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Anti-cancer drug characterisation using a human cell line panel representing

defined types of drug resistance
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Summary Differential drug response in a human cell line panel representing defined types of cytotoxic drug
resistance was measured using the non-clonogenic fluorometric microculture cytotoxicity assay (FMCA). In
total 37 drugs were analysed; eight topoisomerase II inhibitors, eight anti-metabolites, eight alkylating agents,
eight tubulin-active agents and five compounds with other or unknown mechanisms of action, including one
topoisomerase I inhibitor. Correlation analysis of log ICso values obtained from the panel showed a high
degree of similarity among the drugs with a similar mechanism of action. The mean percentage of
mechanistically similar drugs included among the ten highest correlations, when each drug was compared with
the remaining data set, was 100%, 92%, 88% and 52% for the topoisomerase II inhibitors, alkylators, tubulin-
active agents and anti-metabolites respectively. Classification of drugs into the four categories representing
different mechanisms of action using a probabilistic neural network (PNN) analysis resulted in 29 (91%)
correct predictions. The results indicate the feasibility of using a limited number of cell lines for prediction of
mechanism of action of anti-cancer drugs. The present approach may be well suited for initial classification and

evaluation of novel anti-cancer drugs and as a potential tool to guide lead compound optimisation.

Keywords: anti-cancer drug; human tumour cell line; cytotoxicity; drug resistance; screening

One of the largest drug discovery efforts in the field of cancer
therapy has been pursued by the Developmental Therapeutics
Program (DTP) at the National Cancer Institute (NCI)
starting in 1955. Strategies for identification of novel
chemotherapeutic agents at NCI (1955-85) have previously
relied predominantly on the in vivo L1210 and P338 murine
leukaemia models and certain other transplantable tumour
models (Goldin et al., 1981; Boyd, 1993). The early success in
the discovery of antileukaemic activity of alkylating agents,
anti-metabolites and vinca alkaloids contributed to the early
and persistent focus on the animal leukaemia models as
preclinical drug discovery tools (Grindley, 1990).

However, during the past decade there has been a growing
and continuing concern with the narrow spectrum of anti-
tumour activity of available drugs and an increasing
dissatisfaction with the clinical results for many of the most
promising new investigational drugs (Marsoni et al., 1987).
Consequently, in 1985, the NCI began to phase out its in vivo
P388 mouse leukaemia screen to replace it with a panel of cell
lines (currently > 60) representing the major forms of human
cancer (Alley et al., 1988). A semiautomated non-clonogenic
in vitro assay was selected for the analysis of growth
inhibition and cytotoxicity (Monks et al., 1991). The
principal aim was to identify compounds with disease-
specific activity followed by evaluation in vivo, using the
same cell lines as xenografts, and initiation of disease-
oriented phase I-1I trials.

The approach was based on the belief that subpanel
activity in vitro would predict the disease-specific activity in
the clinic (Monks et al., 1991). The differential drug activity
information provided by the panel has indeed been shown to
be ‘drug-specific’, i.e. it detects specific patterns of in vitro
response of agents with similar mechanisms of action when
tested over the 60 cell line panel (Paull et al., 1989). This
‘fingerprint’ can be further used to classify the agents as being
related to specific groups (e.g. anti-metabolites, alkylators,
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topoisomerase II inhibitors) by the use of correlation analysis
(Paull et al., 1989) or advanced neural network (NN)
computing (Weinstein ez al, 1992). The NN classifier
performed better than the traditional statistical methods,
giving only 8% incorrect classifications when 141 drugs with
known mechanisms of action were separated into six different
predefined mechanistic groups (Weinstein et al., 1992).

Although, the ability to detect ‘disease-specific activity’ is
yet to be demonstrated (Weisenthal, 1992), this unprece-
dented approach clearly illustrates the potential value of
comparing cell lines of different drug sensitivities for
identification of anti-cancer agents of novel structure and
mechanism of action. The approach for cell line panel
analysis of differential growth inhibition and cytotoxicity
developed by the NCI scientists (Paull ez al., 1989; Weinstein
et al., 1992; Boyd and Paull, 1995) may also become useful
for limited-scale drug evaluation at single research depart-
ments.

In parallel with the change in drug discovery strategies,
research activities in the area of drug resistance have revealed
several specific cellular mechanisms of resistance to currently
available anti-cancer drugs, which may, at least partly, be
responsible for the dismal outcome of therapy for many types
of tumours (Van Kalken et al., 1991). These mechanisms
encompass overexpression of transport molecules such as the
P-glycoprotein (P-gp) and multidrug resistance-associated
protein (MRP), glutathione (GSH)-dependent increased
activity of cellular detoxification systems, altered function
of nuclear target enzymes such as topoisomerase II (topo II)
as well as altered tubulin binding/function (Beck, 1987; Beck
et al., 1987; Kramer et al., 1988; Dalton et al., 19894; Baas et
al., 1990; Hall and Cattan, 1991; Hochhauser and Harris,
1991; Cole et al., 1992; Ohta et al., 1993). These resistance
phenotypes have been identified using cell lines selected after
exposure to various anti-tumour agents and thus constitute
useful in vitro models not only for studying the molecular
mechanisms of drug resistance but also for the identification
and characterisation of new pharmacological agents for
cancer treatment.

