [61–69]. Therefore, this section is just limited to give a rough overview of late
advances and prospects to draw the current landscape of wearable and flexible printed electrodes
(not implantable) for biosensing. Accordingly, only a few of the most representative methods reported
during 2018 and 2019, applied mainly to clinical diagnosis and environment monitoring, are critically
discussed. Table 3 summarizes the main features of these methods.

SPEs can be easily printed in a variety of shapes (flower, skull, marijuana, panda bear, etc.,
Figure 7a–d) and sizes and can be modified with different biological elements and nanomaterials.
Leveraging on these advantages, screen printing has been employed to construct affordable wearable
printed electrochemical sensors to provide real-time information on both the wearer’s health and
performance (opening the door to individualized medicine) and the surrounding environment. In the
physiological monitoring field, the active sensor surface is in close contact with the epidermis (oral
mucosa in the mouth, stratum corneum or skin) to detect relevant biomarkers such as glucose [70]
and ethanol [71] in different informative biofluids (saliva, sweat, tears). However, for monitoring the
wearer’s environment, the sensor faces away from the epidermis in the direction of the surrounding to
detect risk of exposure to chemicals [63]. Moreover, the recently explored robotic assisted strategy
implies that the robot fingertips are kept in close contact with the target sample [72].

The spectacular growth witnessed in wearable printed sensors is largely due to the development
of novel materials that imparted the resulting sensors the capabilities to fold, bend, stretch, and repair,



Biosensors 2020, 10, 76 14 of 29

ensuring their performance during on-body applications under extreme tensile stress [73]. Wearable
electrochemical sensors have been implemented on head-to-toe wearable platforms and in connection
to different biofluids, environments and analytes [64]. For the realization of wearable applications
matching the non-planarity and mechanical properties of the human body, electrochemical sensors
have been printed on temporary tattoo, bendable bandage, gloves, contact lens, water-soluble silk
thin-film substrates (transferred to tooth enamel) or textile substrates (GORE-TEX and Neoprene)
(Figure 7e–j) [63] or incorporated in mouthguards, eyeglasses, or rings (Figure 7k–m). The great
progress experienced by electronics in terms of flexibility and miniaturization [65,74–76], in the
development of effective methods for stimulating/controlling of non-invasive bio-fluids collection and
the proliferation of smart-phones and connected devices, together with a growing consumer demand
for health awareness, and the imperative need for doctors to obtain as much objective and quality data
from their patients as possible, have been crucial aspects in the development of fully implementable
wearable electrochemical devices and in opening up new avenues for body-integrated electronics
previously unattainable [74]. However, powering is still the main Achilles’ heel of these devices and
the size and weight of the power source may limit the wearability of the biodevices and hinder the
wearer’s activity. Therefore, the rational integration of power sources with biosensors is a desperate
requirement and additional efforts are required to develop anatomically compliant, miniaturized,
stretchable and flexible power sources [64,77].

In general, there are three different modes of integrating wearable biosensors and power supplies:
(1) an external circuit connection which is bulky and cumbrous; (2) a flexible substrate-based integration;
and (3) all-in-one integration [78]. The last two strategies, made possible by advances in device
designs and micro/nanofabrication technologies, are more widely used. The second strategy implies
each component is relatively independent and can be considered a general integration strategy
applicable to diverse sensing systems without having to worry about structural compatibility between
components but difficult to allow the level of miniaturization required. The third strategy is effective
for miniaturized designs in which all the components suffer from similar deformations simultaneously.
However, the endurability difference among them should be minimized to guarantee the normal
function of the respective component.

