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ABSTRACT
Diabetes is characterized by elevated levels of blood glucose as a result of insufficient pro-
duction of insulin from loss or dysfunction of pancreatic islet b-cells. Here, we review sev-
eral approaches to replacing b-cells that were recently discussed at a symposium held in
Kyoto, Japan. Transplant of donor human islets can effectively treat diabetes and eliminate
the need for insulin injections, supporting research aimed at identifying abundant supplies
of cells. Studies showing the feasibility of producing mouse islets in rats support the con-
cept of generating pigs with human pancreas that can serve as donors of human islets,
although scientific and ethical challenges remain. Alternatively, in vitro differentiation of
both human embryonic stem cells and induced pluripotent stem cells is being actively
pursued as an islet cell source, and embryonic stem cell-derived pancreatic progenitor
cells are now in clinical trials in North America in patients with diabetes. Macro-encapsula-
tion devices are being used to contain and protect the cells from immune attack, and
alternate strategies of immune-isolation are being pursued, such as islets contained within
long microfibers. Recent advancements in genetic engineering tools offer exciting oppor-
tunities to broaden therapeutic strategies and to probe the genetic involvement in b-cell
failure that contributes to diabetes. Personalized medicine might eventually become a
possibility with genetically edited patient-induced pluripotent stem cells, and the develop-
ment of simplified robust differentiation protocols that ideally become standardized and
automated. Additional efforts to develop a safe and effective b-cell replacement strategy
to treat diabetes are warranted.

INTRODUCTION
Diabetes mellitus is characterized by chronic hyperglycemia as
a result of insufficient levels of the hormone, insulin, often
accompanied by insulin resistance. Without appropriate treat-
ment and care, the disease results in devastating complications
including diabetic nephropathy, retinopathy and neuropathy, as
well as cardiovascular and cerebrovascular diseases, all of which
substantially impair the quality of patients’ lives. There are sev-
eral types of diabetes1, of which in higher income countries
87–91% are type 2 diabetes, 7–12% type 1 diabetes and 1–3%
are other forms2. Treatment strategies vary depending on dis-
ease type.
Asia is becoming the global epicenter for diabetes2. In 2015

there were ~153 million adults with diabetes in Asia, and by
2040 that number is projected to rise to 215 million, with
related deaths surging by 46%. Asian diabetes is primarily

characterized by impaired insulin secretion in the absence of
obesity3. Therefore, strategies are being investigated to preserve
pancreatic b-cell mass and function, with the goal of preventing
diabetes onset, progression and its complications. In addition,
although incident rates of type 1 diabetes among children in
Asian countries are relatively low, rates are increasing similarly
to other parts of the world. Therefore, strategies for b-cell
replacement therapies have been gaining much attention in this
region (Figure 1).

CELL-BASED INSULIN REPLACEMENT
As diabetes results from inadequate production of insulin,
many patients rely on daily insulin injections or insulin
infusions by pump for survival. Although these technolo-
gies save lives, such means of exogenous insulin replace-
ment do not typically prevent the onset of debilitating
complications, as it is virtually impossible to replicate the
dynamic insulin production achieved by pancreatic b-cells.
We believe that the re-establishment of regulated insulin
production from within the body will ultimately provide
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superior glycemic control, freeing patients from the burden
of self-management of insulin replacement and resulting in
superior health outcomes.
In 1997 the Japanese Society for Pancreas and Islet

Transplantation organized a Working Group to construct a
system for clinical islet transplantation in Japan, including
registration of recipients through The Japanese Islet Trans-
plant Registry, procurement of pancreas tissue for islet iso-
lation and transplantation of isolated islets. The first islet
transplant in Japan was carried out in 2004, following the
‘Edmonton Protocol’4. Subsequently, a multicenter analysis
of 34 transplantations of pancreatic islets in 18 Japanese
participants with diabetes revealed graft survivals (defined
as a C-peptide level ≥0.3 ng/mL) of 72.2, 44.4 and 22.2% at
1, 2 and 5 years, respectively, and all recipients became free
of severe hypoglycemia unawareness while graft function
was maintained5. Likewise, a phase 3 clinical trial at eight
centers in North America involving 48 participants who
together received 75 islet infusions showed that trans-
planted human islets provided glycemic control (median
glycated hemoglobin level was 5.6% at both 1 and 2 years),
restoration of hypoglycemia awareness and protection from
severe hypoglycemic events6. In Vancouver, a multiyear
study on progression of diabetes complications showed that
islet transplantation yields improved glycated hemoglobin

