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Abstract

Postpartum involution is the process by which the lactating mammary gland returns to the pre-

pregnant state after weaning. Expression of tumor-promotional collagen, upregulation of matrix 

metalloproteinases, infiltration of M2 macrophages, and remodeling of blood and lymphatic 

vasculature are all characteristics shared by the involuting mammary gland and breast tumor 

microenvironment. The tumor promotional nature of the involuting mammary gland is perhaps 

best evidenced by cases of postpartum breast cancer (PPBC), or those cases diagnosed within 10 

years of most recent childbirth. Women with PPBC experience more aggressive disease and higher 

risk of metastasis than nulliparous patients and those diagnosed outside the postpartum window. 

Semaphorin 7a (SEMA7A), cyclooxygenase-2 (COX-2), and collagen are all expressed in the 
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involuting mammary gland and, together, predict for decreased metastasis free survival in breast 

cancer. Studies investigating the role of these proteins in involution have been important for 

understanding their contributions to PPBC. Postpartum involution thus represents a valuable 

model for the identification of novel molecular drivers of PPBC and classical cancer hallmarks. In 

this review, we will highlight the similarities between involution and cancer in the mammary 

gland, and further define the contribution of SEMA7A/COX-2/collagen interplay to postpartum 

involution and breast tumor progression and metastasis.
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BREAST CANCER METASTASIS AND POSTPARTUM BREAST CANCER

In the United States, breast cancer remains the second leading cause of cancer related death 

in women, with the majority of these deaths resulting from metastatic disease. Breast cancer 

is a heterogeneous disease with five identified molecular sub-types: luminal-A, luminal-B, 

HER2-enriched, basal-like, and normal-like[1]. Treatments for hormone receptor positive 

and HER2 amplified cases include targeted therapies that, while initially successful, often 

result in the development of resistance, thereby increasing the likelihood of metastasis[2]. 

Breast cancers lacking estrogen receptor, progesterone receptor, and HER2 amplification are 

defined as triple negative breast cancers (TNBC) and account for 15%−20% of breast cancer 

diagnoses. Patients with TNBC not only have lower survival rates due to increased early 

metastasis, but also lack a targeted therapeutic option[3,4]. This evidence underscores the 

necessity of novel models for the identification of molecular drivers of breast cancer 

progression, therapy resistance, and metastasis.

Multiple epidemiological studies highlight the effect of pregnancy on breast cancer risk. 

While first pregnancy at an early age confers a lifelong protective effect against breast 

cancer, all women who have given birth undergo a transient period of increased risk[5–9]. 

Previously, women diagnosed within five years of most recent childbirth were found to be at 

higher risk for developing metastatic breast cancer than nulliparous women[5–12], a risk that 

persists even after adjustments have been made for variability in hormonal receptor status, 

HER2 status, age, histological grade, tumor size, node status, and year of diagnosis[10,13]. 

More recent results have revealed that the probability of metastasis is increased for women 

diagnosed with breast cancer between 0–5 and 5–10 years postpartum. Thus, we now define 

breast cancers diagnosed within 10 years of most recent childbirth as postpartum breast 

cancer (PPBC)[10,13]. By this definition, PPBC accounts for over half of all breast cancers 

diagnosed in women under age 40 in two independent cohorts[10,13]. Since patients with 

PPBC have significantly worse outcomes, regardless of numerous clinical parameters, it has 

been hypothesized that pro-tumorigenic changes in the breast tissue following pregnancy 

may persist for an extended period and accelerate PPBC progression. Consistent with this 

hypothesis, Asztalos et al.[14] identified a breast cancer associated genetic signature in the 

normal breast tissue of parous women that persists for up to 10 years after childbirth. Further 
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evidence of a postpartum tumorigenic signature is supported by multiple pre-clinical models, 

where implantation of tumor cells into rodent mammary glands after weaning facilitates 

tumor cell growth, invasion, and metastasis. Additional studies of the mammary gland after 

lactation have revealed that these phenotypes are driven, in part, by mammary and tumor 

specific increases in pro-inflammatory cyclooxygenase-2 (COX-2), fibrillar collagen, 

semaphorin 7a (SEMA7A), bone marrow derived stromal and macrophage populations, 

lymphangiogenesis, and circulating estrogens[15–22]. In this review, we will explore some of 

the mechanisms by which post-lactational changes in the mammary gland facilitate breast 

cancer progression and metastasis, with a focus on the roles of collagen, COX-2, and 

SEMA7A in cell death, extracellular matrix (ECM) and vascular remodeling, and 

macrophage infiltration.

PRO-TUMORIGENIC ROLES OF INVOLUTION ASSOCIATED PROGRAMS

For a detailed review of the events that occur during embryonic and adult mammary gland 

development, see Macias and Hinck[23]. Briefly, mammary gland development begins during 

embryogenesis where ectodermal placodes invade into the mammary mesenchyme to form a 

rudimentary ductal tree[24]. This primitive structure persists until puberty where upregulation 

of growth hormone and estrogen coordinate ductal morphogenesis to form the extensive 

epithelial ductal network that fills the mammary fat pad. Mammary epithelial structures are 

bi-layered, meaning they consist of both luminal cells and basally restricted myoepithelial 

cells that contact the basement membrane[25]. Full differentiation of the mammary gland is 

not achieved until pregnancy, where progesterone and prolactin coordinate differentiation of 

the alveolar structures that are responsible for milk storage and secretion; in addition, 

continued branching morphogenesis occurs to prepare the gland for lactation[23,26]. During 

lactation, oxytocin stimulates the contraction of myoepithelial cells in response to suckling, 

resulting in milk delivery via the nipple[27]. When lactation ends, the gland must cease milk 

production and return to the pre-pregnant karchitecture through postpartum involution.