Currently, wearable biodevices are powered mainly by (i) safe high energy wearable batteries;
(ii) energy conversion devices (piezoelectric and triboelectric nanogenerators, which harvest the
mechanical energy in human motions, such as walking, breathing, and waving arms; solar cells,
which harness light energy; thermoelectric supercapacitors; biofuel; and water-voltage cells); (iii) energy
storage devices (mechanically flexible energy storage elements, mainly supercapacitor, and lithium-ion
battery); (iv) hybrid power supplies combining energy conversion with energy storage; and (v) wireless
energy transfer (wireless coils, like RF antennas). Significant progress have also been made in self-power
and energy-efficient or even energy-free systems devices, fueled by the development of high-efficiency
energy acquisition approach and ultra-low power consumption technique [68,69,78–80].
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Figure 7. SPEs printed on flower (a), skull (b), panda bear (c), and marijuana (d) shapes. SPEs fabricated
on a temporary tattoo (e), bendable bandage (f), textile substrate (g), glove (h), water-soluble silk
thin-film substrates (transferred to tooth enamel) (i), contact lens (j), or incorporated in a mouthguard
(k), eyeglasess (l) or ring (m). Reprinted and adapted with permission of Springer [68] (e,j,k) Wiley [81]
(f), Elsevier [82] (a,g), Elsevier [82](b), Wiley [83] (c), Wiley [65] (h), Nature Research [84] (i), Elsevier [85]
(l), and Elsevier [86] (c,m).

As a previous step to on-body measurements, Payne et al. made an exhaustive study to characterize
the effects of five different salts in physiologically relevant concentration ranges on the performance
of a printed, flexible, wearable biosensor involving lactate oxidase and tetrathiafulvalene for the
amperometric detection of lactate in sweat [87].

The extensive and pioneering work performed by Wang’s group in the development of wearable
and flexible printed electrodes for biosensing in healthcare, food, and security fields should be noted.
Wang’s team proposed the use of fully integrated wearable bendable bandage and minimally invasive
microneedle-based sensors modified with catechol (CAT) for rapid and decentralized screening of skin
melanoma through the amperometric detection of the benzoquinone (BQ) generated in the presence
of the tyrosinase (TYR) biomarker (Figure 8). The bandage sensor exhibited high resiliency against
mechanical strains due to the use of stress-enduring inks for its printing. These skin-worn sensors were
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interfaced to flexible electronic board that controlled the electrochemical operation and transmitted
data wirelessly to a mobile device, and were used to screen biomarkers both on the skin surface
(bandage sensor) or under the skin (microneedle device). They were applied to analyze TYR-containing
agarose phantom gel and porcine skin [81]. These epidermal sensors allow skin cancer screening in
less than 4 min obviating the need of painful solid biopsies and the associated delays and anxiety.
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Figure 8. TYR biosensing using a bandage electrochemical sensor modified with a CAT-containing
agarose gel and involving wireless chronoamperometric data transmission to a smart device (a).
Chronoamperometric responses provided by the bandage sensors before (black line) and after (red line)
2 min interaction with skin pork samples untreated (1) and treated with 0.5 (2), and 2.5 mg mL−1 TYR
(3) (b). Reprinted and adapted with permission of Wiley [81].

The same group reported a strategy using a single wearable and flexible epidermal platform for the
simultaneous yet independent noninvasive sampling and analysis of two different epidermal biofluids
(sweat and skin interstitial fluid (ISF) with a blood-like composition) at two physically separate
locations. This approach involves parallel operation of iontophoretic delivery of the sweat-inducing
pilocarpine into the skin and reverse iontophoretic ISF extraction across the skin at anode and cathode,
respectively (Figure 9a,b) [83]. The developed wearable device was implemented using a cost-effective
screen-printing technique with body-compliant temporary tattoo materials for disposable single use
and conformal wireless readout circuits, and integrated amperometric GOx and AOx biosensors
(Figure 9c). It was used for real-time monitoring of alcohol and glucose levels in sweat and ISF,
respectively, from individuals consuming food and alcoholic drinks.
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Figure 9. Wearable iontophoretic biosensing device developed on a printed tattoo platform for
simultaneous glucose and alcohol monitoring in interstitial fluid (ISF) and sweat, respectively,
and wireless real-time transmission of the recorded response (a). Schematic display of the iontophoretic
operation to simultaneously induce generation of alcohol-containing sweat by iontophoretic delivery
of pilocarpine at the anode and sampling of ISF glucose at the cathode by reverse iontophoretic (b);
biosensing operations to detect amperometrically alcohol in the stimulated sweat and of glucose in
the extracted ISF by measuring the hydrogen peroxide generated in the AOx and GOx enzymatic
reactions (c). Reprinted and adapted with permission of Wiley [83].