and resulted in less progression of retinopathy compared
with intensive medical therapy during 3-year follow up7.
Collectively, these studies highlight both the feasibility and
the tremendous benefits of treating diabetes by islet cell
replacement.

LARGE ANIMALS AS MODELS AND A SOURCE OF
ISLETS
As with most organ transplants, a limiting factor for islet trans-
plantation is supply. With advancements in genetic engineering
tools, there has been a resurgence of the concept of using pigs
as an alternative source of cells for transplant8. Porcine islets
function similarly to human islets, and historically, humans
were treated with purified porcine insulin until recombinant
human insulin became available. However, one concern with
the use of pigs as islet donors is the presence of many dormant
porcine endogenous retroviruses (PERVs), which could pose a
risk to recipients. Using CRISPR-Cas9, all 62 copies of the
PERV pol gene were inactivated, resulting in a >1,000-fold
reduction in PERV transmission to human cells9, and PERV-
inactivated pigs were successfully generated, addressing this
safety concern for clinical application of porcine-to-human
xenotransplantation10. Genome editing can also be used to
reduce the expression of antigens that typically promote aggres-
sive immune responses to xenografts.
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Figure 1 | Strategies being explored for the development of novel therapies for diabetes. Embryonic stem (ES) and induced pluripotent stem (iPS)
cells combined with genome editing technologies are valuable tools to probe disease mechanisms, engineer in desired attributes such as safety
switches and upon differentiation to use as potential replacement cell sources. Other potential cell sources are pigs, possibly with human pancreas.
Such ‘humanized’ animals might also prove valuable for disease modeling, as will other genetically modified species. To accompany cell sources
some form of immunoprotection will be required, such as retrievable planar, bead or fiber encapsulation devices.

458 J Diabetes Investig Vol. 9 No. 3 May 2018 ª 2017 The Authors. Journal of Diabetes Investigation published by AASD and John Wiley & Sons Australia, Ltd

M I N I R E V I EW

Kieffer et al. http://onlinelibrary.wiley.com/journal/jdi



As an alternative to using modified porcine organs, it is
conceivable to combine gene knockouts in key developmental
genes and interspecies chimeras to produce pigs with comple-
menting human organs that can be harvested for transplant. As
proof of concept for chimera complementation, Nakauchi et al.
first created mice with rat pancreas11, and subsequently rats
with mice pancreas12. These remarkable feats were achieved by
injecting rat pluripotent stem cells into early-stage mouse
embryos that lacked the Pdx1 gene, or mouse pluripotent stem
cells into early-stage rat embryos that lacked the Pdx1 gene,
respectively. Furthermore, islets isolated from rats with mouse
pancreas were able to successfully reverse diabetes in recipient
mice for >1 year, in the absence of chronic immunosuppres-
sion. These data provide compelling evidence for the therapeu-
tic potential of stem cell-derived islets generated by blastocyst
complementation in a xenogeneic host. As a next step towards
the generation of pigs with human pancreas, knockout pig
embryos were created with an apancreatic phenotype. Comple-
mentation of these embryos with allogenic blastomeres then
created functioning pancreata in the vacant niches13. Ethical
issues and regulations in Japan currently preclude testing the
feasibility of reconstituting pancreas from human pluripotent
stem cells in these animals.
Aside from being a source of cells for transplant, large ani-

