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Different computational approaches have been examined and compared for inferring network relationships from time-series
genomic data on human disease mechanisms under the recent Dialogue on Reverse Engineering Assessment and Methods
(DREAM) challenge. Many of these approaches infer all possible relationships among all candidate genes, often resulting in
extremely crowded candidate network relationships with many more False Positives than True Positives. To overcome this
limitation, we introduce a novel approach, Module Anchored Network Inference (MANI), that constructs networks by analyzing
sequentially small adjacent building blocks (modules). Using MANI, we inferred a 7-gene adipogenesis network based on time-
series gene expression data during adipocyte differentiation. MANI was also applied to infer two 10-gene networks based on time-
course perturbation datasets from DREAM3 and DREAM4 challenges. MANI well inferred and distinguished serial, parallel, and
time-dependent gene interactions and network cascades in these applications showing a superior performance to other in silico
network inference techniques for discovering and reconstructing gene network relationships.

1. Introduction

Many established algorithms and approaches are available for
inferring gene regulatory networks from large time-course
molecular data [1, 2]. In silico network inference challenges
under the Dialogue on Reverse Engineering Assessment
andMethods (DREAM) projects—DREAM3, DREAM4, and
DREAM5—have explored the strengths and weaknesses of
important and widely used network inference techniques
based on gene expression data.Until recently, in collaboration
with the Gene Pattern team at the Broad Institute, the
DREAM challenge team had selected successful network
inference approaches and made them available as user
friendly software algorithms and pipelines of applications

that allowed users to combine multiple network inference
methods on a platform so-called Gene Pattern-Dialogue
on Reverse Engineering Assessment and Methods (GP-
DREAM) [2, 3]. Some of the widely used network inference
approaches are ANOVerence (which detects gene relation-
ships using nonlinear correlation coefficient derived from
an analysis of variance (ANOVA) [4]), correlation (which is
based on pairwise correlation between genes [2]), CLR (Con-
text Likelihood of Relatedness, which estimates gene relation-
ships using the concept of mutual information between genes
[5]), GENIE3 (which predicts expression profile of each novel
gene from expression profiles of Transcription Factors using
a tree based ensemble method [6]), Inferelator (network
inference approach combining two key time-series data
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techniques for network inference: time-lagged CLR (tlCLR),
an extension of CLR described above, and linear ODEmodel
constrained by LASSO [7]), and TIGRESS (Trustful Inference
of Gene Regulation using Stability Selection, a LASSO-
based regression approach for inferring gene regulations
[8]). Most of these network inference approaches adopt a
“global” approach to network inference and construct a
network using all genes simultaneously. While it is useful
for initial gene network inference, such an approach often
produces a hairball-like network that makes it hard to dis-
cern trustworthy network features among candidate network
connections. Similar to the dynamic algorithm in sequence
alignment, a localized approach anchoring network inference
around building blocks (modules) [1] or subunits of a large
network can dramatically enhance computational network
reconstruction. Based on this principle, we developed our
Module Anchored Network Inference (MANI) technique,
which identifies gene interactions and regulatory relation-
ships within each local module and then gradually expands
the network by adding new network interactions from adja-
cent connected modules. This systematic and local approach
to network inference constructs a less complex network and
identifies dynamic relationships between network genes.

We appliedMANI to time-course gene expression data of
a 7-gene network during adipocyte differentiation (adipoge-
nesis) [9]. We also tested MANI’s ability to infer two small
size (𝑛 = 10) in silico networks based on perturbation time-
series data from the DREAM3 and DREAM4 challenges and
compared the performance of MANI against contemporary
network inference methods such as ANOVerence, CLR, and
TIGRESS.

