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Introduction

Across millennia of coevolution, malaria parasites have mediated their human hosts’ patterns

of settlement, authored their historical milestones, and shaped their genome. The human

genome harbors archived responses to the pressure of severe, life-threatening malaria, and

chief among these are innate variants of erythrocytes, which serve as principal cellular hosts

for the parasite. Since JBS Haldane first speculated that red blood cell (RBC) variants may con-

fer some resistance to malaria, numerous studies using diverse approaches have identified an

array of innate variants, which can be grouped as disorders of the erythrocyte cytoskeleton

(e.g., Southeast Asian ovalocytosis), variation in erythrocyte surface antigens (e.g., ABO and

Duffy), enzymatic aberrations (e.g., glucose-6-phosphate dehydrogenase deficiency), and

mutants of α- or β-globin proteins, either as deletions (e.g., α-thalassemia) or point mutations

(e.g., hemoglobin [Hb] S or C). To varying degrees, each of these variants of erythrocytes have

been selected over generations owing to enhanced fitness when human populations are

exposed to intense malaria transmission.

These variants can provide striking protection: as one example, in African children, hetero-

zygosity for sickle Hb reduces the risk of severe, life-threatening malaria by over 90% [1]. This

degree of protection against severe malaria exceeds any other preventive medical intervention,

including the 34% protection conferred by the most advanced malaria vaccine, RTS,S/AS01

[2]. Because of this, these models of naturally occurring protection need to be exploited to bet-

ter understand the mechanisms of parasite pathogenesis and how these can be neutralized.

Now, nearly 7 decades following Haldane’s hypothesis, there exists a pressing need to translate

these observations into strategies to interrupt malaria and render fewer children born to the

endless night of immiserating malaria.

Historical perspectives

Malaria is transmitted between humans by Anopheles spp. mosquitos and is caused by five spe-

cies of Plasmodium spp. parasites—Plasmodium falciparum, P. vivax, P. ovale, P. malariae, and

P. knowlesi. P. falciparum and P. vivax are distributed most widely throughout the tropics and

cause most human disease. P. vivax is very rare in most of Africa because most Africans lack

expression on their erythrocytes of the Duffy antigen receptor for chemokines (DARC), which

enables the efficient invasion of red cells by P. vivax. Globally, P. falciparum is the most com-

mon and the deadliest species, and it kills over 400,000 people annually, mostly children in

sub-Saharan Africa.
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After a short stage in hepatocytes, the principal target in humans is the erythrocyte, which

serves as the primary platform for parasite propagation. Consequently, variants of erythrocytes

are the principal known means by which humans have developed protection, most notably

through mutations in Hb (Table 1). Hb is formed by a tetramer of two α- and two β-globin

proteins; mutations of Hb result from either deletion of globin gene copies (in the thalasse-

mias) or in coding point mutations in β-globin. A wide variety of point mutations in β-globin

have been described, and most important for malaria protection are the substitutions of gluta-

mate at position 6 for either valine (to produce HbS) or lysine (HbC). The inheritance of two

mutated β-globins (as either HbSS or HbSC) produces sickle cell anemia and significant multi-

system morbidity; in contrast, the inheritance of either sickle-cell trait (HbAS) or homozygous

HbC (HbCC) produces little morbidity but substantial protection.

Clinical epidemiology

Interestingly, both HbAS and HbCC specifically protect children from severe disease, suggest-

ing that they attenuate the specific pathogenic mechanisms of either the parasite or host while

allowing children to be infected with P. falciparum. This conclusion is supported by contrasts

between the degrees of protection conferred by HbAS against severe malaria (91%), uncompli-

cated malaria (31%), and asymptomatic parasitization (none) [1]. The risk of severe malaria is

also reduced by homozygous (37%) or heterozygous (17%) α-thalassemia, but these variants

confer no protection from uncomplicated malaria. In addition to their individual effects, epis-

tasis has been repeatedly reported between HbAS and α-thalassemia, in which the coinheri-

tance of both mutations negates the protective effects of either against severe malaria [3]. This

clear biological and clinical interaction between the two variants suggests that candidate

molecular mechanisms of protection should follow a similar pattern.

In vitro effects

Numerous in vitro studies have reported the effects of Hb variants on parasite cellular pheno-

types. Generally, in vitro studies have rejected the hypothesis that parasites are unable to

invade hemoglobinopathic RBCs: invasion has been reported as normal for HbAS [4], HbCC

[5], HbAC [5], HbAE, and HbEE cells [6], as well as for α-thalassemic RBCs [7] and those

Table 1. Common Hb variants and their phenotypes.

Variant Epidemiology Genotype Clinical phenotype

α-

thalassemias

α+-thal trait Global Loss of one α-globin gene

(αα/α-)

Asymptomatic

α0-thal trait Global Loss of two α-globin genes

(αα/—)

Mild anemia

HbS West, central, and East Africa; Arabian Peninsula;

Southeast Asia

Glu! Val at position 6 of β-

globin

HbSS: sickle cell disease with pain crises, transfusions, acute chest

syndrome, stroke

HbAS: largely asymptomatic

HbC West African Sahel Glu! Lys at position 6 of β-

globin

HbCC: mild hemolysis and anemia

HbAC: asymptomatic

HbE Southeast Asia Glu! Lys at position 26 of

β-globin

HbEE: minimal anemia

HbAE: asymptomatic

HbF Produced in first 6 months of life Normal Greater oxygen affinity than adult HbA

Abbreviations: Glu, glutamate; Hb, hemoglobin; Lys, lysine; Val, valine.

