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Abstract: Exposure of the lungs to airborne toxicants from different sources in the environment 

may lead to acute and chronic pulmonary or even systemic inflammation. Cigarette smoke is 

the leading cause of chronic obstructive pulmonary disease, although wood smoke in urban 

areas of underdeveloped countries is now recognized as a leading cause of respiratory disease. 

Mycotoxins from fungal spores pose an occupational risk for respiratory illness and also present 

a health hazard to those living in damp buildings. Microscopic airborne particulates of asbestos 

and silica (from building materials) and those of heavy metals (from paint) are additional sources 

of indoor air pollution that contributes to respiratory illness and is known to cause respiratory 

illness in experimental animals. Ricin in aerosolized form is a potential bioweapon that is 

extremely toxic yet relatively easy to produce. Although the aforementioned agents belong to 

different classes of toxic chemicals, their pathogenicity is similar. They induce the recruitment 

and activation of macrophages, activation of mitogen-activated protein kinases, inhibition of 

protein synthesis, and production of interleukin-1 beta. Targeting either macrophages (using 

nanoparticles) or the production of interleukin-1 beta (using inhibitors against protein kinases, 

NOD-like receptor protein-3, or P2X7) may potentially be employed to treat these types of lung 

inflammation without affecting the natural immune response to bacterial infections.
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Introduction
Inflammation is a complex biological process that occurs in response to harmful 

stimuli and whose function is to eliminate the cause of cell injury and initiate the repair 

process. Lung inflammation occurs in response to bacterial and viral pathogens and 

environmental pollutants. The sources of indoor pollution include cigarette smoke, 

mycotoxins, and airborne particulates of asbestos, silica, and heavy metals. Sustained 

inflammation of the lung, as occurs in response to cigarette smoke, may lead to chronic 

obstructive pulmonary disease (COPD), which is the third leading cause of death 

globally and whose prevalence is still rising.1,2 Current therapies for COPD focus on 

long-acting bronchodilators and do not sufficiently target pulmonary inflammation that 

underlies the pathogenesis of the disease.3 There exists a critical need to understand 

the mechanisms that lead to lung inflammation and develop novel strategies to treat 

COPD. In addition to cigarette smoke, other inhaled toxicants are known to produce 

lung inflammation. Recent epidemiologic evidence has recognized the importance 

of air pollution from traffic worldwide and domestic fires that burn biomass fuels 

in underdeveloped countries.4 In cases of exposure to sublethal amounts of inhaled 

toxicants, such as mycotoxins and ricin, inflammation is usually resolved when the 

cause of the cell injury has been eliminated. Although these toxicants belong to the 

different classes of chemicals, they nevertheless may activate similar biochemical 
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pathways. Elucidating these pathways may serve to identify 

potential therapeutic targets susceptible to anti-inflammatory 

treatments.

Several types of cells are involved in lung inflammation, 

including the epithelial cells that line the airways and alveoli 

and the immune cells in the blood. Airway epithelial cells 

are important in the host defense system by acting as a physi-

cal barrier and secreting mucus that traps inhaled particles.5 

These cells also secrete antimicrobial peptides and proteases 

that neutralize the danger,6–8 cytokines and chemokines that 

serve as inflammatory mediators,9–12 and growth factors that 

promote tissue repair and fibrosis.13 During the acute phase of 

inflammation, neutrophils rapidly migrate to the lung as first 

responders, producing reactive oxygen species and secreting 

serine proteases, matrix metalloproteinases, and other enzymes 

during degranulation. These products not only degrade invad-

ing dangers but also contribute to alveolar destruction.14,15 

Resident and recruited macrophages engulf invading particles 

and secrete inflammatory mediators and various enzymes.16–18 

The number of T lymphocytes also increases and may con-

tribute to the pathophysiology of lung inflammation.19,20 The 

decreased effector function and increased regulatory function 

of these lymphocytes may account for the reduced host immu-

nity to bacterial infections in COPD patients.21

Produced by epithelial and inflammatory cells, cytokines 

and chemokines play a central role in the inflammatory 

process. In particular, tumor necrosis factor-alpha (TNF-α) 