2. Methods

2.1. MANI Approach. The goal of MANI is to locally infer
gene regulatory relationships with sequential blocks (mod-
ules), each containing three genes (shown as a metaphor-
ical window in Figure 1). Our three-gene module network
reconstruction approach is based on (i) the observation that
majority of regulatory network relationships can be captured
by one of the four structures in Figure 2, each of which can be
gradually reconstructed with sequential three-gene modules,
and (ii) computational network inference can be efficiently
performed for all possible relationships within a three-gene
module. The approach consists of four steps (Figure 1): (i)
identifying a set of three closest genes for the initial win-
dow(s), (ii) fitting the best possible mechanism of regulation
among the genes within the initial window(s), (iii) migrating
the window to next module including a new network gene
which has the closest and statistically significant association
with the three genes in the previous module and whose
relationship has not yet been reconstructed (removing the
least associated gene with the new gene among the previous
three), and (iv) fitting regulatory relationships between the
new gene and the genes retained from the previous module.
The last two steps are repeated until all the genes potentially
in the network are examined and their relationships are
reconstructed if they are determined to be valid network
connections based on preset criteria.
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Figure 1: Schematic of MANI steps. Step 1: selection of three genes,
𝐴, 𝐵, and 𝐶, for the initial window. Step 2: inferring regulatory
relationship among genes within the window as indicated by
arrows. External input is shown by 𝑈. Step 3: migrating window to
accommodate a newgene (𝐷) with the closest expression association
with two genes (genes 𝐵 and 𝐶) and their associated regulatory
relationships from the previous window. Step 4: inferring regulatory
relationships between the genes in the newwindow. Steps 3 and 4 are
repeated until all the genes in the network are included in a window
at least once.
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Figure 2: Possible gene regulatory relationships within a three-
gene module. The three genes within a MANI module are labeled
𝐴, 𝐵, and 𝐶. The arrows between genes indicate the directions
of regulation tested between the genes. External inputs regulating
expression of genes are given as 𝑈, 𝑈1, or 𝑈2.

2.2. Inference of Regulatory Relationship within a Module. A
local network module that contains the three most strongly
correlated genes was identified by evaluating spearman rank
correlations from time-series gene expression profiles. Reg-
ulatory relationships between genes within the module are
inferred by selecting the optimal gene relationships from a
list of possible regulatory relationships (Figure 2).

Regulatory gene relationships are mathematically mod-
eled and fitted to gene expression data and the optimal
relationship is identified using the goodness of fit measure.
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Figure 3: Parameters representing regulatory relationships between
three genes (𝐴, 𝐵, and 𝐶) are given in (1), (2), and (3). Parameters
representing the magnitude of regulation of one gene by another
(𝑘2, 𝑘3) are shown over the edge connecting the genes. Rate of
degradation of mRNA produced by genes is given within { } ({𝑘4, 𝐷}
and {𝑘5, 𝐸}) or below the names of genes (𝑘1). 𝑈 represents an
external input regulating expression of genes within the module.

Figure 3 and (1)–(3) give an example of amathematicalmodel
for parallel regulatory relationship between genes.

𝑑 (𝐴)
𝑑𝑡 = 𝑈 − 𝑘1 ⋅ (𝐴) , (1)

𝑑 (𝐵)
𝑑𝑡 = 𝑘2 ⋅ (𝐴) − 𝑘4 ⋅ (𝐵) − 𝐷, (2)

𝑑 (𝐶)
𝑑𝑡 = 𝑘3 ⋅ (𝐴) − 𝑘5 ⋅ (𝐶) − 𝐸. (3)

State variables 𝐴, 𝐵, and 𝐶 represent the relative number
of mRNA molecules of the respective genes. 𝑈 is a time-
invariant input or a sigmoid function that generates a
time-delay in the expression of target genes. Parameters of
the mathematical model ((1)–(3)) are estimated using the
SIMBIOLOGY toolbox within MATLAB R2012b, using the
SBIONLINFIT procedure in SIMBIOLOGY by fitting the
model to time-series gene expression data and minimizing
the Sum of Square of Errors (SSE) of fit for each gene in the
module. Similarly, other regulatory relationships shown in
Figure 2 are tested on gene expression data. Bayesian Infor-
mation Criterion (BIC) score estimated for each relationship
(by using the aggregate Sum of Square of Errors (SSE) of all
three genes as shown below in (6)) is used as the goodness
of fit measure to select the optimal regulatory relationship
between genes in amodule.While testing different regulatory
relationships between genes within a module, differences
in lags between genes are used to infer hierarchy in gene
regulatory relationships assuming that a module gene with
a longer lag could be regulated by a gene with a shorter lag
(Figure 2). Lags are determined based on a gene’s time-series
expression profiles to start at 𝑡 = 0 and end at the time point
after which gene expression increases or decreases for at least
two time points.