Flexible epidermal tattoo and textile-based electrochemical biosensors using stretchable
organophosphorus hydrolase (OPH) enzyme electrodes have been developed for continuous
vapor-phase detection of organophosphorus (OP) threats [82] (Figure 10a). These wearable sensors
were fabricated with elastomeric inks and displayed resiliency toward mechanical stress expected
from the wearer’s activity without compromising the biosensing performance. They were coupled
with a fully integrated conformal flexible electronic interface providing square-wave voltammetry
(SWV) detection of the enzymatically-generated nitrophenol product (Figure 10b) and wireless data
transmission. The sensor achieved a LOD of 12 mg L−1 in terms of OP air density. The same group
proposed also a wearable tattoo OPH–pH biosensor for real-time on-body potentiometric monitoring
of G-type nerve agent simulants (using fluorine-containing OP nerve agent simulant diisopropyl
fluorophosphate, DFP, as model) in both liquid and vapor phases. The OPH biocatalytic recognition
phase was coupled on a flexible printed transducer with a pH-responsive poly(aniline) PANI layer
for monitoring the proton release during the enzymatic hydrolysis of DFP by OPH. This skin-worn
OP potentiometric sensor withstands severe mechanical strains without compromising the analytical
performance and displays a wide dynamic range, fast response, high selectivity towards DFP and
good reproducibility. These wearable OP biosensing devices hold considerable promise for real-time
on-body detection and warning exposure to chemical threats such CWAs and pesticides in a variety
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of scenarios for triggering timely countermeasure actions, changing dramatically the protection of
civilians, farmers, and military personnel.Biosensors 2020, 10, x FOR PEER REVIEW 19 of 31 
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Figure 10. Epidermal tattoo organophosphorus hydrolase (OPH)-based biosensor for vapor-phase
detection of OP through SWV measurements of the p-nitrophenol generated after interaction of the
MPOx micro-droplets released from the nebulizer with the OPH layer (a). Pictures of the OPH based
epidermal tattoo (up) and textile (down) biosensors integrated with the flexible electronic interface and
SWV responses they provide upon spraying 0 (i), 5 (ii), 10 (iii), and 15 (iv) mM MPOx in the vapor
phase (b). Reprinted and adapted with permission of Elsevier [82].

Wang’s team reported recently a wearable eyeglasses-based tear biosensing system for non-invasive
monitoring of key biomarkers [85]. The wearable tear bioelectronic platform integrates a microfluidic
electrochemical detector into an eyeglasses nose-bridge pad and the wireless electronic circuitry into
the eyeglasses frame and yielded a fully portable, convenient-to-use fashionable sensing device placed
outside the eye region addressing drawbacks of sensor systems involving direct contact with the
eye as the contact lenses platform (Figure 11a). The concept was used for real-time non-invasive
detection of alcohol, glucose and multiple vitamins in tears in connection with enzymatic (AOx and
GOx) biosensing fluidic system (alcohol and glucose) and rapid voltammetric scanning (vitamins).
This tear alcohol sensing strategy exhibited good correlation to concurrent blood alcohol concentration
(BAC) in the monitoring of alcohol intake in individuals over multiple drinking courses.