With this background, the present study was undertaken
to investigate the feasibility of using a limited number of
human tumour cell lines representing defined types of
cytotoxic drug resistance for the initial evaluation and
preliminary mechanistic classification of anti-cancer agents.



Materials and methods
Cell line panel

The cell line panel consisted of four sensitive parental cell
lines, five drug-resistant sublines, and one cell line with
primary resistance. The cell lines included were, the myeloma
cell line RPMI 8226/S and its sublines 8226/Dox40 and 8226/
LRS5 (kind gifts from WS Dalton, Department of Medicine,
Arizona Cancer Center, University of Arizona, Tucson, AZ,
USA), the lymphoma cell lines U-937 GTB and its subline U-
937-ver (Botling et al., 1994), the small-cell lung carcinoma
(SCLC) cell line NCI-H69 and its subline NCI-H69AR
(American Type Culture Collection; ATCC, Rockville, MD,
USA), the renal adenocarcinoma cell line ACHN (ATCC)
and the leukaemia cell line CCRF-CEM and its subline
CEM/VM-1 (kind gifts from WT Beck, Department of
Pharmacology, College of Medicine, University of Tennes-
see, Memphis, TN, USA).

The 8226/Dox40 was selected for doxorubicin (Dox)
resistance and shows the classical MDR phenotype with
overexpression of P-gp 170 (Dalton ez al., 1986, 19895). The
8226/LR5 was selected for melphalan (Mel) resistance,
proposed to be associated with increased levels of
glutathione (GSH; Bellamy et al, 1991; Mulcahy et al.,
1994). The U-937-ver was selected for vincristine (Vcr)
resistance, proposed to be tubulin associated (Botling et al.,
1994). The H69AR, selected for Dox resistance, expresses a
MDR phenotype proposed to be mediated by MRP (Mirski
et al., 1987; Slovak et al., 1993). The CEM/VM-1, selected
for teniposide (VM/26) resistance, expresses the atypical
MDR phenotype, which is proposed to be topo II associated
(Danks et al., 1987, 1988). The drug resistance of the primary
resistant ACHN cell line is probably multifactorial (Nygren
and Larsson, 1991). The proposed mechanisms of resistance
are summarised in Table 1.

The cells were grown in culture medium RPMI-1640
(HyClone, Cramlington, UK), supplemented with 10% heat-
inactivated fetal calf serum (HyClone), 2 mM glutamine,
50 ug ml~' streptomycin and 60 ug ml~' penicillin (Hy-
Clone). The 8226/Dox40 cells were treated once a month with
0.24 ug ml~' of Dox and the 8226/LRS5 cells at each change of
medium with Mel at 1.53 uyg ml=!. The U-937-vcr was
continuously cultured in the presence of 10 ng ml~! Ver and
the NCI-H69AR was alternately fed with drug-free medium
and medium containing 0.46 ug ml~' Dox. The CEM/VM-1
cell line was cultured in drug-free medium and could be grown
for 3—4 months without loss of resistance. Every 2—3 months
the cell lines were tested for maintained cross-resistance
phenotype with a control plate containing Mel, Dox and Vecr.
Growth and morphology were monitored on a weekly basis.

Drugs and exposure

The ten cell lines were tested against a total of 37 different
cytotoxic drugs, using the fluorometric microculture cyto-
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toxicity assay (FMCA; Larsson and Nygren 1989, 1990).
Each drug was tested in five different drug concentrations,
obtained by 10-fold serial dilution, and the maximum
concentration was 100 ug ml~! for all drugs. Eight different
drugs from each of the groups: tubulin-active agents,
topoisomerase II inhibitors, alkylating agents and anti-
metabolites and five drugs with other or unknown resistance
mechanisms were included in the drug-response database.
All drugs were acquired from commercial sources (Table II).
V-shaped 96-well microtitre plates (Nunc, Roskilde, Den-
mark) were prepared with 20 ul of drug solution at ten times
the desired final concentration, using a pipetting robot (Pro/
Pette; Perkin Elmer, Norwalk, CT, USA). The plates were

Table I Cytotoxic drugs used

Drug Mechanistic group Source

Cisplatin Alkylator Bristol-Myers Squibb
Carboplatin Alkylator Lederle

Mitomycin C Alkylator Ferring
Chlorambucil Alkylator Sigma

Melphalan Alkylator Wellcome

4-HC? Alkylator Asta-Werken
Mechlorethamine Alkylator Sigma

Busulfan Alkylator Sigma

Vincristine Tubulin active Lilly

Vinorelbine Tubulin active Farmitalia
Vinblastine Tubulin active Lilly

Vindesine Tubulin active Lilly

Taxol Tubulin active Bristol-Myers Squibb
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Taxotere Tubulin active Rhone-Poulenc Rorer
Colchicine Tubulin active Sigma
Podophyllotoxin Tubulin active Sigma