Postpartum involution involves the upregulation of tumor-promotional factors in the 

mammary epithelium and surrounding stroma. As primary components of the mammary 

ECM, collagen proteins, and the fibroblasts that produce and remodel them, have been 

extensively studied for their role in breast tumor progression and metastasis[28,29]. The 28 

types of collagen proteins share a triple α-helix as part of their structure, and they can be 

broadly classified as fibrillar or non-fibrillar based on their assembly[30]. For additional 

information on collagen and its assembly, see Mouw et al.[30]. In this review, we will focus 

on fibrillar collagen, as this is the most abundant form in the mammary gland[31]. Collagen I 

expression is both spatially and temporally regulated, and its tight control is essential for the 

proper mechanosignaling required for normal mammary gland development and 

function[31]. In fact, dysregulation of the primary collagen I receptor, α2β1 integrin, can alter 

mammary ductal branching and promote tumor formation[32,33]. The contribution of 

collagen to tumor progression is emphasized by the prognostic value of collagen I mRNA in 

clinical outcomes of breast cancer[34] and evidence that increased collagen density promotes 

local breast cancer invasion and distant metastasis[35]. One way that collagen deposition is 

regulated during involution is by the pro-inflammatory enzyme COX-2.
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COX enzymes were first identified as the targets of inhibition by aspirin and other non-

steroidal anti-inflammatory drugs (NSAIDs)[36]. COX enzymes exist in two isoforms, both 

of which bind to cell membranes where they catalyze the metabolism of free arachidonic 

acid (AA) to prostaglandins (PGs) via phospholipase A2[37,38]. First, COX enzymes rapidly 

catalyze the formation of an unstable intermediate, prostaglandin G2 (PGG2), from AA. 

PGG2 is then rapidly converted to prostaglandin H2 (PGH2) via COX-mediated peroxidase 

activity. Finally, specialized prostaglandin synthases result in the conversion of PGH2 to 

specific, biologically active PGs[37–39]. Though initially believed to function identically, 

later investigations revealed important differences between COX-1 and COX-2[40]. COX-1 is 

constitutively expressed as a regulator of tissue homeostasis[41], whereas COX-2 is not 

normally expressed in adult tissues, with the exception of the central nervous system[42], 

kidneys[43], and male reproductive organs[40,44]. Unlike COX-1, COX-2 expression is 

regulated by mitogens, hormones, and cytokines, and it is also correlated with cancer 

progression[45,46]. However, it is the product of COX-2 activity - PGE2 - that serves as the 

active effector of pro-tumorigenic signaling. Once synthesized, PGE2 can bind to specific E-

prostanoid receptors on the cell surface to activate pathways associated with survival and 

inflammation[47]. COX-2/PGE2 signaling has been described in multiple models of cancer, 

including oral, breast, prostate, and colorectal, with documented roles in tumor initiation, 

invasion, immune evasion, cell survival, metastasis, vascular remodeling, cancer stem cells, 

and drug resistance; for further review, see Hashemi Goradel et al.[46] and Stasinopoulos et 
al.[48]. In addition to the feedback between COX-2 and collagen deposition in involution and 

in breast cancer[18], we have also published a connection between COX-2 and tumor cell 

invasion through expression of the neuronal guidance protein, SEMA7A[49].

SEMA7A, or CD108w, was first recognized for its expression on lymphocytes[50]; however, 

a role for SEMA7A in cancer was later identified through its association with Plexin-C1, the 

receptor for the viral homolog of SEMA7A. Engagement of Plexin C1 by viral semaphorin 

inhibits dendritic cell adhesion and motility via alterations to the actin cytoskeleton[51]. 

Similarly, in melanoma, SEMA7A/Plexin-C1 engagement inhibits cell migration via 

inactivation of the cofilin pathway[52]. Cofilin activation, which normally generates free 

actin filaments required for cell migration[53] is considered a major component of the 

metastatic cascade[54]. SEMA7A/Plexin-C1 mediated cofilin inactivation led to the 

identification of Plexin-C1 as a novel tumor suppressor[53]. Consistent with this finding, 

Plexin-C1 expression is frequently lost in melanoma[53]. Conversely, during development, 

SEMA7A signals through its other known receptor, β1-integrin, to promote axon outgrowth 

via activation of the mitogen activated protein kinase (MAP-K) pathway[55]. Unlike Plexin-

C1, SEMA7A-mediated activation of β1-integrin has been shown to promote cancer 

progression. Our lab and others have shown that SEMA7A-β1-integrin binding promotes 

cell migration, invasion, metastasis, and neo-vasculogenesis of the blood and lymphatic 

vessels[49,56–58]. SEMA7A has also been implicated in multiple models of fibrosis (reviewed 

below), supporting additional roles in inflammation and fibrillar collagen deposition. The 

expression of SEMA7A, COX-2, and collagen during postpartum involution and their 

known roles in facilitating tumor progression suggest these molecules and their interplay 

may be important drivers of PPBC.
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PRO-TUMORIGENIC MECHANISMS OF CELL DEATH DURING INVOLUTION