A novel sensor ring concept, comprising a powerful wireless electronic board embedded into
a ring platform and a readily replaceable printed dual-sensor electrode cap, was developed for the
simultaneous, direct and rapid field detection of D9-tetrahydrocannabinol (THC) and alcohol in diluted
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saliva [86]. The ring sensing platform contained a voltammetric THC sensor based on a multi-walled
carbon nanotubes MWCNTs/carbon electrode and an amperometric alcohol biosensor involving
Prussian-blue (PB) mediator, coated with AOx/chitosan reagent layer on the ring cap (Figure 11b).
The dual-analyte THC/alcohol ring sensor system showed no cross talk and high sensitivity (0.5 µM
THC and 0.2 mM alcohol). THC and alcohol were determined simultaneously in the same diluted
saliva sample within 3 min without any interference from the matrix. This new wearable THC/alcohol
ring sensor, readily expanded to detecting other drugs of abuse, is very promising for rapid testing of
suspected drivers and for alerting users to their own levels before driving.
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Figure 11. Schematic cartoon of the fluidic device, wireless electronics integrated into the eyeglasses
platform, enzymatic detections of alcohol and glucose by chronoamperometry and non-enzymatic
determination of vitamins by SWV in collected tears (a). Ring-based sensor platform embedded with
marijuana designed sensor for detecting THC and alcohol in undiluted saliva samples using SWV and
chronoamperometry (b). Reprinted and adapted with permission of Elsevier [85] (a) and [86] (b).

The same group have also reported in a pioneering way advances in wearable chemical sensor
technology and flexible electronics to develop chemical sensing robotic fingers (printed on the robotic
glove) for rapid discrimination between sweetness, sourness, and spiciness, via electrochemical
monitoring of glucose, ascorbic acid, and capsaicin in different drinks (juices, sport and soft drinks and
coffee) and extracts (green chili, red paprika and red pepper) (Figure 12) [72]. It is worth remarking
that although it was out of the period to which this section has been restricted this group proposed
also glove type wearable devices for use in forensic analysis (gunshot residues and nitroaromatic
explosive compounds) [88]. This chemical sensing robotic skin is a key demonstration to spur future
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development of wearable printed electrodes, which offers great opportunity for automated chemical
sensing machinery, facilitating robotic decision in a wide range of applications and even in potentially
hazardous environments for human counterparts.Biosensors 2020, 10, x FOR PEER REVIEW 21 of 31 
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Figure 12. Automated taste discrimination in food samples through chemical sensing at the robot
fingertips (a) Prototype of the screen-printed robotic sense fingers (carbon-printed sour-finger in green,
GOx PB-printed sweet-finger in blue and carbon-printed spicy-finger in red) with long connections to
the electronic interface (b). Images and corresponding electrochemical responses (in red) of: robotic
sour-finger dipped in orange juice and the square wave voltammetry (SWV) signature of ascorbic
acid (i), robotic sweet-finger in cherry juice and amperometry data of glucose (ii), spicy-finger on
green-pepper, and SWV feedback response to the presence of capsaicin (iii). For comparison purposes
the response obtained in phosphate buffer saline (PBS) response are displayed in black dotted lines (c).
Reprinted and adapted with permission of American Chemical Society [72].

Wang’s group has reported very recently an epidermal AAOx biosensor able to monitor the
dynamics of vitamin C in sweat after the intake of vitamin C pills and fruit juices [89]. This method
combines the use of a flexible vitamin C tattoo patch fabricated on a polyurethane substrate with
a localized iontophoretic sweat stimulation system. Chrono-amperometric cathodic detection of
the oxygen cosubstrate consumption during the enzymatic reaction, demonstrates very interesting
potential for personalized nutrition solutions.
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Table 3. Wearable and flexible printed electrodes reported during 2018–2020 for biosensing applications.

Type of Wearable
Sensor Methodology Analyte Detection

Technique LOD Application, Samples and
Assay Time Ref.