and interleukin-1 beta (IL-1β) act as initiator cytokines by 

inducing the increased production of themselves and the 

synthesis of other cytokines, chemokines, and adhesion mol-

ecules, thereby attracting and activating immune cells at the 

site of inflammation.22–24 TNF-α is initially synthesized as a 

membrane-bound precursor and proteolytically released from 

cell surfaces.25 Soluble TNF-α then binds to the TNF receptor 

and activates the mitogen-activated protein kinase (MAPK) 

cascade and the nuclear factor-kappa B (NF-κB) pathway 

after the ligand-bound receptor forms a protein complex with 

TNF receptor 1-associated death domain protein and TNF 

receptor-associated factor-2.26,27 MAPKs are phosphorylated 

and activated by MAPK kinases, which in turn are activated 

by MAPK kinase kinases.28–30 MAPKs directly phosphorylate 

and activate transcription factors or they phosphorylate other 

kinases, which in turn activate transcription factors that lead 

to the expression of response genes; MAPKs also phospho-

rylate other substrates that are involved in many biological 

processes, including inflammation.28,31

Like TNF-α, IL-1β is initially synthesized as pro-IL-1β, 

an inactive precursor. Pro-IL-1β is then cleaved inside the 

cell by a protein complex called the inflammasome, which is 

composed of apoptosis-associated speck-like protein contain-

ing caspase recruitment domain, caspase-1, and a member of 

the nucleotide-binding oligomerization domain (NOD)-like 

receptor family.32–34 Different NOD-like receptor members 

respond to different signals. One of these members, NOD-

like receptor protein-3 (NLRP3), is recruited in response to 

tissue damage, metabolic stress, and infection.35,36 Once pro-

IL-1β is processed, the mature IL-1β product is secreted and 

binds to the IL-1 receptor. The ligand-bound receptor forms 

a complex with myeloid differentiation primary response 88, 

IL-1 receptor-associated kinase, and TNF receptor-associated 

factor-6, thereby activating the MAPK cascade and the 

NF-κB pathway.37–39 Different mechanisms have been 

proposed for the activation of the inflammasome, includ-

ing potassium efflux and the generation of reactive oxygen 

species, but both hypotheses have been challenged.40,41 Other 

researchers have demonstrated the importance of autophagy 

and the P2X7 receptor in mediating the processing of IL-1β 

by the inflammasome.42–44

There is currently no cure for COPD or effective treat-

ment for severe lung inflammation caused by toxicants, such 

as fungal toxins and ricin. This review article summarizes 

current research on lung inflammation following exposure 

to cigarette smoke, mycotoxins, and ricin. The goal of 

comparing these studies is to determine whether common 

pathways exist and to identify potential targets for the future 

development of therapeutics. Indeed, although these toxi-

cants belong to different classes of chemicals that exhibit 

a variety of pathological effects, some of the biochemical 

pathways they activate are identical, including the IL-1β 

pathway, which is increasingly recognized for its importance 

in lung inflammation.45,46 Elucidation of these mechanisms 

is facilitated by reviewing the research that has been per-

formed on these different toxicants, and such understanding 

may facilitate the development of therapeutics that would 

be useful in treating acute and chronic lung inflammation. 

Effective strategies that block inflammation may ultimately 

lead to successful treatment of COPD.

Lung inflammation by cigarette 
smoke
Cigarette smoking is the major risk factor for COPD and 

has been estimated to account for more than 50% of cases 

of COPD worldwide.47 Interestingly, there is no consensus 

on the mechanisms by which cigarette smoke causes COPD. 

One reason for this difficulty is the presence of additional 

environmental factors that may contribute to the development 

of lung inflammation. These factors include occupational and 

environmental exposures to dusts and fumes,48 infections 
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in early life,49 genetic predisposition,50–52 and asthma.53,54 