mals with severe combined immunodeficiency could be very
useful models to test the safety and efficacy of cell-based strate-
gies to treat diabetes, before clinical trials. For instance, using
messenger ribonucleic acid-encoding zinc-finger nucleases, the
interleukin-2 receptor gamma (IL2RG) gene was knocked out
in porcine fetal fibroblasts, and IL2RG knockout pigs were sub-
sequently generated using these cells through somatic cell
nuclear transfer14. The resulting IL2RG knockout pigs com-
pletely lacked a thymus, and were deficient in T and natural
killer (NK) cells, but not B cells. A similar approach was used
to generate and IL2RG knockout marmosets with a phenotype
similar to humans with severe combined immunodeficiency15.
Recombination activating gene (RAG)2 knockout pigs were
produced by conventional gene targeting of somatic cells fol-
lowed by somatic cell nuclear transfer, resulting in pigs that
lacked T and B cells, but not NK cells16. Double IL2RG/RAG2
knockout pigs lacked T, B and NK cells altogether, producing
an animal model that can bridge the gap between rodents and
humans, and provide a human-scale model of preclinical
research on stem cell therapies16. Single-stranded oligodeoxynu-
cleotide-mediated knock-in approaches with CRISPR-Cas9 were
recently used to replace large segments of the rat genome with
the corresponding human sequences, showing a simplified ‘hu-
manization’ of animal models by genome engineering17.
Humanized animals are likely to become valuable model sys-
tems for probing disease mechanisms and testing novel thera-
peutic approaches. Large animal models can also be produced
to model diabetes and its complications; for example, pigs car-
rying a mutant version of human hepatocyte nuclear factor-1a,
which is responsible for maturity-onset diabetes of the young

type 318. Ongoing advances in genetic engineering will facilitate
the generation of additional useful models.

INSULIN-PRODUCING CELLS FROM HUMAN STEM
CELLS
The quality of glycemic control that can be achieved by islet
transplant has fueled efforts to develop a readily available sup-
ply of insulin-producing cells to replace the current reliance on
cadaveric tissue. Importantly, the success of islet replacement
provides clear clinical evidence that a cell-based treatment of
diabetes is possible. In theory, human stem cell-derived b-cells
should be able to generate the same results, if not better than
isolated human islets. Islet tissue is highly variable, and com-
promised by the quality of the donor organ and digestion pro-
cess required to liberate islets that are scattered throughout the
exocrine tissue. In contrast, laboratory-grown b-cells or their
progenitors can be cultivated under optimal standardized con-
ditions to purity and in vast quantities as a readily available cell
source.
Efforts to differentiate pluripotent stem cells, whether embry-

onic stem (ES) cells or induced pluripotent stem (iPS) cells,
into b-cells have been guided by decades of studies unraveling
the processes by which islet cells normally develop19. A great
deal of effort has been required to optimize the culture condi-
tions, particularly the concentrations of media constituents and
timing of the activation or inhibition of key signaling pathways
to obtain stepwise differentiation of the cells through normal
developmental pathways. For example, it is possible to selec-
tively differentiate iPS cells into anterior or posterior domains
of definitive endoderm by simply using different concentrations
of CHIR99021, a small molecule Wnt/b-catenin pathway acti-
vator20. Other screens identified erythropoietin as a facilitator
of the differentiation of stem cells into definitive endoderm
through the activation of extracellular signal-regulated kinase
signaling21, and interestingly, mild electrical stimulation with
heat shock potentiates the differentiation of ES cells into defini-
tive endoderm22.
Studies with isolated pancreatic progenitors obtained from

~9-week-old human fetal pancreas showed that cells at that
stage of development, marked by the transcription factors
PDX1 and NKX6.1, are capable of finishing maturation to
b-cells once transplanted23,24. Therefore, stem cell differentiation
protocols have focused on inducing the expression of these two
key markers. Aside from media components, the induction of
PDX1+/NKX6.1+ cells is affected by cell density in adherent
cultures, and markedly improved with cell aggregation cul-
tures25 and inhibition of Rho-associated kinase or non-muscle
myosin II26. Protocols have been developed to efficiently mass
produce cells marked by PDX1 and NKX6.1, including in
three-dimensional suspension bioreactor systems, and these cells
are able to mature into islet cells and effectively lower blood
glucose in immunodeficient mice27–30. ViaCyte Inc. has
advanced this approach into clinical trials, and thus far ~20
participants have received implants of human ES-derived
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pancreatic progenitors in Canada and the USA, but detailed
results of the trials have not yet been released29,31. This impor-
tant milestone, first in human trials in patients with diabetes,
paves the way for additional clinical testing of stem cell-derived
implants.
One theoretical caveat of the strategy to implant pancreatic