Flexible, wearable
lactate sweat sensor Biosensors using LOx and TTF Lactate Chrono-amperometry — Detection in artificial sweat [87]

Bendable bandage
and microneedle

based sensors

In the presence of the surface TYR
biomarker, its catechol substrate,

immobilized on the transducer surface is
rapidly converted to benzoquinone

TYR (Melanome
biomarker) Chono-amperometry —

Melanoma screening in skin
and tissues/Tyr-containing
agarose phantom gel and
porcine skin in less than

4 min (2 min of incubation
and 100 s for the
measurement)

[81]

Tattoo-like flexible
iontophoretic

platform integrated
with electrochemical

biosensors

Parallel operation of reverse
iontophoretic ISF extraction across the
skin and iontophoretic delivery of the

sweat-inducing pilocarpine into the skin
at separate locations and GOx and

AOx-based biosensors

Glucose and alcohol Chrono-amperometry —

Simultaneous and real-time
determination of alcohol and

glucose levels on demand
localized sampled sweat and

ISF biofluids

[83]

Flexible epidermal
tattoo and

textile-based
electrochemical

biosensors

OPH-based skin- and textile-worn
biosensors for continuous vapor-phase

detection of OP threats integrated with a
soft, flexible, skin-conforming electronic

interface

Vapor-phase
detection of OP
nerve agents.

SWV
12 mg L−1 in
terms of OP
air density

Continuous and real-time
vapor-phase detection of

MPOx
[82]

Tattoo paper
biosensor

Epidermal OPH–pH biosensor printed
onto a temporary tattoo paper coated
with PANi (for monitoring the proton

release during the enzymatic hydrolysis
of DFP by OPH) and with a

PVA-acrylamide hydrogel which
ensures surface distribution of the target

DFP vapors

DFP in both liquid
and vapor phases Potentiometry — Real-time detection of DFP in

both liquid and vapor phases [90]

Eyeglasses platform
for biosensing in tears

Enclosing the electrochemical biosensor
within a microfluidic chamber, with the
supporting electronics embedded onto

the eyeglasses’ inner frame

Ethanol, glucose
and multiple

vitamins (B2, C and
B6)

Chronoamperometry
(ethanol and

glucose) SWV
(vitamins)

—
Real-time detection of alcohol

intake and glucose and
vitamins in human subjects

[85]
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Table 3. Cont.

Type of Wearable
Sensor Methodology Analyte Detection

Technique LOD Application, Samples and
Assay Time Ref.

Ring-based dual
sensing platform

Wireless electronic board embedded into
a ring platform, along with a printed

dual-sensor electrode cap comprising a
voltammetric THC sensor based on a

MWCNTs/carbon electrode and an
amperometric alcohol biosensor based
on a Prussian-blue transducer, coated

with AOx/chitosan reagent layer

THC and ethanol
SWV (THC) and

chrono-amperometry
(ethanol)

THC: 0.5 µM;
alcohol: 0.2

mM

Simultaneous detection of
THC and ethanol in

undiluted saliva sample
within 3 min

[86]

Finger devices
printed on the robotic

glove

Robotic assisted automated taste
sweetness, sourness, and spiciness

discrimination in food samples

Glucose, ascorbic
acid, and capsaicin.

Chrono-amperometry
(ethanol and

glucose) SWV
(vitamins)

—

Ascorbic acid in orange juice,
cola, lemon juice, sports

drink, and pineapple juice;
Glucose in: apple cider,

sugar-free sports drink, cola,
sugar-free energy drink,

and apple juice; Capsaicin in:
green chili extract, coffee, red
paprika extract, watermelon
juice and red pepper extract

[72]

Flexible printable
tattoo electrodes

Flexible AAOx enzymatic biosensing
tattoo patch fabricated on a

polyurethane substrate and combined
with a localized iontophoretic sweat

stimulation system

Ascorbic acid
Chronoamperometry
(Oxygen cosustrate

depletion)
—

Sweat from subjects taking
varying amounts of

commercial vitamin C pills or
vitamin C-rich beverages

[89]