Topotecan Topo I inhibitor® SKF

Daunorubicin Topo II inhibitor® Rhone-Poulenc Rorer
Doxorubicin Topo II inhibitor Farmitalia
Epirubicin Topo II inhibitor Farmitalia

Etoposide Topo II inhibitor Bristol-Myers Squibb
Teniposide Topo II inhibitor Bristol-Myers Squibb
Mitoxantrone Topo II inhibitor Lederle

Amsacrine Topo II inhibitor Park-Davis
Idarubicin Topo II inhibitor Farmitalia
6-Thioguanine Antimetabolite Sigma
6-Mercaptopurine Antimetabolite Sigma

Cytarabine Antimetabolite Lederle

Cladribin Antimetabolite Ortho Biotek
Aminopterin Antimetabolite Berlex

5-Fluorouracil Antimetabolite Lederle
Methotrexate Antimetabolite Sigma

5-Azacytidine Antimetabolite Sigma

Aclarubicin Miscellaneous Sigma

Suramin Miscellaneous Bayer

Prednisolon Miscellaneous Organon

Cremophor EL Miscellaneous Sigma

24-Hydroperoxy-cyclophosphamide. ®Topo I, topoisomerase I.
“Topo II, topoisomerase II.

Table I Resistance mechanism-based human tumour cell line panel

Parental line Resistant line Origin Selecting agent Mechanism of resistance References
RPMI 8226/S RPMI 8226/Dox40 Myeloma Doxorubicin Pgp 170 associated Dalton et al. (1989)
(classical MDR)

RPMI 8226/S RPMI 8226/LRS5 Myeloma Melphalan GSH-associated MDR  Mulcahy et al. (1994)

CCRF-CEM CEM/VM-1 T-cell Teniposide Topo II associated Beck et al. (1987)
leukaemia (atypical MDR)

NCI-H69 H69AR Small cell Doxorubicin MRP associated Mirski et al. (1987)
lung cancer

U-937-GTB U-937-ver Histiocytic Vincristine Tubulin-associated Botling et al. (1994)
lymphoma MDR

ACHN - Renal - Primary MDR Borden et al. (1979)

adenocarcinoma
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kept frozen at —70°C until further use (Larsson et al., 1992).
Plates were stored for no longer than 2 months. A continuous
drug exposure protocol for 72 h was used.

Measurement of drug activity

The FMCA is based on measurement of fluorescence
generated from hydrolysis of fluorescein diacetate (FDA) to
fluorescein by cells with intact plasma membranes (Larsson
and Nygren, 1989, 1990). Based on the separate experiments,
the initial cell density per well for each cell line was selected
to give optimal signal while still being in apparent log phase
at the time of measurement. The seeding density varied
between 5 and 20 x 10 cells per well in 180 ul of medium
seeded into experimental microtitre plates, prepared with
drugs. Each drug concentration was tested in triplicate. Six
wells with cells but without drugs served as control and six
wells with only culture medium as blank. The plates were
incubated at 37°C and 5% carbon dioxide for 72 h without
change of medium. At the end of the incubation period
medium and drugs were removed, the cells were washed once
with phosphate-buffered saline (PBS) and 100 ul of FDA,
dissolved in dimethylsulphoxide (DMSO) and diluted in PBS
to 10 ug ml~', was added to each well. The plates were
incubated for 1 h and the generated fluorescence in each well
was then measured in a Fluoroscan II (Labsystems Oy,
Helsinki, Finland). The fluorescence is proportional to the
number of living cells in the well and cell survival is presented
as survival index (SI), defined as the fluorescence in
experimental wells as a percentage of that in control wells,
with blank values subtracted.

Quality criteria for a successful assay included >90%
viable cells in the cell preparation before assay incubation as
judged by a standard trypan blue exclusion test, a
fluorescence signal in control cultures of more than ten
times mean blank values and a coefficient of variation (CV)
in test and control cultures of <30%. A successful assay
according to these criteria was required for inclusion in the
drug database. For most drugs the results were confirmed by
repeated testing.

Data analysis and quantification

Mean graph patterns and correlation The 1Cs, values, i.e. the
concentration giving a SI of 50% from the concentration—
response curves were calculated using a custom-made
program in Excel (Microsoft) based on linear intrapolation
between data points. For drugs not producing an ICs, in
more than four cell lines, IC,, values were used as substitutes.
This was the case for cytarabine (AraC), aminopterin and
methotrexate. For each drug the overall mean log,, ICs5, was
determined, defined as the mean of the log,, values for all cell
lines. Then, the mean log,, ICs, was subtracted from the log;,
of each cell line to yield a variable defined as delta.

A mean graph consisting of the deltas for each drug across
the cell line panel could then be constructed to visualise
differential cytotoxicity patterns of drugs (Paull et al., 1989
Figure 1; Boyd and Paull 1995). Thus, positive values
indicate cell lines more sensitive than the average, and
negative values indicate drugs more resistant than the average
for a particular drug. A procedure similar to the COMPARE
analysis described by Paull ez al. (1989), using Pearson’s
correlation coefficient, was employed for comparing the mean
graph (deltas) of any particular compound with those of the
remaining drug database. As comparing log,, ICs values
directly produces identical correlations these were used in the
correlation analysis.