Another factor is the frequent contamination of tobacco by 

toxins from other sources and the presence of microbes that 

activate toll-like receptors.55,56 Moreover, cigarette smoke 

contains several thousand distinct compounds,57 further 

complicating an understanding of their individual contri-

bution to lung disease. In the gas phase of smoke, these 

chemicals include acetaldehyde, methane, hydrogen cyanide, 

nitric acid, acetone, acrolein, ammonia, methanol, hydrogen 

sulfide, hydrocarbons, gas phase nitrosamines, and carbonyl 

compounds. In the particulate phase, they include carboxylic 

acids, phenols, humectants, nicotine, terpenoids, paraffin 

waxes, tobacco-specific nitrosamines, polycyclic aromatic 

hydrocarbons, catechols, metals, and other inorganic sub-

stances. Many of these chemicals are irritants, suspected 

carcinogens, and agents that promote inflammation.58

Despite these challenges, and in view of the millions of 

tobacco-related deaths and the accompanying billions of 

dollars in estimated health care cost each year, extensive 

research has been conducted to study the biochemical and 

health effects of cigarette smoking. Exposure to cigarette 

smoke in vitro induces the release of IL-1β from human 

airway epithelial cells59 and chemokines from both epithelial 

cells and neutrophils.59,60 However, there are conflicting data 

on whether macrophages produce a similar inflammatory 

response in vivo.61 Components in cigarette smoke also block 

protein synthesis in macrophages.62–64

COPD is thought to be associated with an innate immune 

response by macrophages, neutrophils, and epithelial cells and 

an adaptive immune response by lymphocytes. Because lung 

inflammation persists after smoking cessation, autoimmunity 

has been proposed as a mechanism that drives disease progres-

sion. Th17 cells are a subset of CD4+ T lymphocytes associ-

ated with autoimmune conditions, and these cells increase in 

numbers in COPD patients. Interestingly, levels of regulatory 

T-cells, which normally control the proliferation of Th17 

cells, are also elevated, suggesting that an imbalance of Th17 

and regulatory T subsets may be important.65 However, the 

presence of autoantibodies remains controversial.66,67

In rodents, cigarette smoke causes activation of 

MAPKs in the lungs,68 increased numbers of neutrophils, 

lymphocytes, and macrophages,20,69 and apoptosis of air-

way epithelial cells.70 Pulmonary inflammation by cigarette 

smoke is dependent on IL-1 receptor/myeloid differen-

tiation primary response 88 signaling,71 and the release of 

IL-1β induced by cigarette smoke into the bronchoalveolar 

lavage fluid is mediated by the P2X7 receptor and the 

NLRP3-inflammasome.59,72,73 Blocking the NLRP3-inflam-

masome by knocking out apoptosis-associated speck-like 

protein containing caspase recruitment domain, caspase 1, 

or NLRP3 also reduces neutrophilia, providing evidence 

that the inflammasome is involved in mediating pulmonary 

inflammation.72 Similarly, knocking out the mitochondrial 

antiviral signaling molecule, which may play a role in the 

activation of the inflammasome by some agents by regulat-

ing autophagy and the mitochondrial production of reactive 

oxygen species,74 leads to reduced levels of IL-1β and neu-

trophilia following exposure to cigarette smoke.75

Consistent with data from animal models, smokers 

have a fourfold increase in the number of macrophages and 

other leukocytes into the bronchoalveolar lavage fluid; this 

increase is positively correlated with smoking history.76 The 

levels of IL-1β and many biomarkers, such as chemokines, 

are elevated in the serum of smokers and are believed to 

play a key role in the development of the chronic inflamma-

tion associated with COPD.77 These mediators are mainly 

produced by macrophages,16,18 which also show an impaired 

ability to clear apoptotic epithelial cells.70 In contrast, even 

though cigarette smoke induces the expression of IL-1β by 

bronchial epithelial cells in vitro,59 IL-1β and components of 

the inflammasome are not detected in the bronchial biopsies 

of COPD patients,78 suggesting either that the inflammasome 

may not play a major role in the central airway of certain 

COPD patients or their levels may fall below detection 

levels. IL-33, a member of the IL-1 cytokine family, has also 

been recently found to be associated with COPD.79,80 Unlike 

IL-1β, however, IL-33 is processed by neutrophil-derived 

proteases81,82 rather than the inflammasome.83

The inflammatory response even persists in those who 

have quit smoking for years,84 probably as a result of auto-

immunity or continued microbial infection.55,85,86 Effective 

anti-inflammatory treatment for COPD is currently lacking, 

in part because macrophages become resistant to the 

anti-inflammatory effects of corticosteroids as a result of 

dysregulated NF-κB activity.87 Intensive research is currently 

being undertaken to develop potent protease inhibitors in an 

attempt to improve symptoms.88,89

Lung inflammation by mycotoxins
Fungal spores are ubiquitous in the environment. Containing 