2.3. Estimation of BIC Score. We use the Bayesian Infor-
mation Criterion (BIC) (4) as the appropriate goodness of
fit measure for selecting optimal regulatory relationships
within a module because it accounts for both the number of
parameters used in the mathematical model (𝑝) to describe

the regulatory relationship of genes in a module and the
number of time points in the gene expression data (𝑛) that
is used to estimate the parameters of the model [10].

BIC = −2 ⋅ ln (𝐿) + 𝑝 ⋅ ln (𝑛) (4)

𝐿 is the maximized likelihood function of the model describ-
ing the regulatory relationship of genes. Summing up the
BIC values of all genes in the module (genes 𝐴, 𝐵, and 𝐶 in
Figure 2), the full BIC score of any regulatory relationship in
Figure 2 is

BIC = (SSE𝐴𝜏𝐴 +
SSE𝐵
𝜏𝐵 +

SSE𝐶
𝜏𝐶 ) + 𝑝𝐴 ⋅ ln (𝑛𝐴) + 𝑝𝐵

⋅ ln (𝑛𝐵) + 𝑝𝐶 ⋅ ln (𝑛𝐶) .
(5)

SSE𝐴, SSE𝐵, and SSE𝐶 represent the SSE of the fitted model
for each gene by the regulatory relationship. 𝜏𝐴, 𝜏𝐵, and𝜏𝐶 represent the standard deviation of error distribution in
the fitted model of each gene. The derivation of Likelihood
(𝐿) in terms of SSE for each gene (SSE𝐴, SSE𝐵, and SSE𝐶)
is shown in Supplementary Material (available online at
https://doi.org/10.1155/2017/8514071). Since the number of
time points in expression data is the same for each gene, 𝑛𝐴 =𝑛𝐵 = 𝑛𝐶 = 𝑛. Similarly, since the variance of error for each
gene is also approximated to be the same, 𝜏𝐴 = 𝜏𝐵 = 𝜏𝐶 = 𝜏.
Therefore, the BIC score for a regulatory relationship is

BIC = (∑
𝑔

𝑖=1 SSE𝑖)
𝜏 + 𝑝total ⋅ ln (𝑛) . (6)

∑𝑔𝑖=1 SSE𝑖 was Sum of Square of Error (SSE) of fit for all the
geneswithin amodule (𝑔 refers to the number of geneswithin
the module) and 𝑝total = 𝑝𝐴 + 𝑝𝐵 + 𝑝𝐶 represents the total
number of parameters in the mathematical model describing
the regulatory relationship between genes.

3. Results

3.1. Implementation of MANI towards Network Inference
of a 7-Gene Adipogenesis Network. The MANI approach
was implemented on time-series gene expression data
obtained from a network of seven genes that belong to
an adipogenesis regulatory network [11]: Kruppel Like Fac-
tor 4 (KLF4), CCAAT/Enhancer Binding Protein-alpha
(CEBPa), CCAAT/Enhancer Binding Protein-beta (CEBPb),
CCAAT/Enhancer Binding Protein-gamma (CEBPg), GLU-
cose Transporter type 4 (GLUT4), Xanthine Dehydrogenase
(XDH), and Peroxisome Proliferator-Activated Receptor-
gamma (PPARg) (Figure 4(a)). Gene expression data had
been collected during differentiation of 3T3-L1 preadipocytes
into mature adipocytes for a period of 28 days [9].