Neural network analysis Mechanistic classification into
predefined groups was performed with a commercially
available NN computing program, Neuroshell 2 (Ward
Systems Group Inc, Frederick, MD, USA). NN differs from
traditional statistical programs in that it learns from a set of
pattern examples rather than being programmed from the

beginning to get the correct answer. A probabilistic neural
network (PNN) was chosen for its known ability to train
quickly and accurately on sparse data sets (Specht DF, 1990).
PNN works by clustering patterns based upon their distances
from each other and the program uses the Vanilla Euclidian
distance metrics by default, which was used in the present
study (Neuroshell 2 reference manual). The building blocks
of NN are processing elements called neurons and weighted
connections sometimes referred to as synapses. The schematic
NN configuration of the present study is illustrated in Figure
2. The input consisted of deltas, each input neuron
representing a particular cell line. A hidden layer consisting
of 28 interneurons connected the input layer to the output
neurons. There were four output neurons representing four
different classes of chemotherapeutic drugs: alkylating agents,
topoisomerase II inhibitors, tubulin active agents and anti-
metabolites. A smoothing factor of 0.3 was empirically
chosen after iterative testing of a range of different
smoothing factors ranging from 0.1 to 1 (Specht, 1990).

A cross-validation procedure was designed in which eight
different NNs (1-8) were trained with 28 of the drugs,
leaving out one randomly chosen from each category (four
drugs per NN) until all drugs were analysed. This cross-
validation procedure provides that each classification is
performed on a drug activity pattern independent of the
patterns used to train the network. A separate NN (NN9)
was also designed with an additional output category
representing ‘other’ mechanisms to allow the four miscella-
neous drugs and topotecan to be classified into an output
category other than those representing the selected mechan-
istic groups. NN9 was trained with all the 32 drugs of known
mechanism using a similar procedure as described above.
Results were presented as probability of classification for
each pattern: individual output neuron weight/total weight on
output neurons. The results were expressed to three decimal
places.

Results

The results are presented for 37 of the drugs shown in Table
II. In Table III resistance factors calculated from the panel
are shown for some selected compounds. Epirubicin and
vinorelbine were sensitive (resistance factor >2) to several
mechanisms of resistance but differed with respect to GSH
and tubulin-associated MDR, vinorelbine being unaffected by
the former and epirubicin (Epi) by the latter. Mel was
sensitive to GSH and MRP-mediated resistance whereas
cladribine was sensitive only to primary MDR.

In Figure 1 the principal features of the drug-response
analysis procedure are shown. The concentration-response
curves for the topo II inhibitor Epi (Figure la) and the
alkylating agent Mel (Figure 1b) for the ten cell line panel are
displayed. Figure lc and d shows the corresponding mean-
graph profiles where deflections (in log;, units) to the right
and left indicate higher and lower sensitivity than the overall
panel mean log,, ICs, respectively. Apparent differences
between the two drugs are evident. Correlation of the mean
graph patterns of Epi and Mel with those of Dox and 4-
hydroperoxycyclophosphamide (4-HC) shows high correla-
tion coefficients (>0.92) for the pair sharing the same
mechanism of action (Dox vs Epi and Mel vs 4-HC),
whereas much lower correlations (<0.70) are obtained when
these pairs are cross-correlated (Epi vs 4-HC and Mel vs
Dox). These results indicate that drugs of similar chemical
structure may be detected. However, as evident from Table
IV several drugs of different chemical structure, sharing a
common mechanism of action of topo II inhibition also show
high correlations. This is not the case for the anthracycline
aclarubicin, which does not induce cytotoxicity by inter-
ference with topo II (Jensen et al., 1991) and shows low
correlations to the topo II poisons, including those of the
chemically similar anthracycline group of compounds. Thus,
high correlation seems to indicate a similar mode of action.
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In Table V the ten highest correlation coefficients obtained correlations. For Ver, Carbo and 5-FU the corresponding
are listed when daunorubicin (Dnr), carboplatin (Carbo), Vcr figures were 7/8 (88%), 8/8 (100%) and 6/8 (75%)
and 5-fluorouracil (5-FU) were used as the comparator respectively. When the remaining drugs were used as seed
(‘seed’) compounds. For Dnr, all eight topo II inhibitors compounds in the same way, the mean percentage of
(100%) in the database were found in the top ten rank list of mechanistically similar drugs observed among the top ten
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Figure 1 The principal features of the drug-—response analysis procedure are shown. Concentration - response curves for the
topoisomerase 11 inhibitor epirubicin (a) and the alkylating agent melphalan (b) for all ten cell lines are displayed. (¢ and d)
Corresponding mean-graph (see Material and methods for details). (e—h) Correlation between deltas for the indicated drugs.
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correlations were 100%, 92%, 88% and 52% for the topo II
inhibitors, alkylators, tubulin-active agents and anti-metabo-
lites respectively. The results confirm the ability of the system
to detect principal mechanisms of action. Next, we employed
the NN strategy to further test the concept of predicting drug
mechanisms of action from the drug—response relationships
obtained in the cell line panel (Figure 2). The 32 drugs
representing these classes (Table II) were divided into eight
groups, seven drugs in each group and trained independently
to produce eight networks, N1 to N8. In Table VI, the
performance of the networks is shown for patterns
independent of the data used to train the network. The
results show a good ability to classify the drugs into the four
categories with 29/32 (91%) correct classifications. Moreover,