progenitor cells as opposed to mature b-cells is the potential
that patient variables can impact cell maturation in unpre-
dictable ways. For instance, human pancreatic progenitor cells
seem to mature differently in mice vs rats32, and altered levels
of thyroid hormone can impair the formation of b-cells33, indi-
cating that the tissue environment can influence pancreatic pro-
genitor maturation. More advanced scalable differentiation
protocols have been developed34–42, and cells generated, while
not fully mature b-cells, can more rapidly reverse diabetes in
mice compared with pancreatic progenitors35. Additional stud-
ies are required to verify if the cells function more consistently
in variable host conditions in order to safely and effectively reg-
ulate blood glucose levels.
Considerable efforts are underway to further improve on cur-

rent differentiation protocols, including reducing the reliance
on expensive growth factors, and deriving fully mature insulin-
producing b-cells from pancreatic progenitors. In this regard,
small molecule screens have identified a previously unappreci-
ated pathway regulated by vesicular monoamine transporter 2,
which when inhibited releases a monoamine-dependent sup-
pression of pancreatic progenitor cell differentiation43. In
another study, sodium cromoglicate was found to increase the
percentage of insulin+ cells by almost threefold, at least in part
by the inhibition of bone morphogenetic protein 4 signaling44.
Others have engineered new tools to facilitate the identification
of compounds that promote b-cell formation. For example,
dual reporter human iPS cells were created expressing the fluo-
rescent proteins, Venus and mCherry, under the control of
intrinsic insulin and neurogenin 3 promoters45. Tracking repor-
ter expression during high-throughput screening of chemicals
identified a specific kinase inhibitor of fibroblast growth factor
receptor 1 that acted in a stage-dependent manner to promote
the terminal differentiation of pancreatic endocrine cells, includ-
ing b-cells, from the intermediate stage of pancreatic endocrine
progenitors while blocking the early development of pancreatic
progenitors. Finally, a novel assay using dissociation culture of
adult islets showed that dopamine D2 receptor antagonization
with domperidone repressed apoptosis and dedifferentiation,
leading to enhanced proliferation and increased b-cell mass46.
It is likely that a combination of both guided protocol opti-
mization and unbiased screening with empirical testing will
ultimately be successful in yielding robust protocols for expan-
sive production of mature b-cells from pluripotent stem cells.

CELL ENCAPSULATION
Current islet transplant protocols require the use of chronic
immunosuppression to protect cells from immune-mediated
destruction. In an effort to eliminate the need for such drugs,

which can place patients at risk of complications and oppor-
tunistic infections, approaches are being investigated that encap-
sulate implanted cells to isolate them from the immune system,
while maintaining permeability to nutrients and secreted prod-
ucts including insulin. Multiple studies have documented the
ability of stem cell-derived pancreatic progenitor cells or endo-
crine cells to survive and function within macro-encapsulation
devices that are implanted subcutaneously28,39,47. However, the
long-term survival and function of macro-encapsulated stem
cell derivatives in humans has not yet been reported. Micro-
encapsulated clusters of differentiated human stem cells in a
derivative of the natural material alginate were effectively pro-
tected long term from immune attack when implanted into the
intraperitoneal cavity of mice48. Smaller capsules such as these
might provide better oxygenation for the highly metabolically
active b-cells within, compared with macro-encapsulated cells.
However, microcapsules are not readily retrievable, a disadvan-
tage compared with subcutaneously placed larger devices. As a
potential means to harness the immunoprotective capacity of
alginate, or other polymers, yet achieve retrievability, a method
was developed to encapsulate islet cells within meter-long
microfibers that can be weaved into macroscopic structures
with various spatial patterns, implanted and subsequently
retrieved49. It remains to be seen if such innovative approaches
will prove to be superior to macro-encapsulation strategies that
are currently being tested clinically31.