Step 1 (selecting initial window(s)). The first two genes in
initial windows were selected as the pair(s) of genes with
maximumcorrelation between time-series expression data. A
third gene was added by choosing a gene withmaximum cor-
relation with either of the genes forming the pair. Among the
seven genes (Figure 4(a)), two pairs of genes (pair #1 = (XDH,
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Figure 4:Window #1 network inference. (a) Time-series gene expression data of 7 genes within the adipogenesis network collected at 0, 6, 12,
24, 48, 72, 96, and 672 hours during adipocyte differentiation [9]. GEO accession number of gene expression data is GSE6795. Gene expression
values were normalized to amaximum value of 1. Expanded view of gene expression data between 0 and 100 hours is shown in Supplementary
Figure S1. (b) Time-series expression profiles of the three genes selected from the pool of 7 genes for window #1. (c)The parameters of different
Regulatory Relationships (RRs)were fitted to the time-series data of genes shown in (b). SinceKLF4was determined to be the gene at the top of
the hierarchy, the two remaining genes were fitted in parallel or serial regulatory relationships. Parameters describing the different regulatory
relationships are as described in Figure 3. BIC scores of regulatory relationshipswere estimated as (SSEKLF4+SSEXDH+SSECEBPb)/𝜏+𝑝total ⋅ln(𝑛).
Parallel regulatory relationship (RR #1) was chosen as optimal to describe gene relationships in window #1 because of its smallest BIC score.
The parameters estimated for the selected regulatory relationship are listed in Table 1.

Table 1: Values of kinetic parameters for regulatory relationship in
window #1 (RR #1 in Figure 4(c)) obtained by fitting mathematical
model ((1), (2), and (3)) to gene expression data in Figure 4(b).

Parameters Mean ± standard error (hr−1)
𝐷 0.12 ± 0.02
𝐸 0.1 ± 0.02
𝑘1 0.13 ± 0.05
𝑘2 0.28 ± 0.04
𝑘3 0.24 ± 0.05
𝑘4 0.03 ± 0.01
𝑘5 0.02 ± 0.01
𝑈 0.06 ± 0.03

CEBPb) and pair #2 = (CEBPa, CEBPg)) with the highest
degrees of correlation, 𝜌 = 0.88, were selected (correlation

matrix between genes is shown in Supplementary Table S1).
Following our criteria outlined above, a third gene was added
to each of the twopairs resulting inwindow#1 = (KLF4,XDH,
and CEBPb) and window #2 = (CEBPa, CEBPg, and PPARg).
Expression data of genes selected for window #1 is shown in
Figure 4(b).

Step 2 (fitting the best regulatory relationship for genes within
the initial window(s)). The possible regulatory relationships
between the three genes within a window (listed in Figure 2)
were tested. Prior to this, a preliminary check was conducted
to determine whether the time-course expression data of
geneswithin awindow showeddifferences in lags. Figure 4(b)
shows there were no significant differences in lags between
the three genes ofwindow#1. In the absence of lag differences,
the top gene in the hierarchy was chosen by testing all three
genes (KLF, XDH, and CEBPb) within the window in that
position (gene𝐴) using (1) with a single time-invariant input
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Figure 5: Window #2 optimal regulatory relationship. Expression
profiles of all three genes showed nonzero lags (CEBPa (6 hours),
CEBPg (6 hours), and PPARg (12 hours)). Between the two genes
with shortest lags, CEBPa showed a better fit with external input 𝑈.
The input 𝑈 was a sigmoid function to produce a delayed response
in the activity of gene CEBPa. Parallel and serial regulatory rela-
tionships were tested and the above optimal regulatory relationship
yielded the smallest BIC score.

(𝑈). The various choices of 𝐴 lead to the following results:
SSE of fit for the different genes were SSEKLF4 = 0.0488,
SSEXDH = 0.5220, and SSECEBPb = 0.3906. Thus, KLF4
was the best fit at the top of the regulatory relationship
in window #1. Parallel and serial regulatory relationships
were then tested for the other two genes in window #1 as
shown in Figure 4(c). Based on estimated BIC scores, the
optimal regulatory relationship for genes in window #1 was
the parallel regulatory relationship (RR#1). Solving the gene
regulatory network for genes in window #2 using the same
approach used for window #1, we obtained the inferred
network shown in Figure 5.

Step 3 (migrating thewindow(s) to accommodate new genes).
A new gene was introduced into the initial window using
a One Gene In, One Gene Out (OIOO) rule. A new gene
among the remaining genes outside the window with the
highest correlation with any gene inside the current window
was identified while the gene least correlated with the new
gene was discarded. By keeping at least one gene and its
associated interactions from the previous window, we limited
the number of possible regulatory relationships with the new
gene(s). If introducing a new gene into the window formed
an earlier window, the rule was relaxed to include the gene
with the next highest degree of correlation with the genes in
the window.Window #1 was thus advanced by replacing gene
XDH with gene CEBPg as correlation of CEBPg with KLF4
(𝜌 = 0.72, Supplementary Table S1) was highest and XDH
was least correlated with CEBPg (𝜌 = 0.03). New window #3
thus contained KLF4, CEBPb, and CEBPg. Similarly window
#2 (CEBPa, CEBPg, and PPARg) was migrated to window
#4 (GLUT4, PPARg, and CEBPa) by replacing CEBPg with
GLUT4.