Programmed cell death is essential for preventing the aberrant cellular phenotypes that arise 

when cells acquire DNA damage and mutations. Resistance to cell death may, consequently, 

result in the propagation of potentially harmful mutations that allow cells to bypass 

checkpoints meant to prevent unregulated growth and division. Resistance to cell death is 

thus defined by Hanahan and Weinberg[59] as one of the original hallmarks of cancer. For a 

detailed review of cell death and cancer, see Ichim and Tait[60]. In tumor cells, resistance to 

cell death plays an important role beyond tumor initiation, affecting drug-resistance, 

recurrence, and metastasis. Despite continuous advances in targeted chemotherapy, 

treatment efficacy tends to decline over time as a result of the ability of tumor cells to 

suppress apoptotic pathways, upregulate DNA repair, and genetically adapt to escape death. 

Tumor cells with repopulating capacity may also acquire the ability to resist death in 

response to chemotherapy, thereby constituting a major mechanism of cancer recurrence. 

Mechanisms by which tumor cells resist chemotherapy are further summarized by Al-

Dimassi et al.[61]. Active survival signals from the mammary ECM are required to override 

the default programming of normal adherent cells to die. When these cells become detached, 

they die in the absence of ECM signaling by a specialized form of programmed cell death 

called anoikis[62]. Anoikis-resistance is a critical requirement for the successful metastasis 

of circulating tumor cells, a feature that may be shared by some of the cells that survive 

involution[63]. Postpartum involution is characterized by two major waves of apoptosis, 

culminating in the death of over half of the mammary epithelium[64]. As a minority of 

mammary epithelial cells (MECs) survive this process, postpartum involution represents an 

excellent model for studying the mechanisms by which cells acquire resistance to cell death 

in apoptotic environments. In this section, we will review the major mechanisms regulating 

cell death during postpartum involution and potential contributors to cell death resistance 

during tumorigenesis.

Postpartum involution occurs in two primary phases. In the first, or reversible phase, 

accumulation of milk protein, a process known as milk stasis, results in the detachment and 

shedding of secretory alveolar epithelial cells to the lumen. Milk stasis induces the first wave 

of cell death, in part, through the local expression of leukemia inhibitory factor (LIF). LIF is 

a primary activator of the master apoptotic regulator of involution-signal transducer and 

activator of transcription 3 (STAT3)[65]. Other important activators of STAT3 at the onset of 

postpartum involution include transforming growth factor-β (TGFβ), Janus kinase-1 

(JAK-1), and Snail2 (SLUG)[66–68]. Activation of STAT3 promotes postpartum mammary 

gland involution by shifting the balance of pro-and anti-apoptotic signals in favor of 

programmed cell death. STAT3 coordinates the first wave of epithelial apoptosis through 

activation of pro-apoptotic Bcl-2 family members, upregulation of PI3K inhibitory subunits, 

and downregulation of MAP-K survival signaling[66]. STAT3 further promotes cell death 

during involution by mediating the formation of triglyceride-containing vacuoles. 

Triglycerides within these lysosomal-like vacuoles become metabolized into free fatty acids 

which interact with and distort lysosomal membranes. This results in the leakage of 

cathepsin proteases into the cytosol, and ultimately, lysosomal-mediated programmed cell 

death[69]. The role of STAT3 in regulating apoptosis during involution has recently been 

Wallace et al. Page 5

J Cancer Metastasis Treat. Author manuscript; available in PMC 2019 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



comprehensively reviewed by Hughes and Watson[66]. STAT3 has a well-defined role in 

cancer progression, with over 40% of breast cancers presenting with constitutive STAT3 

activation. Because STAT3 activates multiple signaling pathways, aberrant activation can 

promote multiple changes associated with cancer, including altered cell cycle dynamics, 

EMT, angiogenesis, and interestingly, resistance to cell death[70,71]. Therapies targeting 

STAT3 may, thus, be of important therapeutic value for PPBC patients. For more about the 

role of STAT3 in breast cancer, see Segatto et al.[70].

Removal of the overwhelming number of dead cells from the gland requires the Rac-1 

mediated switch of MECs from a secretory to a phagocytic phenotype - a process which is 

essential for proper remodeling in the second phase of involution[72]. Despite the massive 

wave of cell death that occurs during the first phase, if suckling resumes within this window 

(48–72 h, in mice), involution can be reversed, and lactation can proceed. This reversibility 

is due, in large part, to the expression of tissue inhibitors of metalloproteinases (TIMPs)[73]. 

TIMPs preserve the reversibility of gland regression by delaying irreversible tissue 

remodeling events through the inhibition of matrix metalloproteinases (MMPs)[74]. 

Interestingly, TIMP expression may also serve as an additional mechanism to regulate 

epithelial apoptosis, as TIMP3 has been implicated in the regulation of cell death in a tumor 

necrosis factor (TNF)-dependent manner[75]. The number of compensatory mechanisms that 

exist to activate apoptosis underscore the importance of postpartum involution to future 

rounds of successful lactation. At approximately day three of involution in mice, 

downregulation of TIMPs results in activation of the MMPs that degrade the mammary 

ECM, causing MECs to lose contact with their underlying basement membrane[73]. In the 

absence of pro-survival signaling from the ECM, detached MECs die by anoikis, thus 

comprising the second wave of cell death[62,73]. Similar to the first phase, clearance of dead 

cells during the second phase of involution is largely mediated by phagocytic MECs, with 

additional limited support from professional phagocytes. Milk fat globule epidermal growth 

factor 8, which works by recognizing phosphatidylserine on the outer leaflet of the plasma 

membrane of dying cells, is also critical for apoptotic cell clearance during the second 

phase[76].