COMBINING GENETIC ENGINEERING WITH STEM CELLS
The combination of modern genome engineering tools and iPS
cells has poised the field to improve both transplant outcomes
and safety. Unlike using adult islets, current in vitro stem cell
differentiation protocols do not fully recapitulate in vivo matu-
ration and lineage restriction, thus leading to concerns over
potential tumorigenic growth of progenitors or residual
undifferentiated cells. To date, the limited number of ES or iPS
cell-derived therapies that have reached clinical trials have
undergone careful scrutiny and have raised no apparent need
for concern50, yet measures to ensure monitoring and control
of transplanted cells remain advantageous. Lentiviral integration
of transgenically encoded ‘safety switches,’ such as chemically
inducible caspase-9, allow the selective ablation of transplanted
cells and have proven efficacy in vitro and in teratomas51, and
more recently using in vivo mouse models of spinal cord injury
for selective and regulated cell ablation52. Transgene targeting
into the adeno-associated virus integration site 1 locus, or other
genetic ‘safe-harbor’ loci – which show no known phenotype
from disruption and enjoy a privileged epigenetic signature –
permits reliable gene expression and avoids the potential
mutagenic load of random lentiviral integration. Therapeutic
transgene delivery to the albumin locus using zinc-finger nucle-
ases, which has thus far been proven in vivo in mice53 and
recently received US Food and Drug Administration approval
as an orphan drug for gene therapy, results in transgene
expression from an endogenous promoter, and reveals an
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option for cell type-specific transgene responses. The adeno-
associated virus integration site 1 locus shows consistent expres-
sion in a variety of differentiated cell types54, making it suitable
for tracking cells using visible luciferase reporters after trans-
plantation, and an obvious candidate for housing safety
switches. However, as the field moves towards integration-free
iPS cells without permanent transgenic modification, methods
such as selective elimination of residual undifferentiated cells by
metabolic restriction of methionine55,56 or transient delivery of
potent apoptotic regulators limited in their activity by the pres-
ence of stem-cell specific micro-ribonucleic acids57 might form
a new standard.
Although animal models have utility in improving our

understanding of pancreatic development and testing the effi-
cacy of stem cell-derived b-cells, fundamental differences in
physiology could confound their use for studies of human dis-
ease and development. Using human pluripotent stem cells as
in vitro models for human development, researchers have
probed the function of key transcription factors by gene knock-
out; for example, showing conserved haploinsufficiency for
PDX1, as well as a potentially divergent role of neurogenin 3
between mice and humans in pancreatic b-cell differentiation58.
Patient iPS cells provide a valuable resource to decipher disease
mechanisms, such as the discovery that nonsense-mediated
decay is the underlying mechanism for HNF1b mutations in
mature-onset diabetes of the young59. Gene-corrected isogenic
iPS cells provide experimental validation of causative diabetes
mutations. Furthermore, combined with data from genome-
wide association studies, gene editing has helped to reveal more
complex genetic interactions, such as those shown for ER stress
in response to CDKAL1 dysfunction, exposing novel therapeu-
tic solutions60. Thus human islet cells derived from differenti-
ated human pluripotent stem cells also provide a platform to
screen for new drugs to treat diabetes. Furthermore, as autolo-
gous b-cells derived from diabetes patient iPS cells would
require gene correction before therapeutic use, precision gen-
ome editing could eventually permit a truly personalized
approach to regenerative medicine. More economically feasible
banking of human leukocyte antigen-matched and validated
iPS cell derivatives61 also stands to benefit from genome engi-
neering applications that reduce immune rejection and improve
broader patient compatibility, thus facilitating transplant
therapy with ‘universal’ cells.

CONCLUSION
In summary, there continue to be many exciting advances in
b-cell replacement strategies for diabetes, including the recent
creation of model systems and tools that will facilitate new dis-
coveries, some of which will hopefully progress to clinical trials
(Figure 1). Ultimately, one of the approaches discussed here
could develop into a practical way to effectively restore regu-
lated endogenous insulin production and normal glucose home-
ostasis, addressing the critically unmet need to better control
blood glucose levels in patients with diabetes.
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