Step 4 (fitting the regulatory relationships within the new
window(s)). For the new genes in the newly created win-
dows, regulatory relationships were inferred while retaining
genes and their associations from previous windows. For
example, in window #3, the regulatory relation of the new

gene in the window, CEBPg, was tested taking into account
gene relationships to KLF4 and CEBPb from window #1.
The time-course expression profiles of genes in window #3
indicated a noticeable lag for CEBPg when compared to
genes KL4 and CEBPb (Figure 4(a), Supplementary Figure
S1). Thus, regulatory relationships tested potential regulation
of CEBPg by KLF4 and/or CEBPb. Since CEBPg was already
inferred to be regulated by gene CEBPa from window #2
(Figure 5), regulatory relationships tested in window #3
included this regulatory interaction. While fitting potential
gene relationships in the new windows, an additional alter-
nate relationshipwas also tested, the null hypothesis scenario.
The null hypothesis scenario introduces no new regulatory
edges between genes in the window to prevent overfitting.
Thenew inferred regulatory relationships for windows #3 and
#4 are shown in Figure 6. MANI Steps 3 and 4 were repeated
until all the 7 genes in the adipogenesis network were covered
at least once by themovingwindows. In total, 5 windowswere
created and gene relationships inferred within each window
are shown in Figure 6.

The cumulative adipogenesis network inferred by MANI
through the 5windows is shown in Figure 7. In addition to the
gene relationships summarized from the various windows, a
gene’s likely time of activation, derived from the gene’s lag
observed in the time-series expression data (Supplementary
Figure S1), was included in the network. Some of the inferred
gene relationships were supported by the literature. KLF4
regulates the expression of CEBPb [12] and PPARg regulates
the expression of GLUT4 [13]. Fibroblasts isolated from
C/EBPa−/− embryos have reduced PPARg levels and do not
differentiate well when exposed to hormonal inducing agents
in culture [14], implying regulation of PPARg by CEBPa.
Indeed later research showed that CEBPa and PPARg regulate
each other’s expression in a positive feedback loop andPPARg
and CEBPa act synergistically to activate expression of fat cell
specific genes such as GLUT4 [11].

3.2. Validation of MANI Approach. An objective validation
of MANI’s performance in network inference was conducted
using time-series expression data made available as part of
the DREAM3 challenge (Supplementary Figure S2).This data
was generated by the challenge organizers by perturbing an in
silico network of 10 genes derived from E. coli (Figure 8(a)).
The correlation matrix generated between genes using the
time-series data is shown in Supplementary Table S2. The
network inferred after applyingMANI’s gradual andmodule-
based local network inference approach on the DREAM3
time-series perturbation data is shown in Figure 8(b). For
bigger networks of genes (number of genes in the network
(𝑁) ≥ 10 genes), gradual network inference by MANI leads
to selection of several windows of genes. In the interest
of constructing a parsimonious network, the number of
windows is reduced by organizing the selected windows in
decreasing order for average degrees of correlation between
genes within the window and choosing only those windows
from the top where a new gene in the network is selected for
the first time in a window.The network is then constructed by
inferring relationships of genes through the chosen windows.
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#5 did not have any broken arrows connecting genes because no new gene relationships were inferred; the null hypothesis was the optimal
regulatory relationship connecting genes. Furthermore, windows contributing gene relationships to other windows are shown by solid arrows
between windows.
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Figure 7: Dynamic adipogenesis network constructed by MANI. The two inputs of the network were 𝑈1 (time-invariant constant input)
and𝑈2 (sigmoid input).The network, besides representing gene relationships collected fromMANI windows in Figure 6, was also organized
according to the genes’ likely times of activation in the cascade. A gene’s time of activation in the cascade was derived from a gene’s lag
in its time-series expression data. Based on the ranges of times of activation in the cascade, genes were grouped in appropriate time zones
in the cascade (marked by dashed vertical lines). Arranging genes in such a manner enhanced the dynamical nature of the network. Gene
relationships in this MANI constructed adipogenesis network that were verified using literature are indicated with a green tick mark.