What allows some cells to die and others to live during involution remains largely 

unanswered. To date, more than 50 mammary specific knockouts have been generated that 

exhibit alterations in postpartum involution - either delayed or premature - that are consistent 

with the proposed role for each molecule in the process. For example, activation of pro-

survival pathways, such as Akt1, and/or deletion of death inducing genes, such as Bax, 

results in delayed involution, while deletion of Akt1 and anti-apoptotic Bcl-x results in 

premature involution[77–80]. See Radisky et al.[80] for an extensive review of these models. 

As pro-survival signals progressively decline and pro-apoptotic signals increase during the 

first phase of involution, the mammary basement membrane and ECM become the primary 

mediators of cell survival[81]. Yet, during the second phase, the basement membrane and 

ECM are degraded by proteases. Previously, SEMA7A mRNA expression was shown to 

increase in whole mammary extracts during the early phase of involution, and its expression 

was attributed to its immunomodulatory role[82]. Recently, we published that SEMA7A is 

expressed on Epcam+ MECs during the remodeling phase of involution[57]; however, the 

downstream mechanisms activated by epithelial SEMA7A are not well understood. 
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Interestingly, SEMA7A is a ligand for β1-integrin, which is the receptor for ECM molecules 

that normally facilitate epithelial cell attachment. It is therefore possible that SEMA7A may 

activate β1-integrin signaling and provide a pro-survival mechanism to overcome anoikis. 

Furthermore, β1-integrin mediates the activation of known survival pathways including 

MAP-K and AKT, which affects survival via stabilization of NF-κB and expression of 

COX-2. Thus, SEMA7A may promote anoikis-resistance during involution via activation of 

β1-integrin in a manner that is independent of ECM; however, additional investigation is 

required.

The role of COX-2 during involution has also largely been attributed to its role in the 

modulation of the immune milieu[83]. Yet, COX-2 also contributes to cell survival 

mechanisms and collagen remodeling via PGE2, which promotes cell growth and 

proliferation, modulates collagen expression levels, and upregulates proteinase expression. 

Studies investigating the effects of postpartum involution in TNBC progression have 

revealed a feed-forward mechanism by which fibrillar collagen deposition during involution 

requires COX-2 expression. COX-2 further promotes increased fibrillar collagen[18], which 

is directly associated with tumor progression and poor prognosis in breast cancer 

patients[31,84]. Cooperation between fibrillar collagen and COX-2 may therefore contribute 

to the pro-tumorigenic nature of the involuting mammary gland. Similar to postpartum 

involution, wound healing is a biological process where cell death is accompanied by 

collagen remodeling. In the “phoenix rising” model of cell death, discovered in a model of 

wound healing and further characterized in cancer, dying cells send signals to stem and 

progenitor cells to increase their proliferation, thereby coordinating cell growth with 

death[85,86]. In dying cells, activation of caspases 3 and 7 results in the release of calcium-

independent phospholipase-2, which increases the production and release of AA from cell 

membranes. Ultimately, COX-2 and PGE2 synthase convert free AA to PGE2, which 

increases stem and progenitor cell proliferation to promote tissue regeneration[85]. Though 

the phoenix rising model, to our knowledge, remains uninvestigated during mammary 

involution, there are numerous similarities between the wound healing program and 

postpartum involution, including apoptosis, clearance of damaged and dead cells, and 

activation of similar inflammatory programs. This suggests that this mechanism of 

coordinated cell death and tissue regeneration may be conserved in mammary development. 

Additionally, these mechanisms seem to be particularly important for the growth and 

survival of stem and progenitor cells in response to apoptotic stimuli, thus representing a 

mechanism of tumor recurrence in response to chemotherapy. The preceding data may help 

to further explain the role of collagen, COX-2, and SEMA7A in facilitating tumor 

progression following lactation.

EXTRACELLULAR MATRIX AND REMODELING DURING POSTPARTUM 

INVOLUTION AND CANCER

In their updated review of the hallmarks of cancer, Hanahan and Weinberg described the 

tumor microenvironment (TME) as a critical mediator of cancer progression due to its 

ability to supply cancer cells with signals that promote inflammation, induce angiogenesis, 

and confer resistance to cell death[87]. The TME consists of all the cells, ECM molecules, 
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vasculature, and proteins that surround a tumor. The cross-talk between these components 

and the tumor can affect tumor growth, survival, metabolism, metastasis, response to 

treatment, and recurrence. The contributions of the TME to cancer progression are 

comprehensively reviewed in a recent special issue of Nature Reviews Cancer[88]. In this 

section, we will briefly discuss some of the similarities between the tissue microenvironment 

of the involuting mammary gland and the TME.