allergens and mycotoxins, these spores are especially hazardous 

to those living inside damp buildings or to farmers, malt work-

ers, and wood workers whose occupations include handling 

of moldy materials.90 Different fungi produce mycotoxins 

as secondary metabolites, which include various trichoth-

ecenes that are synthesized by several species of Fusarium, 

Myrothecium, Trichoderma, Trichothecium, Cephalosporium, 

Verticimonosporium, and Stachybotrys.91 Readily absorbed 
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through the skin, gut, and airways, trichothecenes are chemi-

cally stable and are neither degraded by elevated heat nor 

hydrolyzed in the stomach.92 One such trichothecene, the T2 

toxin, has been used in aerosolized form in biological warfare 

because of its toxicity, heat stability, and chemical stability.93

Trichothecenes cause immunosuppression in 

lymphocytes94 and stimulate the production of IL-1β by 

macrophages in an NLRP3-inflammasome-dependent man-

ner, mediated by the P2X7 receptor.95,96 In addition, these 

toxins inhibit protein synthesis by targeting the ribosome, 

impair mitochondrial function, activate MAPKs, and induce 

apoptosis in mammalian cells.92,97–99 They also stimulate the 

expression of genes that are upregulated in response to other 

ribosome-damaging agents, including many inflammatory 

cytokines.100–105

Deoxynivalenol, a trichothecene that commonly con-

taminates cereal grains, inhibits TNF-α signaling,106 activates 

MAPKs through a unique MAPK kinase kinase called zip-

per sterile-alpha-motif kinase (ZAK) (Wong, unpublished 

data, 2011), and induces cytotoxicity and inflammation 

synergistically with particulates107 and lipopolysaccharide108 

to induce cytotoxicity and inflammation. Because similar 

studies have not been conducted on other trichothecenes, it 

remains unknown whether these properties are common to 

other members of this family of compounds.

Following intranasal delivery in animals, mycotoxins 

are not only localized in the lung but are also distributed to 

the liver, kidney, and spleen.105 These toxins elicit recruit-

ment of alveolar macrophages and neutrophils, pulmonary 

hemorrhage, cytokine production, and damage to multiple 

organs.109,110 In fact, it has been reported that toxicity follow-

ing inhalation of a toxic dose of mycotoxin leads to systemic 

effects exclusive of lung injury,111 but the systemic effects 

of a sublethal dose of mycotoxins were not addressed by 

these authors. Even when mycotoxins are ingested, they can 

cause chronic inflammation of the lungs.112,113 Mycotoxins 

may also trigger COPD in farm animals.114 Unfortunately, 

no effective treatment is currently available for exposure to 

mycotoxin.91

Lung inflammation by ricin
Found in the beans of the castor plant Ricinus communis, ricin 

is a ribosome-inactivating protein that is relatively easy to 

purify using simple procedures. Although ricin aerosols are 

not naturally occurring, the inhalation of ricin is the subject 

of many studies because of its high toxicity and potential to 

be exploited as an agent of bioterrorism. Ricin is listed as a 

biological select agent by the Centers of Disease Control and 

a category B priority pathogen for the study of the biodefense 

strategic plan of the US National Institutes of Health. In 

addition, ricin is being engineered as a component of immu-

notoxins to target and destroy cancer cells.115,116

Similar to lung inflammation caused by cigarette smoke 

and mycotoxins, effective treatment for ricin intoxication 

is lacking. Ricin is poorly absorbed through intact skin but 

can readily enter the body by ingestion, injection, or inha-

lation. In the case of ricin poisoning caused by inhalation, 

symptoms include fever, dyspnea, tightness in the chest, 

cough, and nausea.117,118 Ricin intoxication induces an 

early massive migration of inflammatory cells (especially 

neutrophils) to the lungs and causes apoptosis and necrosis 

of airway epithelial cells.119 In addition, and unlike cigarette 

smoke and mycotoxins, ricin causes apoptosis of alveolar 

macrophages.119 Severe poisoning following inhalation of 

ricin causes interstitial pneumonia, alveolar edema, and 

respiratory failure, leading to death within days.120 Exposure 

to a sublethal dose of ricin results in fibrosis and hemorrhage 

restricted to the lung tissue.121

The tissue distribution of ricin following pulmonary 

delivery in animal studies can be measured by several 

methods. Using enzyme-linked immunosorbent assay, ricin 

is localized to the lungs.122 More sensitive methods, such 

as protein radiolabeling123,124 and detection of ricin-specific 

damage in the ribosomal RNA,125 show that inhaled ricin is 

also distributed to the kidney, heart, spleen, and blood. The 

spread of ricin to extrapulmonary tissues, likely the result 

of destruction of the barrier function of epithelial cells, may 

contribute to its systemic effects and lethality.