Based on this principle, the DREAM3 network was inferred
by MANI using 8 windows of genes chosen from an initial
list of 37 windows. The complete list of MANI selected
gene windows and those windows that were chosen to
infer DREAM3 network are shown in Supplementary Table
S3. The values of the kinetic parameters estimated for the
inferred network are given in Supplementary Table S4. The
inferred network was compared to the correct DREAM3
network and the accuracy of network inference by MANI

was evaluated by classifying MANI inferred edges as True
Positives (TPs), False Positives (FPs), True Negatives (TNs),
and False Negatives (FNs) (Figure 8(c)). The performance
of MANI in network inference was compared against the
performance of three other contemporary network inference
approaches (ANOVerence, CLR, and TIGRESS) using the
same time-series data.

Since our goal was to infer a sparse network and MANI
inferred 10 edges between genes, the top 10 edges inferred by
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Figure 8: Comparison of MANI inferred DREAM3 network with the correct answer. (a)The 10-gene DREAM3 network that was perturbed
by DREAM3 organizers to produce the time- series data. (b) Network inference by MANI. 𝑈1, 𝑈2, and 𝑈3 were external inputs. The edges
inferred between genes were either stimulating (→) or inhibitory (⊣). The parameters for the different regulatory relationships followed the
same convention described in Figure 3. Genes in the network were grouped according to their likely times of activation within the cascade
as estimated from the durations of lag observed in their expression data. (c) The accuracy of the DREAM3 network inferred by the MANI
approach in (b) was evaluated by comparing it to the correct answer shown in (a). Comparisons were based on the presence or absence of
edges between genes rather than directions of interactions. Among the MANI inferred edges in (b), there were 4 TPs, 7 FNs, 6 FPs, and 28
True Negatives (TNs).

Table 2: Network inference performance of MANI and other methods.

Parameters of assessment ANOVerence CLR MANI
Sensitivitya 27.27% 27.27% 36.36%
Specificityb 79.41% 79.41% 82.35%
PPVc 30% 30% 40%
aSensitivity was TP/(TP + FN). bSpecificity was TN/(TN + FP). cPositive Predictive Value (PPV) was TP/(TP + FP).

each of themethods were used for comparison. Table 2 shows
the performance of ourMANI approach in network inference
when compared to ANOVerence and CLR. The results for
TIGRESS were similar to ANOVerence and CLR.MANI out-
performs the other methods in all performance criteria. PPV
ofMANI with 40% is better than random network prediction
as the chance of obtaining 4 correct edges and 6 wrong edges
by random guesswork ((11𝑐

4
× 79𝑐
6
)/(90𝑐

10
)) is low (0.02).The

same principles were applied to construct a size 10 network

(Supplementary Table S5) from theDREAM4 challenge using
two sets of perturbation data (Supplementary Figure S3).The
performance of MANI (sensitivity ∼27%) was comparable to
TIGRESS (∼33%) but worse than that of CLR (∼47%).

4. Discussion

Gene expression data are generated in biological experiments
at an increasing rate for the purpose of studying complex



8 International Journal of Genomics

gene regulatorymechanisms and human diseasemechanisms
[15–17]. Collection of time-series gene expression data has
become important to deduce causal regulatory relationships
between genes belonging to a network [18]. A number of
network inferencemethods to infer gene regulatory networks
from time-series gene expression data have been developed.
These include solving linear ODE regression models, infer-
ring optimal regulatory relationships between genes through
a combination of procedures such as variable selection and
sparse network identification, using shrinkage techniques
such as LASSO and SCAD [19], solvingODE regressionmod-
els to obtain possible solutions by Singular Value Decom-
position followed by selection of a parsimonious network,
and using various multivariate modeling techniques such
as robust regression [20, 21], Dynamic Bayesian Network
modeling [22–24], and time-delayed ARCANE algorithm
that infers gene relationships based on mutual information
between genes [25]. The common feature of the currently
used methods is that they generate a global network of
gene relationships in an unsupervisedmanner.Therefore, the
constructed network is often crowded and does not provide
a clear delineation of the network’s hierarchical or dynamical
features (e.g., Figure 8(a)). With increasing numbers of genes
in the network, the complexity of interconnections between
genes increases exponentially, making in silico reconstruc-
tion of the network rapidly intractable.