ECM fragments, which can be used as diagnostic markers of disease, are known contributors 

to cancer for their ability to participate in cell signaling events and modulate gene 

expression[31,89]. An investigation of the tumor-promotional aspects of involution revealed 

that tumor cells co-cultured with ECM isolated from involuting rat mammary gland 

promoted tumor cell invasion, whereas tumor cells co-cultured with ECM isolated from 

nulliparous rat mammary glands did not[90], suggesting that involution-derived ECM 

promotes tumor cell invasion and metastasis. In further support, orthotopic injection of 

breast cancer cells mixed with ECM isolated from the mammary glands of rats undergoing 

postpartum involution also confirmed that involution derived ECM promotes metastasis[90]. 

Additional investigations have confirmed that the involution microenvironment mirrors the 

typical breast TME based on their shared availability of ECM fragments, dramatic increases 

in fibrillar collagen, and increased MMP activity [90–92]. Specifically, studies of 

stomelysin-1 (MMP3), the primary active MMP during the tissue remodeling phase of 

involution, have characterized it as a potent mediator of EMT and other early oncogenic 

events in the mammary gland[93]. Furthermore, elevation of fibrillar collagen results in 

increased collagen crosslinking and ECM stiffening - characteristics known to accompany 

breast tumor progression[89,94–96]. Increased collagen deposition and cross-linking further 

promote tumor cell invasion and metastasis by providing a structural network for tumor cell 

migration[97].

Transforming growth factor β (TGFβ), well-known for its paradoxical role in breast tumor 

progression, is a primary regulator of collagen deposition in the mammary gland[98]. At 

approximately 8 h post weaning, TGFβ becomes activated and exerts tumor suppressive 

effects via activation of apoptotic programming[73,99]. Conversely, when normal cells begin 

to take on tumorigenic phenotypes, TGFβ promotes cancer progression by enhancing tumor 

cell survival and contributing to the maintenance of cancer stem cell populations[100]. TGFβ 
is also essential for wound healing, where it stimulates ECM deposition via fibroblast 

activation[101]. Interestingly, TGFβ dependent fibroblast activation during involution may be 

COX-2 dependent, as NSAID treatment decreases fibroblast activation in vivo. Furthermore, 

NSAIDs inhibit fibroblast mediated fibrillar collagen deposition during involution and in a 

model of PPBC[15]. Additionally, TGFβ is known to positively regulate SEMA7A in 

pulmonary fibrosis, where SEMA7A is critical for ECM deposition via activation of the 

PI3K/AKT pathway[102]. Given its role in ECM deposition, SEMA7A expression during the 

second phase of involution suggests it may also play a role in mammary gland tissue 

remodeling[57]. SEMA7A can affect ECM remodeling through its ability to recruit 

fibroblasts and immune cells to fibrotic sites, and it has been further implicated in fibrosis 

models in the liver, kidney, and in glial scar formation[103–108]. Contradictory to this role, 

when endogenously expressed on fibroblasts, SEMA7A can maintain fibroblast homeostasis 

and reduce pro-fibrotic markers[109], indicating context dependent roles for SEMA7A-
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mediated signaling. In cancer, fibrillar collagen coordinates upregulation of COX-2 on tumor 

cells, further promoting tumor cell invasion and metastasis[7], and we have published that 

COX-2 drives SEMA7A expression[49]. Thus, fibrillar collagen, COX-2, and SEMA7A may 

be a part of a feed-forward loop that ultimately results in cancer cell invasion and metastasis. 

Additional studies, however, are needed to better understand the hierarchy and cross-talk 

between these molecules in the context of postpartum involution and breast cancer 

progression.

Altering fibrillar collagen deposition provides a route for tumor cell migration and invasion, 

but also changes the signals received by cells from the surrounding environment. Signals 

from the ECM are communicated to cells by integrins. Integrins are heterodimeric (αβ) 

transmembrane receptors with 18 known α and 8β integrin subunits, resulting in 24 possible 

heterodimeric integrin receptors[110]. Proper expression and signaling of integrins is 

essential for cell survival and adhesion, and integrin dysregulation can promote cancer via 

activation of pathways that affect survival, EMT, and migration[28,111–115]. Specifically, 

improper integrin signaling and expression can result in the loss of normal epithelial cell 

polarity and attachment, in addition to the over-activation of focal adhesion kinase and 

subsequent downstream signaling pathways that promote cell survival, migration, invasion, 

and ultimately metastasis[116]. While some integrin pairs are highly specific in their 

substrate recognition, others can recognize a number of substrates from the ECM, as well as 

foreign molecules such as snake venom, viral particles, and pathogens[117,118]. Alternative 

ligand-binding partners and/or differential integrin expression can elicit different signaling 

pathways; thus, when either ligand or integrin profiles are altered, cellular signaling 

pathways can become aberrantly activated or inhibited. Abnormal SEMA7A expression 

during involution and/or cancer may promote tumorigenesis via activation of β1-integrin and 

downstream pathways. SEMA7A binds to β1-integrin via the RGD binding site located on 

the SEMA domain; however, this site is buried in the crystal structure when SEMA7A is 

bound to Plexin C1. The ability to differentially regulate tumor progression could, therefore, 

be explained by binding of SEMA7A to its different receptors[119,120]. Further, while 

SEMA7A binds to α1β1-integrin on inflammatory macrophages[121], the α-binding partner 

needed for SEMA7A-mediated breast cancer progression is unknown. As reviewed above, 

one consequence of SEMA7A-β1-integrin signaling is fibrillar collagen deposition. 