The lethality of ricin is caused by its ability to kill 

cells rapidly at low concentrations and induce extensive 

inflammation. Because ricin inhibits protein synthesis by 

damaging ribosomes, it causes cells to undergo apoptosis.126 

Similar to cigarette smoke and mycotoxins, ricin activates 

the NF-κB and MAPK pathways and increases the expres-

sion of inflammatory genes in airway epithelial cells121 and 

macrophages.127 Like deoxynivalenol and several other 

ribosome-damaging agents, including anisomycin, Shiga 

toxin, and ultraviolet radiation, ricin activates the MAPK 

cascade through ZAK.128,129

In animal studies, ricin causes alveolar macrophages to 

undergo apoptosis119 and induces the expression of genes 

involved with the immune response, inflammation (including 

cytokine signaling), and wound healing.125,130,131 Depletion of 

macrophages from mice prior to administration of pulmo-

nary ricin reduces the expression of pulmonary IL-1β and 

subsequent inflammatory responses, demonstrating a central 
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role for both macrophages and IL-1β in the inflammatory 

process.132 Similar results were obtained following adminis-

tration of ricin into lungs of IL-1β-deficient mice.132

A causal relationship may exist between the apoptosis of 

macrophages and the inflammatory response when cells are 

exposed to ricin. Exposure of murine macrophages in vitro 

to zVAD, a chemical inhibitor of apoptosis, blocks the 

expression of inflammatory genes in macrophages,127 sug-

gesting that caspase activity is required for ricin-mediated 

gene expression. Because ricin and other inhibitors of protein 

translation are capable of activating the NLRP3-mediated 

inflammasome,41,133 the ability of zVAD to block the produc-

tion of IL-1β may result from inhibition of caspase-1.

When inhaled, chemicals that are not biologically 

derived can also lead to lung inflammation. Volatile organic 

compounds that can be produced from household items, 

office supplies, and craft materials (such as formalde-

hyde, benzene, and perchloroethylene) affect the lung by 

various mechanisms. One of these, toluene diisocyanate, 

is capable of activating the inflammasome in a mouse 

model.134 Asbestos, crystalline silica, alloy particles, and 

carbon nanotubes can also activate MAPKs135–139 and the 

inflammasome.140–144 Macrophages may play an important 

role in the inflammatory response to the inhalation of these 

particulates.145,146

Summary
Despite extensive research that has been conducted to study 

lung inflammation induced by toxicants, effective treatment 

is lacking. Although cigarette smoke, mycotoxins, and ricin 

represent different classes of agents, they nevertheless induce 

similar gene expression profiles, produce a similar list of 

biomarkers, damage the airway epithelium, and involve 

macrophages in their pathogenesis. Recent advances in the 

targeting of macrophages using nanoparticle-based delivery 

of small interfering RNA147 or simvastatin have been 

reported,148 but the therapeutic value of these strategies has 

not been tested on lung inflammatory diseases.

The inhaled toxicants described in this review all activate 

the MAPK cascade, inhibit protein synthesis, and utilize the 

NLRP3-inflammasome to process IL-1β (Figure 1). Because 

MAPK and IL-1β are known to play important roles in tox-

icant-induced lung inflammation, inhibitors of MAPKs and 

the inflammasome may be effective in blocking the harmful 

effects of these agents. In recent years, several MAPK inhibi-

tors have been developed to treat many human inflammatory 

diseases. These agents produce fewer side effects, such as 

severe infection, compared with therapeutics that directly 

inhibit cytokines, such as IL-1β.149 However, many of these 

inhibitors are either still too toxic or ineffective in clinical 

settings,149,150 probably as a result of complex positive and 

negative feedback from different members of the MAPK 

cascade and the presence of broad effects on downstream 

targets. Similarly, although hundreds of potential inhibi-

tors against NF-κB have been identified, their toxicities are 

well known.151,152 As a result, MAPK kinase kinases are an 

attractive therapeutic target because specific members of 

this family are activated by selective stimuli.153 As discussed 

κ

β
β

β

Figure 1 Common pathways involved in the production of IL-1β by inhaled toxicants.
Abbreviations: IL, interleukin; MAPK, mitogen-activated protein kinase; NF-κB, nuclear factor-kappa B.
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earlier, ricin acts exclusively through ZAK, a MAPK kinase 