In contrast, MANI adopts a systematic and gradual
approach to network inference by constructing networks
within local modules. This local approach to network infer-
ence adopted by MANI allowed the final constructed adipo-
genesis network (Figure 7) to be sparse and well organized,
highlighting structural aspects of the network such as the
hierarchy in gene relationships and also providing clarity to
the network’s pathways of activation.MANI’s inference of the
adipogenesis network in Figure 7 shows that the network fol-
lows a serial-parallel pathway for cascade activation. MANI
was successful in inferring a hierarchy of regulation between
geneswhen a difference in lagwas detected in gene expression
profiles. Regulatory relationships between genes G3, G4, G5,
G6, and G9 in the DREAM3 network (Figure 8(c)) and genes
CEBPa, PPARg, and GLUT4 in the adipogenesis network
(Figure 7) were successfully inferred. Adding times of acti-
vation of genes to the MANI constructed network enhanced
the overall quality of the inferred network by making it more
dynamic and interpretable. For example, in the case of the
adipogenesis network in Figure 7, arranging genes according
to their times of activation showed how the genes in the
network switched on at various time intervals. Therefore,
MANI inference provided a structural organization of genes
in the network. The accuracy of the local approach towards
constructing networks proposed by MANI was modestly
better than that of otherwell-known global network inference
methods in the DREAM3 challenge (Table 2). The reason for
MANI’s lower performance in the DREAM4 challenge was
due to the presence of feedback loops in the network while
MANI has been primarily developed to infer networks with-
out such feedback structures. We believe MANI’s approach
still has high value in identifying novel biological networks
without such loop connections. MANI distinguishes itself

from other global network inference approaches in that
it can locally yet dynamically reconstruct networks across
moving modules and windows and can easily be extended to
reconstruct much larger networks. While constructing larger
networks using MANI, the inferred network is a local opti-
mum (instead of global) sinceMANI infers the network using
locally constructed network modules, and then additional
edges in the network are gradually expanded from neighbor-
ing modules. In this regard, MANI is also one of the heuristic
algorithms, following a search path based on high probability
regulatory expression association of network genes.

We note that the currentMANI approach also has several
limitations. Inference of hierarchy in the network relies on
differences in lags between the expressions of different genes.
Therefore, lack of differences in lags between genes hinders
MANI’s ability to infer regulatory relationships between
genes. Relationships between genes G1, G2, G5, and G8 in
theDREAM3network (Figure 8(c)) were incorrectly inferred
due to the lack of differences in lags between them in
the time-series expression data that was used to construct
the network. MANI also currently relies on a constant
or sigmoid perturbation rate (𝑈) in our ODE model for
network inference, which can be relaxed in a future study.
Time-series data obtained by a single perturbation of the
network may also activate multiple genes within the network
and, therefore, in order to maximize network inference
performance by MANI, multiple time-series data generated
by multiple perturbations of the same network can be used
for improved network inference to distinguish such multiple
interactions. Furthermore, the current ODEmodel of MANI
is best suited for time-series gene expression data to infer
gene regulatory networks. MANI’s scope can be expanded by
developing a local approach to network inference using static
gene expression data in future applications.
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[4] R. Küffner, T. Petri, P. Tavakkolkhah, L. Windhager, and R.
Zimmer, “Inferring gene regulatory networks by ANOVA,”
Bioinformatics, vol. 28, no. 10, pp. 1376–1382, 2012.

[5] J. J. Faith, B.Hayete, J. T.Thaden et al., “Large-scalemapping and
validation of Escherichia coli transcriptional regulation from a
compendium of expression profiles,” PLoS Biology, vol. 5, no. 1,
article no. e8, 2007.