Collagen can also activate integrins and modulate their associated signaling pathways, 

primarily through α2β1 integrin, which is often upregulated on cancer cells of epithelial 

origin[122]. Collagen binding to α2β1 integrin on tumor cells promotes cellular invasion, 

which helps cells navigate through the collagen I rich mammary TME and distant metastatic 

sites, such as the bone[122]. Interestingly, α2β1 integrin has been shown to increase COX-2 

expression in intestinal epithelial cells[123], leading to activation of downstream signaling 

events associated with tumor promotion. While these results further support a link between 

COX-2 and collagen, α2β1 integrin has also been recognized as a metastasis suppressor in 

breast cancer. The complex interplay between integrins, collagen, COX-2, and SEMA7A is, 

thus, likely to be context-dependent, and additional studies are necessary to understand the 

role of this signaling axis in mediating tumor cell invasion and metastasis in breast cancer.
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MACROPHAGES IN POSTPARTUM INVOLUTION AND PPBC

Macrophages are the phagocytic immune cells that mediate the removal of foreign 

pathogens, dead cells, and debris. Classically-activated macrophages, also known as M1 

macrophages, are activated in response to pathogen-associated cytokines, most often IFN-γ 
and lipopolysaccharide. M1 macrophages are largely considered to be “anti-tumor” based on 

their expression of the pro-inflammatory cytokines, interleukin-1 (IL-1), IL-12, TNF-α, and 

inducible nitric oxide synthase - all of which have been shown to oppose tumor 

progression[124,125]. In contrast, Th2 family cytokines induce the maturation of alternatively-

activated, or M2 macrophages, and cause their release of anti-inflammatory mediators that 

support tumor cell survival[21,126]. M2 macrophages promote tumor cell growth, invasion, 

and metastasis, via their secretion of IL-10, TGFβ, and MMPs. Though the M1/M2 system 

is useful for broadly classifying macrophages, this taxonomy fails to capture the plasticity 

and diversity characteristic of this cell type. For the purpose of this review, however, we will 

use M1 and M2 to broadly classify anti-and pro-tumor macrophages, respectively. Multiple 

studies support the role of macrophages as critical mediators of metastasis[21,127–129]. In 

models of gastric and breast cancer, M2 macrophages are recruited by tumor cells, where 

they activate MAP-K signaling to promote the motility of disseminating tumor cells[127]. 

Further, macrophages appear to be critical for the migration of the majority of ductal 

carcinoma in situ cells, as only 10% are motile when macrophages are absent[130]. The 

critical contribution of macrophages to tumor cell metastasis is further evidenced by studies 

in the MMTV-PyMT mouse model of breast cancer, where knockout of colony stimulating 

factor-1 (CSF-1), a secreted glycoprotein that induces the differentiation of hematopoietic 

stem cells to macrophages, correlates with a near complete elimination of tumor cell 

metastasis[21,131]. Macrophages, therefore, represent a diverse population of cells that can 

promote or inhibit tumor progression based on the context of their environment.

Macrophages are the primary immune cells present during mammary gland postpartum 

involution, and because of their role in facilitating tumor metastasis, represent a potential 

contribution to the highly metastatic nature of PPBC. Though known primarily for their 

phagocytic capacity, macrophages only play a minimal role in the clearance of apoptotic 

cells during involution[21,132,133]. Despite their limited role in phagocytosis, M2 

macrophages are essential for the epithelial apoptosis and tissue remodeling characteristic of 

postpartum involution[134]. At the peak of apoptotic cell clearance, macrophages exist at 

relatively low levels, as MECs represent the primary phagocytes. At day 6 of involution, 

however, the peak of mammary tissue remodeling, M2 macrophages exist at 6 times the 

level of those in the nulliparous mammary gland, while classically-activated M1 

macrophages remain at consistent levels throughout pregnancy, lactation, and gland 

regression[21]. F4/80, a general marker of mature mouse macrophages, marks more than the 

sum of M1 and M2 macrophages during involution, suggesting there are additional 

macrophage populations present in the involuting mammary gland[20]. Our lab has recently 

identified a population of macrophages that also express the lymphatic endothelial marker, 

podoplanin (PDPN)[57]. In culture, SEMA7A drives the expression of PDPN on 

macrophages and promotes their migration and adherence to lymphatic vessels[57]. Because 

macrophages have proven to be a critical part of the metastatic cascade by facilitating 
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intravasation into tumor associated blood vessels [135], SEMA7A-mediated macrophage 

lymphatic mimicry may also facilitate intravasation into lymphatic vessels, providing 

another explanation for the high rates of metastasis associated with PPBC. This is further 

supported by the prognostic value of a combined genetic signature of CD68, PDPN, and 

SEMA7A in predicting decreased distant metastasis free survival in a cohort of 600 human 

breast cancer cases[57]. SEMA7A further regulates macrophages by serving as a strong 

activation factor for monocytes, promoting both chemotaxis and secretion of inflammatory 

cytokines, in addition to upregulation of granulocyte-macrophage CSF (GM-CSF), 

supporting an additional role for SEMA7A in macrophage differentiation[136].

Another important macrophage regulator during postpartum involution and breast cancer is 

COX-2. Previous studies in breast cancer models have shown that COX-2 expression 

increases with cancer stage, and its expression levels can indicate breast cancer progression, 

recurrence, and metastasis[137]. Recently, COX-2 expressing tumor associated macrophages 

(TAMs) have been shown to promote the metastatic potential of breast cancer cells via 

secretion of IL-6 and subsequent activation of AKT signaling in cancer cells[138]. Further, 

expression of COX-2 in stromal TAMs results in upregulation of COX-2 in breast cancer 

cells, thereby shifting polarization of local macrophages toward the M2 phenotype. In 

addition to its association with tumor promotional CD163+ TAMs, COX-2 expression in the 

stroma is further associated with increased collagen alignment in invasive breast cancer[139]. 