the probability of the ‘winning’ output neuron was generally
high and well separated from the losing neurons, suggesting a
robust classification system. The misclassifications were AraC
and taxol, which were classified as alkylating drugs, and
mitomycin C, which was classified as an anti-metabolite.

The delta patterns of aclarubicin, suramin, prednisolone
and cremophore EL with miscellaneous mechanism of action
as well as the topoisomerase I inhibitor topotecan were tested
using a network allowing also for classification into a fifth
extra output category representing ‘other’ mechanisms of
action. This network NN9 was trained with the 32 patterns of
drugs with known mechanism of action. In this analysis all
four miscellaneous drugs and topotecan were assigned to the
‘other’ category (not shown).
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Figure 2 The principle for NN analysis of a hypothetical topo II-targeted drug is shown. NN differs from conventional statistical
methods in that it learns from a set of pattern examples (training set) to develop the ability to correctly classify new patterns. Ten
inputs consisting of the deltas (deviations from mean log ICsp) for the different cell lines are transmitted to an input layer with ten
input neurons. The input layer was connected to a hidden layer with 28 neurons (matching the number samples used for training the
NN), which in turn is connected to the output layer with four output neurons. The neuron with the highest probability (weight on
each output neuron/total weight on output neurons) is considered to be the winning neuron. The four outputs selected were: topo II
inhibitors, alkylataing agents, tubulin-active agents and anti-metabolites.
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Table III  Resistance factors for the different cellular phenotypes in response to some mechanistically
different drugs

Resistance factor (RF)*°

Resistance mechanism Vinorelbine Epirubicin Melphalan Cladribine
P-gp-associated MDR 33.0 116.0 0.2 0.9
MRP-associated MDR 4.7 10.5 42 1.0
Topo Il-associated MDR 1.0 10.0 1.3 1.3
GSH-associated MDR 1.0 5.2 3.6 0.6
Tubulin-associated MDR 16.0 1.8 0.9 1.3
Primary MDR® 130 20.8 1.6 4.0

#Resistance factor = ICs, resistant subline/ICsq parental cell line. The data shown are from one typical
experiment out of 2—5. Repeated testing of the different pair of sensitive and resistant cell lines with the
selecting agent produced a mean coefficient of variation (CV) <20%. °RF defined as: ICso ACHN/mean
panel ICs for parental cell lines. P-gp, P-glycoprotein; MRP, multidrug resistance-associated protein;
topo II, topoisomerase II; GSH, glutathione; MDR, multidrug resistance.

Table IV Results of comparative testing of doxorubicin to some
related compounds in a mechanism-based cell line panel

Mean panel Correlation

Compound ICsy (pg/mi)® coefficient® P

Doxorubicin 1.9 1.00 <0.001
Epirubicin 2.7 0.98 <0.001
Idarubicin 0.12 0.97 <0.001
Mitoxantrone 1.6 0.95 <0.001
Teniposide 6.85 0.94 <0.001
Daunorubicin 1.1 0.94 <0.001
Etoposide 224 0.87 <0.001
Amsacrine 2.51 0.86 <0.001
Aclarubicin 1.4 0.56 NS

2All drugs were tested in triplicates at five different concentrations in
10-fold dilutions with 100 ug mI"' as the maximal concentration.
®Correlation of cell line panel log10 ICs, values using doxorubsicin as
the reference compound. “Probability of the correlation coefficient
being different from zero. NS, not significant.

Discussion

Rapid in vitro evaluation and prioritisation of drugs of novel
structure for further research are important initial steps in the
drug discovery process. Experience with the NCI drug
discovery in vitro screen has shown that the drug-—response
curves obtained from a spectrum of different cell lines contain
rich information on mechanism of action that could be used
for this purpose (Paull et al., 1989; Weinstein et al., 1992).
In the present study we demonstrate the feasibility of using
drug-response curves from a limited number of human cell
lines representing defined types of drug resistance to provide
preliminary information on mechanism of drug action of
cytotoxic drugs. The inclusion of cell lines with different
mechanisms of resistance in the panel may have contributed
to this ability by increasing the diversity of drug sensitivity
across the panel. Correlation analysis showed a good ability
to recognise drugs with similar mechanism of action even
among drug classes such as topo II inhibitors and tubulin-
active agents, which share common mechanisms of resistance
(i.e. P-gp and MRP). Moreover, topo II inhibitors were
readily identified and anthracycline aclarubicin, for which
topo II is not the cytotoxic target (Jensen et al., 1991), could
be distinguished from the group. A good ability of the
correlation analysis to detect mechanisms of action was also
observed for alkylating agents and tubulin-active agents.
Anti-metabolites, on the other hand, generally showed lower
within-group correlations, probably reflecting a high degree
of heterogeneity with respect to actual mechanism in this
group (Weinstein et al.,, 1992; van Osdol et al., 1994). For
example, in the correlation analysis, both AraC and
cladribine were associated with alkylating agents. In fact,
cladribine has shown a high degree of correlation to
alkylating agents in primary cultures of haematological
tumour cells (Nagourney et al, 1993). However, in the
neural network analysis only AraC of the anti-metabolites