AAOx: ascorbate oxidase; AOx: alcohol oxidase; GOx: glucose oxidase; DFP: diisopropyl fluorophosphate; ISF: skin interstitial fluid; LOx: lactate oxidase; MPOx: methyl paraoxon;
MWCNTs: multi-walled carbon nanotubes; OP: organophosphorus; OPH: organophosphorus hydrolase; PANi: polyaniline; PVA: polyvinyl alcohol; SWV: square wave voltammetry; TTF:
tetrathiafulvalene; THC: D9-tetrahydrocannabinol; Tyr: tyrosinase.
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Wang’s group has reported very recently an epidermal AAOx biosensor able to monitor the
dynamics of vitamin C in sweat after the intake of vitamin C pills and fruit juices [89]. This method
combines the use of a flexible vitamin C tattoo patch fabricated on a polyurethane substrate with
a localized iontophoretic sweat stimulation system. Chrono-amperometric cathodic detection of
the oxygen cosubstrate consumption during the enzymatic reaction, demonstrates very interesting
potential for personalized nutrition solutions.

4. General Considerations, Challenges to Face, and Future Prospects

The advances that have occurred in recent years in screen-printing technology provide
unimaginable possibilities in electrochemical sensing and biosensing. Paper-based and wearable
(bio)sensors are two of the areas that benefit from such advances.

e-PADs show excellent opportunities for sensing and biosensing mainly in the environmental and
clinical fields. For these purposes, different types of paper impregnated with the suitable reagents,
modified with different nanomaterials (metal nanoparticles, carbon nanostructures, and nano-sized
MIPs) either in the absence or in the presence of specific bioreceptors (enzymes, lectins, antibodies,
and, to a much lesser extent, nucleic acids) have been proposed. The resulting devices exploit the
interesting features offered by nanomaterials in terms of electrocatalytic properties, biocompatibility
and high surface area, and the strong selectivity of biological molecules or MIPs, with the advantages of
electrochemical detection. In the environmental field, e-PADs have been applied to the determination
of heavy metals (Cu2+, Pb2+, Cd2+), anions (ClO3

−, NO2
−), gases (NO, NO2, DMMP), CWAs (mustard

agent) microbial pathogens (E. coli), or other biotoxics (antibiotics or pesticides).
In the clinical field, e-PADs have been utilized for the determination of a wide variety of

biomolecules including miRNAs, hormones (17β-estradiol, FSH), viruses (HPV, HIV), proteomic
biomarkers of relevance in cancer and cardiovascular diseases (CRP, BNP, IFN-γ, CA125, cTnI, AFP,
BChE activity, MMP9, and CEA), and other clinically relevant analytes (3-NT, glutathione, glucose,
H2O2, serotonin, L-Tyr, Phe, acetylcholine and Cl−). Paper-based electrochemical (bio)sensors have
been employed to determine target analytes in highly variable matrices—soils, exhaust gases, waters
and industrial sewage, cellular extracted DNA, blood, plasma, serum, urine, sweat, exhaled breath,
and pharmaceutical capsules. Remarkable achievements include the development of disposable gPADs
and the combination of SPEs with simple paper-based microfluidics (µ-PEI) with great interest in
clinical diagnostics for prototyping new POCTs.

Apart from the interesting features derived from the use of paper as substrate such as porosity,
capillarity, high surface area/volume ratio, disposability, lightness, flexibility, eco-friendliness,
and low-cost, the filtration properties of this particular substrate have also been exploited.
Moreover, some of these (bio)devices exhibit antifouling properties that are highly pursued to
ensure the proper functioning of the devices in real world matrices and their use to determine low
levels of analytes directly in such matrices involving simple and straightforward protocols.