TAMs are known to associate with dense regions of collagen in breast cancer in the same 

way M2 macrophages associate with fibrillar collagen during involution. In the MMTV-

PyMT model, macrophages associated with fibrillar collagen have been shown by intravital 

imaging to migrate across collagen fibers, suggesting that one mechanism by which 

macrophages promote metastasis is by supporting the migration of tumor cells across 

collagen networks[21,140]. SEMA7A, COX-2, and collagen all represent important effectors 

of macrophage-mediated tumor cell growth, survival, and metastasis. As macrophages are 

considered essential for successful metastasis, targeting the molecules responsible for 

alternative macrophage activation, survival, and chemotaxis may be critical for the 

successful treatment of metastatic disease.

ENDOTHELIAL VESSEL FORMATION

Blood and lymphatic vessels form two similar, yet distinct, organ systems that assemble into 

extensive networks throughout the body to support development and survival. Blood vessels 

provide tissues with oxygen and nutrients, while the primary functions of lymphatic vessels 

are immune cell trafficking and removal of excess interstitial fluid from tissues. Blood and 

lymphatic vessels are lined with blood endothelial cells and lymphatic endothelial cells, 

respectively, and are both surrounded by a thin layer of smooth muscle. Some lymphatic 

vessels have unique “button-like” junctions that differ from the more continuous “zipper-

like” junctions of the blood vasculature and established lymphatic vessels. These specialized 

junctions are covered with a flap that opens and closes to allow fluid and cells to pass 

without affecting vascular integrity. Vascular networks are highly dynamic, expanding and 

retracting as tissues change in response to normal developmental processes or pathologies. 

Indeed, a widely accepted hallmark of cancer is the ability of tumors to induce angiogenesis, 

or the development of new blood vessels from existing vasculature[59]. Tumors must acquire 
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pro-angiogenic abilities in order to grow beyond 1–2 mm3[141]; otherwise, the tumor will die 

by necrosis or apoptosis[142,143]. In rat mammary tissues, we observe an overall net increase 

in lymphatic vessel density (LVD) during involution when compared to a lactation 

timepoint[16]. In contrast, blood vessel density (BVD) drops dramatically after lactation, 

suggesting an initial period of regression before increasing in a manner similar to LVD[144]. 

During involution, the highest vasculature densities peak at day 10, followed by a slight 

decrease in the fully regressed gland [Figure 1]. This is consistent with published studies 

from our group and others describing increased pro-angiogenic and pro-lymphatic signaling 

during postpartum involution, and in postpartum tumors compared to non-postpartum 

controls[14,16,22,145]. Interestingly, fibrillary collagen, COX-2, and SEMA7A all have 

established roles in endothelial vessel formation. Studies using artificial collagen matrices 

have shown that collagen increases angiogenic responses from endothelial cells by providing 

the support needed for sustained endothelial cell growth and the formation of endothelial 

networks[146]. Angiogenesis can also be regulated by mechanical stiffness within the small 

microvessel environment[147], and breast tumors are often stiffer than neighboring normal 

tissues by up to 6-fold[84,148]. For a more comprehensive review on collagen and 

angiogenesis, see Fang et al.[149]. These studies demonstrate how the ECM in the TME can 

modulate vessel formation and alter the tumor’s blood supply.

If a tumor outgrows its blood supply and loses its access to oxygen, it can become hypoxic. 

Under normal oxygen content conditions, termed “normoxia,” the transcriptional regulator 

hypoxia-inducible factor-1 (HIF-1) is unable to affect its targets; for further review of this 

topic, see Masson and Ratcliffe[150]. HIF-1 is comprised of two subunits - ARNT/HIF-1β, 

which is constitutively expressed, and HIF-1α, which is an oxygen-sensitive subunit. During 

normoxia, HIF-1α is hydroxylated by prolyl hydroxylase domain containing proteins, 

ubiquitinated by von-Hippel-Lindau protein, and rapidly degraded. During hypoxia, 

however, HIF-1α is not hydroxylated and degraded, but instead, translocates to the nucleus, 

heterodimerizes with ARNT, and induces transcription of its target genes. HIF-1 affects a 

variety of targets, including pro-angiogenic genes like vascular endothelial growth factor-A 

(VEGF-A)[151]. In breast cancer cells, COX-2 can induce inflammation-associated HIF-1 

activity, resulting in the expression of pro-angiogenic genes[48]. Further, HIF-1 and COX-2 

maintain a positive feedback loop, as HIF-1 can also induce expression of COX-2[152]. 

Utilizing NSAIDs to target COX-2 activity can inhibit angiogenesis, demonstrating the 

potential for therapeutic intervention[152–154]. Corroborating our findings that SEMA7A 

may be involved in COX-2 associated pathways, HIF-1 can directly upregulate SEMA7A in 

endothelial cells[155]. SEMA7A can elicit the release of pro-inflammatory cytokines and 

cause increased endothelial barrier permeability[156,157]. SEMA7A can also promote 

angiogenesis in a hypoxia-independent manner in murine mammary carcinoma and in the 

cornea by stimulating macrophages to produce pro-angiogenic molecules, such as CXCL2/

MIP-2[158] and VEGF-A[159].