Table V Rank list of the ten highest correlation coefficients (R)
among all compounds tested using daunorubicin, carboplatin,
vincristine and 5-fluorouracil as reference compounds

(a)  Daunrubicin R (b)  Carboplatin R
1 Daunorubicin 1.00 1 Carboplatin 1.00
2 Epirubicin 097 2 Cisplatin 0.90
3 Doxorubicin 094 3 Mitomycin C 0.90
4 Mitoxantrone 088 4 Chlorambucil 0.88
5 Idarubicin 08 5 Busulfan 0.85
6 Vindesine 085 6 Cytarabine 0.83
7  Teniposide 083 7 4-HC* 0.82
8 Amsacrine 075 8 Melphalan 0.81
9 Etoposide 075 9 Cladribin 0.73
10 Vinorelbine 0.74 10 Mechlorethamine  0.73
(¢)  Vincristine R (d)  5-Fluorouracil R
1 Vincristine 1.00 1 5-Fluorouracil 1.00
2 Vinblastine 098 2 6-Thioguanine 0.91
3 Vinorelbine 096 3 6-Mercaptopurine  0.88
4 Taxotere 095 4 S-Azacytidine 0.87
5 Colchicine 095 5 Colchicine 0.72
6 Vindesine 094 6 Methotrexate 0.64
7 Podophyllotoxin  0.88 7 Vinblastine 0.62
8 Cladribin 087 8 Taxotere 0.60
9 Doxorubicin 081 9 Podopyllotoxin 0.57
10 Idarubicin 0.80 10 Vinorelbine 0.53

*Hydroperoxy-cyclophosphamide.

was misclassified as an alkylator. In the case of AraC, simple
visual inspection of the correlation graph clearly indicated
that the failure even to obtain IC;, values in six of the cell
lines in combination with high activity against CEM and U-
937 cell lines gave a high correlation coefficient despite a
visual lack of correspondence of the majority of the data
points.

Mitomycin C was also misclassified as a topo II inhibitor
by the NN. In this case the correlation analysis ranked six
out of eight alkylators among the top ten drugs when
mitomycin C was used as the seed compound. It should also
be noted that mitomycin C was the only alkylator in the drug
database alkylating at the N-2 position of guanine (van Osdol
et al., 1994).

The third misclassification was taxol, which was assigned
to the alkylator category. This may partly be due to the
paradoxical taxol sensitivity of the MRP-expressing H69AR
cell line, which was 100-fold more sensitive to the -drug
compared with parental NCI-H69 cells (not shown). H69AR
was significantly more resistant than NCI-H69 to all other
tubulin-active agents tested. These results were confirmed in
three consecutive experiments, including those in which taxol
was formulated in ethanol instead of cremophore EL (not
shown). Although, some reports have indicated that taxol
may not be part of the MRP-associated cross-resistance
phenotype (Cole et al., 1994; Doyle et al., 1995), the exact
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Table VI Prediction of mechanism of action using a probabilistic neural network (PNN) strategy

Probability® Correct
Classification
Drugs Topo I AA TU AM (Y/N)
Daunorubicin 0.997 0.003 0.000 0.000 Y
Epirubicin 1.000 0.000 0.000 0.000 Y
Teniposide 1.000 0.000 0.000 0.000 Y
Amsacrine 1.000 0.000 0.000 0.000 Y
Vincristine 0.000 0.000 1.000 0.000 Y
Vinblastine 0.000 0.000 1.000 0.000 Y
Colchicine 0.000 0.000 1.000 0.000 Y
Taxol 0.051 0.947 0.002 0.000 N
4-HC 0.006 0.994 0.000 0.000 Y
Chlorambucil 0.005 0.995 0.000 0.000 Y
Cisplatin 0.002 0.998 0.000 0.000 Y
Mitomycin C 0.000 0.000 0.000 1.000 N
6-Thioguanine 0.000 0.000 0.000 1.000 Y
Cytarabine 0.000 0.000° 0.000 0.000 N
Cladribine 0.000 0.000 0.170 0.830 Y
Methotrexate 0.000 0.000 0.000 1.000 Y
Doxorubicin 1.000 0.000 0.000 0.000 Y
Etoposide 1.000 0.000 0.000 0.000 Y
Melphalan 0.000 1.000 0.000 0.000 Y
Idarubicin 0.996 0.004 0.000 0.000 Y
Mitoxantrone 0.998 0.002 0.000 0.000 Y
5-Azacytidine 0.000 0.006 0.000 0.994 Y
6-Mercaptopurine 0.001 0.000 0.000 1.000 Y
Mechlorethamine 0.000 0.999 0.000 0.000 Y
Carboplatin 0.000 0.999 0.000 0.001 Y
Busulfan 0.000 1.000 0.000 0.000 Y
Aminopterin 0.000 0.000 0.000 1.000 Y
Taxotere 0.000 0.000 1.000 0.000 Y
Podophyllotoxin 0.000 0.000 1.000 0.000 Y
Vindesine 0.000 0.000 1.000 0.000 Y
Vinorelbine 0.000 0.000 0.999 0.000 Y
5-Fluorouracil 0.000 0.002 0.000 0.998 Y