[6] V. A. Huynh-Thu, A. Irrthum, L. Wehenkel, and P. Geurts,
“Inferring regulatory networks from expression data using tree-
basedmethods,”PLoSONE, vol. 5, no. 9, Article ID e12776, 2010.

[7] A.Greenfield, A.Madar,H.Ostrer, andR. Bonneau, “DREAM4:
combining genetic and dynamic information to identify biolog-
ical networks and dynamical models,” PLoS ONE, vol. 5, no. 10,
Article ID e13397, 2010.

[8] A.-C. Haury, F. Mordelet, P. Vera-Licona, and J.-P. Vert,
“TIGRESS: trustful inference of gene regulation using stability
selection,” BMC Systems Biology, vol. 6, article no. 145, 2012.

[9] K. J. Cheung, I. Tzameli, P. Pissios et al., “Xanthine oxidore-
ductase is a regulator of adipogenesis and PPAR𝛾 activity,” Cell
Metabolism, vol. 5, no. 2, pp. 115–128, 2007.

[10] G. E. Schwarz, “Estimating the dimension of a model,” The
Annals of Statistics, vol. 6, no. 2, pp. 461–464, 1978.

[11] E. D. Rosen and B. M. Spiegelman, “Molecular regulation
of adipogenesis,” Annual Review of Cell and Developmental
Biology, vol. 16, pp. 145–171, 2000.

[12] K. Birsoy, Z. Chen, and J. Friedman, “Transcriptional regulation
of adipogenesis by KLF4,”Cell Metabolism, vol. 7, no. 4, pp. 339–
347, 2008.

[13] S.-S. Im, S.-K. Kwon, T.-H. Kim, H.-I. Kim, and Y.-H. Ahn,
“Regulation of glucose transporter type 4 isoform gene expres-
sion in muscle and adipocytes,” IUBMB Life, vol. 59, no. 3, pp.
134–145, 2007.

[14] Z. Wu, E. D. Rosen, R. Brun et al., “Cross-regulation of
C/EBP𝛼 and PPAR𝛾 controls the transcriptional pathway of
adipogenesis and insulin sensitivity,” Molecular Cell, vol. 3, no.
2, pp. 151–158, 1999.

[15] E. Segal, M. Shapira, A. Regev et al., “Module networks:
identifying regulatory modules and their condition-specific
regulators from gene expression data,” Nature Genetics, vol. 34,
no. 2, pp. 166–176, 2003.

[16] K. Basso, A. A. Margolin, G. Stolovitzky, U. Klein, R. Dalla-
Favera, and A. Califano, “Reverse engineering of regulatory
networks in human B cells,” Nature Genetics, vol. 37, no. 4, pp.
382–390, 2005.

[17] B. Haibe-Kains, C. Olsen, A. Djebbari et al., “Predictive net-
works: a flexible, open source, web application for integration
and analysis of human gene networks,” Nucleic Acids Research,
vol. 40, no. 1, pp. D866–D875, 2012.

[18] Z.-P. Liu, “Reverse engineering of genome-wide gene regulatory
networks from gene expression data,”Current Genomics, vol. 16,
no. 1, pp. 3–22, 2015.

[19] S. Wu, Z.-P. Liu, X. Qiu, and H. Wu, “Modeling genome-wide
dynamic regulatory network in mouse lungs with influenza
infection using high-dimensional ordinary differential equa-
tions,” PLoS ONE, vol. 9, no. 5, Article ID e95276, 2014.

[20] A. Gupta, J. D. Varner, and C. D. Maranas, “Large-scale
inference of the transcriptional regulation of Bacillus subtilis,”
Computers & Chemical Engineering, vol. 29, no. 3, pp. 565–576,
2005.

[21] M. K. S. Yeung, J. Tegnér, and J. J. Collins, “Reverse engineering
gene networks using singular value decomposition and robust
regression,” Proceedings of the National Academy of Sciences of
the United States of America, vol. 99, no. 9, pp. 6163–6168, 2002.

[22] F. Abegaz andE.Wit, “Sparse time series chain graphicalmodels
for reconstructing genetic networks,” Biostatistics, vol. 14, no. 3,
pp. 586–599, 2013.

[23] B.-E. Perrin, L. Ralaivola, A. Mazurie, S. Bottani, J. Mallet,
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