Focusing on printed wearable devices devoted to electrochemical biosensing, new generation
of printed wearable devices include soft, biocompatible, stretchable, and anatomically compliant
devices with multifunctional characteristics that enable efficient bio-integration and withstand high
tensile stress associated with on-body applications. Over the past two years, their applications have
been geared mostly toward healthcare and environmental fields. To date, they have demonstrated
preliminary potential for individual or multiplexed electrochemical determination in or near real
time of relevant analytes in the agro-food, clinical and environmental areas (ethanol, drugs of abuse,
lactate, glucose, vitamins, TYR, OP nerve agents) in different matrixes such as biofluids (sweat, saliva,
tears, and ISF), vapor phases, and skin. So far, printed temporary tattoo and bandage sensors and
printed sensors mounted in mouthguards, eyeglasses, or rings have been proposed for healthcare
applications. Regarding environmental applications sensors have been printed on textile and gloves.
Particularly noteworthy is the use of this type of sensors to screen biomarkers related with cancer in
skin, the pioneering coupling with a parallel iontophoretic mechanism (extraction and delivery) for
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simultaneous sampling of different biofluids at separate locations, the enclosing within a microfluidic
chamber for continuous monitoring and the development of a wearable taste-sensing robotic technology
to discriminate between different flavors in liquid and solid food samples and an epidermal enzymatic
biosensor for noninvasive nutrition status assessments.

However, it should be noted that, at present, the remarkable capabilities for taking preventive
intervention of health and environmental risks, have been proved using proof-of-concept prototypes and
for a limited number of samples, analytes, and biosensing approaches. Therefore, a thorough validation
with large population studies and coordination and collaboration with medical practitioners to correctly
interpret the data, and a better understanding of the correlations between analyte concentrations in
the blood and noninvasive biofluids are required to underpin clinical acceptance. In addition, their
extension to bioaffinity assays, particularly challenging since they require complex, multistep and
usually not reversible protocols, is highly demanded to make other important biomarkers (proteins,
DNAs, and RNAs) accessible to monitoring. Indeed, despite the great customization potential of
these printed wearable electrochemical devices, important efforts are required for advancing them
from prototypes to field devices and for their widespread commercial exploitation. Additional efforts
are required to improve durability and robustness of wearables’ batteries. Solutions are required to
decrease the power consumption of devices for extended monitoring periods, which include battery
consumption minimization, and developing of replaceable and flexible power source with continuous
and long-time output or self-powering wearable devices.

It is evident that the development of wearable printed electrochemical devices, which so far has
only scratched the surface of their tremendous potential, is poised to grow very rapidly over the next
decade, bringing a considerable advance to the field of wearable devices. Although many challenges
that impede the widespread adaptation of this field for commercial applications have been addressed
due to the recent years endeavors in material science, microfluidics, nanotechnology, and biotechnology,
together with the work in unison of researchers from diverse fields, there are still some outstanding
issues before their full potential will be realized and exploited in our real lives. However, there is clearly
room for them within many applications (forensic, food assessment, healthcare, security), where rapid
screening and timely chemical information is critical.

The exciting new developments anticipated to come in the foreseeable future in both paper-based
and wearable electrochemical (bio)sensors will certainly change and improve our daily lives providing
eco-friendly, affordable and efficient solutions for smart healthcare (preventive medicine, precision
medication and management of chronic diseases) and wellness moving the lab to our body (skin,
mouth, and eyes), minimizing risks of exposure to chemical threats and drug impaired driving concerns.
Taking into account the demands for ordinary users facing other issues such as the diversity of analytical
targets in the practical applications and the selectivity, stability and recyclability of these screen-printing
biodevices, additional future research can be predicted in this field. Moreover, continuous investment
in material preparation and fabrication process perfection (including ingenious structural designs) and
in achieving higher integration between the multifunction sensing units and auxiliary components
(power supply, communication and even signal processing and displaying) will play a significant role
in constructing cost-effective and consistent (bio)sensors, easily adopted by current society.

Indeed, today, it is timely to stress that the adaptation of mask filtration systems to include
transducers for aerosol/viral detection, although very difficult, would represent a disruptive technology
for the detection of pandemics such as the SARS-CoV-2 coronavirus we are experiencing.
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