2Probability of the pattern belonging to each output (mechanistic) category. Each prediction is made for a pattern never ‘seen’ by the network.

Topo II, topoisomerase II inhibitors; AA, alkylating agents; TU, tubuline active agents; AM, anti-metabolites; 4-HC, 4-hydroperoxy-
cyclophosphamide. Winning neurons are depicted in bold. ®The chosen smoothing factor of 0.3 provided no detectable output weights for AraC.
Increasing the smoothing factor to 0.4 showed a high probability (0.999) for the AA category.

reason for this paradoxical sensitivity remains to be
elucidated. Despite this, all tubulin-active drugs were found
among the ten drugs with the highest correlation coefficients
when correlations to taxol were examined and ranked. Thus,
by combining NN analysis, correlation analysis and visual
inspection of the correlation graphs, an initial guess on
mechanistic type may be made with some confidence, which
can help direct further research. However, this approach will
require prospective confirmation on additional sets of drugs.

In addition to the mechanistic classification by comparison
of drug-specific patterns of drug activity, the present cell line
panel can also provide information on the susceptibility of
drugs to defined mechanisms of resistance at the molecular
level. The calculation of simple ratios of resistant over
parental cell line ICs, values, ‘resistance factors’, may provide
this complementary information. Although, the mechanisms
of resistance have been established using tumour cell lines
they may be of clinical importance. The present system may
also provide a tool for structure—activity relationship (SAR)
studies by giving a simultaneous comparison of quantitative
(i.e. relative potency) and qualitative (i.e. presumed mechan-
ism of action) features among a selected group of compounds
(Boyd and Paull, 1995). This approach requires no prior
knowledge of the structure of the molecular target per se.
From a practical point of view, using the method described,
6—9 drugs can easily be prepared and analysed on all ten cell
lines each week by a single technician. This relatively limited
expenditure of resources and workload may also allow single
institutions to acquire this capacity.

In the present study we employed PNN instead of classical
back propagation networks as used by Weinstein et al.
(1992). The backward propagation type is highly complex
and involves many small modifications of the system
parameters that gradually improve system performance. The

major difference between PNN and backward propagation is
that the sigmoid activation function of the latter is replaced
by a statistically derived one in the former (Specht, 1990).
The main operational advantage of PNN is that training is
very easy and quick (instantaneous) and sparse data are
adequate for network performance. The shape of the decision
surface can be made as complex as necessary, or as simple as
desired, by choosing appropriate values of only one
parameter (the smoothing factor; Specht, 1990).

Discovery of new molecular targets and/or mechanisms of
resistance is one of the major objectives of the present
research programme. This can to some extent be accom-
plished by using the drug database as described. However,
development of a complementary database of differential
molecular expression across the cell line panel may add to
this objective by providing molecular correlates to the drug
activity patterns. By seeding the drug database with across-
cell line quantitative patterns of molecular expression/
function of cell growth-regulatory and/or drug sensitivity or
resistance determinants (in the mean-graph format), matching
drug activity patterns can be identified and provide clues on
the nature of the particular drug—target interaction. Indeed,
the NCI reported very promising results when their drug
database was searched using P-gp expression (Alvarez et al.,
1995) and function (Lee et al., 1994) as the seed patterns.
High correlations of measured across-panel patterns of P-gp
function to drug—response patterns of known P-gp substrates
have also been observed using the present system (not yet
published).

The above approach might provide important information
on the molecular pharmacology of drug interactions with
known target molecules. At a future stage the possibility of
developing a database on differential expression of unknown
molecules using quantitative protein gel electrophoresis



(Anderson et al., 1991) or detection of differential mRNA
expression using the differential display polymerase chain
reaction (PCR) technique (Liang and Pardee, 1992) might
also be explored. Although, the feasibility and utility of such
an approach is hard to predict, research in this direction has
already begun at the NCI (Weinstein, et al., 1994).