kinase. Whether cigarette smoke and mycotoxins other than 

deoxynivalenol have specificity for activation of ZAK is 

unknown. Kinase profiling has identified small-molecule 

kinase inhibitors, such as nilotinib and sorafenib, which 

have strong affinity for ZAK.154–156 Sorafenib has been 

shown to inhibit ZAK activity in vitro.157 These agents have 

been successfully employed to block the inflammatory 

effects of ricin.133 Another novel compound, INNO-406, is 

a ZAK inhibitor158 that may prove effective against ZAK-

mediated toxicants. Identifying the MAPK kinase kinases 

that signal lung inflammation in response to cigarette smoke 

and mycotoxins may facilitate the development of effec-

tive therapeutics. For example, researchers have identified 

transforming growth factor beta-activated kinase-1, another 

MAPK kinase kinase, which is involved in the cigarette 

smoke-induced inflammatory response of airway smooth 

muscle cells in vitro. Further research into the potential 

role of transforming growth factor beta-activated kinase-1 

would be warranted.159 Similarly, several P2X7 antagonists 

are currently being explored for the treatment of various 

inflammatory diseases.160 The possible role of P2X7 in ricin 

intoxication has not yet been reported.

Inhalation of toxicants leads to the production of multiple 

cytokines and other mediators, which in turn produce mul-

tiple downstream inflammatory effects. Potential therapeutics 

is likely to have higher success when directed at upstream, 

rather than downstream, targets. Like IL-1β, TNF-α is 

also widely recognized as an initiator cytokine, and both 

IL-1β and TNF-α are produced after the inhalation of many 

toxicants (Table 1) and seem to be important in cigarette 

smoke-induced emphysema and small airway remodeling 

in mice.161 However, anti-TNF-α therapy is ineffective in 

reducing symptoms of COPD in patients,162 and TNF-α does 

not seem to play an important role in ricin intoxication.132 

Because several translation inhibitors, including deoxyni-

valenol, inhibit TNF-α signaling,106 further research is 

warranted to investigate whether other ribosome-targeting 

toxicants share the same mechanism that could explain the 

lack of involvement of TNF-α.

While it is still unknown whether cigarette smoke and 

other mycotoxins act through ZAK, it is clear that, like 

ricin, they stimulate the processing of IL-1β using NLRP3. 

By selective targeting of NLRP3, the production of IL-1β 

via other members of the inflammasome family may remain 

normal, thereby reducing the chance of immunosuppres-

sion. Several NLRP3 inhibitors, including parthenolide,163 

glyburide,164 5-chloro-2-methoxy-N-[2-(4-sulfamoylphenyl)

ethyl]benzamide,165 and isoliquiritigenin,166 are currently 

under investigation. The selective targeting of toxicant-

mediated production of IL-1β by MAPK kinase kinase 

inhibitors and inhibitors against specific NOD-like receptor 

members may thus lead to the development of novel thera-

peutic strategies that may be employed for treatment of lung 

inflammatory disease.

In conclusion, although acute and chronic lung inflam-

mation is known to contribute to the serious effects of 

cigarette smoke, mycotoxins, ricin, and other inhaled toxi-

cants, effective anti-inflammatory treatments are lacking. By 

looking beyond cigarette smoke and reviewing the current 

understanding of how different toxicants induce the inflam-

matory response, this paper has identified several promising 

targets to treat COPD and lung inflammation. In particular, 

ZAK, P2X7, and NLRP3 are unique targets that foster the 

production of IL-1β by specific stimuli that inhibits protein 

translation. Selective targeting may interrupt respiratory 

inflammation while simultaneously permitting a normal 

immune response to respiratory tract infections that fre-

quently accompany COPD, thereby reducing the risk of 

severe pneumonia.
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