In addition to their roles in angiogenesis of the blood vasculature, collagen, COX-2, and 

SEMA7A also have known roles in lymphangiogenesis. In breast cancer, increased LVD, 

lymph node involvement, and lymph vessel invasion are predictive of higher risk of 

metastasis; further, increased LVD and lymph node metastasis are commonly observed in 

PPBC[16]. While the role of collagen in lymphangiogenesis has not been extensively 
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characterized, one study has shown that collagen I increases lymphangiogenesis and 

angiogenesis in mouse embryoid bodies under hypoxic conditions[160]. Therefore, it is 

plausible that other fibrillar collagens may contribute to lymphangiogenesis during 

mammary tumorigenesis. COX-2/PGE2 signaling also promotes production of pro-

angiogenic VEGF-A and pro-lymphangiogenic VEGF-C and VEGF-D[161]; further, 

lymphangiogenesis during wound healing is dependent on COX-2 activity[162]. Moreover, 

COX-2 has been implicated in lymphangiogenesis in other cancer types, including cervical 

and gastric[163,164]. We published that inhibition of COX-2 with celecoxib and NSAIDs 

results in decreased LVD, tumor cell invasion into lymphatics, and metastasis during 

PPBC[16]. For more detailed information on COX-2 and lymphangiogenesis in breast cancer, 

see Lala et al.[165]. Finally, SEMA7A has a functional role in lymphatic vessel modulation, 

as we recently published that SEMA7A promotes tumor-associated lymphangiogenesis via 

macrophage-mediated lymphatic vessel remodeling during postpartum involution and breast 

cancer[57]. These findings suggest an additional mechanism by which SEMA7A, COX-2, 

and collagen promote tumor progression and metastasis.

CLINICAL RELEVANCE/CONCLUSION

Women with postpartum breast cancer face a disease that carries three times the rate of 

metastasis and death relative to women who have never been pregnant and those diagnosed 

outside of the postpartum window. One physiological event these women have in common is 

postpartum involution - a process that results in the upregulation and activation of tumor-

promotional factors in MECs and the mammary stroma. Identification of the genetic engines 

that drive PPBC is critical to the development of targeted therapies for postpartum patients. 

In this review, we have highlighted potential roles for collagen, COX-2, and SEMA7A in 

driving some of the pro-metastatic aspects of involution [Figure 2]. Previously published 

results indicate overall survival is generally decreased for breast cancer patients with high 

collagen, COX-2, and SEMA7A expression, suggesting that these mechanisms are important 

mediators of breast cancer metastasis[18,49]. Interestingly, while individual expression of 

each molecule does not predict for metastasis using KM Plotter analysis[166], the 

combination of high SEMA7A, COX-2, and COL1A1 mRNA expression results in 

significantly decreased distant metastasis free survival for breast cancer patients in this 

dataset [Figure 3]. Thus, studies rooted in understanding the contributions of postpartum 

involution associated programs to breast cancer metastasis are likely to also be applicable to 

general breast cancer metastasis, and perhaps to other cancer types.

Based on the cooperation between SEMA7A, COX-2, and collagen, a multi-targeted therapy 

to affect the individual molecules and their interplay would likely be more effective than 

targeting one, alone. The potential of COX-2 as a therapeutic treatment has been investigated 

in multiple models of cancer. In fact, the COX-2 inhibitor, celecoxib, has been successful in 

the treatment of a specific type of colorectal cancer - familial adenomatous polyposis - in 

both adults and children[167,168]. Targeting COX-2 in breast cancer, by celecoxib or other 

NSAIDs, may inhibit tumor cell dissemination by reducing the expression of tumor-

promotional collagen. Targeting SEMA7A in conjunction with already established therapies, 

such as NSAIDs, may also increase the efficacy of these treatments in women with breast 

cancer. Ideally, the characterization of tumor-promotional factors in the postpartum 
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mammary gland may also lead to preventative therapies aimed at reducing the risk for 

PPBC. NSAIDs may further represent a safe candidate for preventative therapy during 

involution via inhibition of COX-2 mediated collagen upregulation and alternative 

macrophage activation. The topics covered herein highlight both the potential contribution of 

the SEMA7A/COX-2/Collagen relationship to PPBC, and the importance of PPBC models 

to the discovery of new molecules and pathways that can be exploited as novel therapeutics.
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Figure 1. 
BVD and LVD during mammary gland development. BVD measured as number of blood 

vessels per millimeter and LVD measured as number of lyve-1 positive vessels per 

millimeter in nulliparous (N), pregnant (P), lactating (L), involuting (days 2–10) and 

regressed (R), mammary glands (data adapted from Lyons et al.[16] and Ramirez et al.[144]). 

BVD: Blood vessel density; LVD: lymphatic vessel density
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Figure 2. 
Graphical summary of pro-tumorigenic and metastatic roles of COX-2 and SEMA7A during 

postpartum involution and postpartum breast cancer. SEMA7A: Semaphorin 7a; COX-2: 

cyclooxygenase-2
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Figure 3. 
Distant metastasis free survival is decreased with high levels of expression of SEMA7A, 

COX-2, and COL1A1 signature. DMFS analysis using KmPlot (n = 664) *P < 0.05
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