The limited number of cell lines used in the present panel
does not allow tumour type specificity of drugs to be
evaluated. However, cell lines may not be an optimal model
for this purpose. Indeed, tumour type-specific detection of
standard drugs in the NCI operated in vitro screen has not
been convincingly demonstrated (Weisenthal, 1992). In
contrast, application of non-clonogenic cell culture assays
of primary cultures of tumour cells from patients has been
shown to mimic the known clinical activity pattern of
standard drugs. We have previously shown that the FMCA
can detect tumour type-specific activity retrospectively for a
series of standard drugs (Nygren et al, 1994) and
prospectively for early phase I-II drugs such as CdA,
gemcitabine and taxol (Larsson et al., 1994; Csoka et al.,
1995; Nygren et al., 1995). Thus, the parallel or sequential
application of these model systems may provide important
complementary information on sensitivity, selectivity and
similarity of anti-cancer drug action.

Some additional potential limitations should also be
considered. The limited number of cell lines (and thus data
points) may render the correlation analysis sensitive to errors
as one deviating point can have a large impact on the
calculated correlation coefficients. This may to some extent be
avoided by visual inspection of correlation graphs and
recalculation of correlation coefficients after leaving out
suspect data points as well as parallel comparison with NN
analysis. NN may be less sensitive to single point errors or
missing data as the information is encoded throughout the
net structure and is relatively less dependent on single data
points (Weinstein et al., 1992). In the present study the
predictive accuracy of the NN was reasonably good when
adhering to the quality criteria established for successful
assays.

Furthermore, with the present approach, only drugs with a
cytotoxic mode of drug action are readily amenable to

References

ALLEY MC, SCUDIERO DA, MONKS A, HURSEY ML, CZERWINSKI
MIJ, FINE DL, ABBOTT DL, MAYO GH, SHOEMAKER RH AND
BOYD MR. (1988). Feasibility of drug screening with panels of
human tumor cell lines using a microculture tetrazolium assay.
Cancer Res., 48, 589-601.

ANDERSON LA, ESQUER-BLASKO R, HOFMAN JP AND ANDERSON
NG. (1991). A two-dimensional gel data-base of rat liver proteins
useful in gene regulation and drug effect studies. Electrophoresis,
12, 907-912.

ALVAREZ M, PAULL A, MONKS A, HOSE C, LEE JS, WEINSTEIN J,
GREVER M, BATES S AND FOJO T. (1995). Generation of a drug
resistance profile by quantitation of mdr-1/P-glycoprotein in the
cell lines of the National Cancer Institute anticancer drug screen.
J. Clin. Invest., 95, 2205-2214.

BAAS F, JONGSMA A, BROXTERMAN H, ARCECI R, HOUSMAN D,
SCHEFFER, GL, RIEHORST A, VAN GROENIGEN M, VAN
NIEWINT AWM AND JOENJE H. (1990). Non-P-glycoprotein
mediated mechanism for multidrug resistance precedes P-
glycoprotein expression during in vitro selection for doxorubicin
resistance in a human lung cancer cell line. Cancer Res., 50, 5392.

BECK WT. (1987). The cell biology of multiple drug resistance.
Biochem. Pharamacol., 36, 2879 —2887.

BECK WT, CIRTAIN MC, DANKS MK, FELSTED RL, SAFA AR,
WOLVERTON JS, SUTTLE DP AND TRENT, JM. (1987).
Pharmacological, molecular, and cytogenetic analysis of ‘atypi-
cal’ multidrug-resistant human leukemic cells. Cancer Res., 47,
5455 —5460.

BELLAMY WT, DALTON WS, GLEASON MC, GROGAN TM AND
TRENT JM. (1991). Development and characterisation of a
melphalan-resistant human multiple myeloma cell line. Cancer
Res., 51, 995-1002.

Mechanism-based screening of anti-cancer drugs
S Dhar et al

analysis due to the relatively short assay time. Thus,
compounds with strictly antiproliferative effects might be
missed. Partial remedy for this may be to use IC;, values,
which were used for three of the drugs in the present study,
or increased assay time. Increasing assay time will increase
the impact of antiproliferative effects especially for slowly
proliferating cell lines (Larsson and Nygren, 1989). However,
for the anti-metabolites, for which time-dependent antiproli-
ferative effects may be a characteristic, all these drugs
produced an ICs, value in at least four cell lines.

Finally, for many drugs the mechanism of action is only
tentatively defined and may be different and mixed
depending on the cell system used. Owing to the limited
number of drugs and drug classes tested in the present
study, only four mechanistic categories were selected as
output categories in the analysis. However, despite these
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least were fairly well separated to allow good predictions in
the majority of cases also when the fifth category for
unknown or other mechanism of action was added.
Differentiation of these mechanistic categories into sub-
groups may be possible as the database expands and new
knowledge on mechanisms of action is added. Additional
cell lines with novel mechanisms of resistance may also be
added to the panel in the future.

In summary, new anti-cancer drugs with improved efficacy
and a broader spectrum of activity are desperately needed.
The present evaluation system may provide important initial
information not only on anti-tumor efficacy and mechanistic
classification of each drug, but, also on the susceptibility to
defined mechanisms of resistance at the molecular level.
Moreover, this in vitro system may also serve as a practical
tool for bioassay-guided drug design. However, further
prospective evaluation is required to assess the utility of
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