https://doi.org/10.1371/journal.ppat.1007770.t001
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containing HbF [8]. Studies of parasite growth have been conflicting: early studies [4, 9, 10]

reported that, compared with HbAA RBCs, growth of parasites was attenuated specifically at

low oxygen tension (approximately 5%) in HbAS or HbCC RBCs, but more recent studies

have reported equivalent growth in HbAA, HbAS, and HbAC RBCs [11, 12] in similarly hyp-

oxic environments. However, a recent, more detailed investigation of the stage-specific growth

effects of hypoxia in HbAS cells reported that hypoxia attenuates parasite maturation specifi-

cally in the latter stages of parasite development, during which infected erythrocytes typically

sequester in hypoxic deep vascular beds [13]. How this phenomenon may operate in vivo or be

present in other Hb variants remain open questions.

Cellular pathogenesis

Cellular mechanisms of pathogenesis are principally governed by interactions between

infected RBCs (iRBCs) and extracellular ligands on host cells, including endothelium, leuko-

cytes, and uninfected RBCs; these interactions are enabled by the expression of parasite-

derived proteins on the RBC surface, including the hypervariable protein families P. falcipa-
rum erythrocyte membrane protein 1 (PfEMP1), repetitive interspersed families of polypep-

tides (RIFIN), and subtelomeric variable open reading frame (STEVOR). This cytoadherence

allows iRBCs to sequester in the microvasculature and avoid splenic clearance, attenuate

immune activation [14], and activate endothelial cells [15]. In vitro studies reveal that HbAS

and HbCC reduce the cytoadherence of iRBCs to human microvascular endothelial cells and

produce aberrant expression of PfEMP1 on the iRBC surface compared with HbAA [16, 17].

The reduction in PfEMP1 expression is important because PfEMP1 variants enable the inter-

action of iRBCs with endothelial receptors including endothelial protein C receptor (ePCR),

intercellular adhesion molecule 1 (ICAM-1), and CD36 that are increasingly recognized as

important in the pathogenesis of severe malaria [18]. Intriguingly, a more recent study

reported that whereas HbAS reduced PfEMP1 expression, adherence to recombinant ICAM-1

and CD36, and adherence to uninfected RBCs, these phenotypic effects were reversed by coin-

heritance with α-thalassemia [19], mirroring the clinical epidemiology of HbAS, α-thalasse-

mia, and malaria risk [3]. These attenuated interactions have functional consequences: in a

recent study, HbAS reduced the ability of iRBCs to activate endothelium, possibly as a result of

the reduced quality of adhesion of the iRBC to endothelium [20]. Taken together, these data

suggest that the ability of HbCC and HbAS to disrupt P. falciparum’s ability to interact with

extracellular ligands contributes significantly to their protection from severe malaria.

Molecular pathogenesis

As noted above, P. falciparum exports a large number of proteins to the iRBC surface, and a

principal component of the export machinery is Maurer’s clefts, the parasite-derived Golgi-

like membranous structures that serve as transport hubs for PfEMP1 and other exported pro-

teins. As the parasite matures in the RBC, these Maurer’s clefts are conveyed along a scaffold

of host-cell actin that the parasite has repurposed to assemble a transport network; in HbCC

and HbSC RBCs, Maurer’s clefts are dysmorphic, the actin assemblage is disorganized [21],

Maurer’s cleft motion is impaired [22], and protein export to the RBC surface is delayed [23].

Some of these phenotypes have been induced by the exposure of HbAA RBCs to oxidation

prior to infection, suggesting that oxidative insult from β-globin variants is an important con-

tributor [11]. In a separate line of inquiry, host microRNAs (miRNAs) harbored within HbAS

RBCs attenuated parasite growth and perturbed parasite protein translation owing to the pro-

duction of chimeric mRNAs formed by the fusion of host miRNA and parasite mRNA tran-

scripts [24], suggesting a novel mechanism of interactions between host RBC and parasite.
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Collectively, these studies suggest that HbAS exerts pervasive effects on parasite mechanisms

and underscores the efficiency of this system for exploring fundamental mechanisms of para-

site pathogenesis (Box 1).

A pathway to progress

Just as pathogen drug-resistance phenotypes furnish a model by which to better understand

drug mechanisms of action, human disease resistance enables us to more efficiently explore

pathogen mechanisms of disease and thereby identify targets for intervention. There are two

models for this approach. The first model relates to P. vivax malaria. As noted above, many

Africans are protected from P. vivax because the absence of DARC on the erythrocyte surface

prevents RBC invasion by P. vivax. This model of protection enabled the identification of the

parasite-derived binding partner for DARC: P. vivax Duffy binding protein (PvDBP). In popu-

lations exposed to P. vivax, naturally occurring antibodies to PvDBP are associated with pro-

tection from vivax malaria (in DARC-positive people), and this apparent functional protection

has prioritized PvDBP as an advanced candidate antigen for vivax-specific vaccination strate-

gies [25]. The second model relates to pregnancy-associated P. falciparum malaria. Epidemio-

logically, pregnant women are at high risk in endemic areas for falciparum malaria but

develop over successive pregnancies acquired immunity to its consequences, including placen-

tal malaria. Placental malaria results from interactions between chondroitin sulfate A in the

syncytiotrophoblast and a parasite-derived surface protein VAR2CSA; this essential interac-

tion, and the model of acquired immunity to it, enabled the identification of functional anti-

body responses that attenuate placental malaria. Currently, two early-phase vaccines are being

developed to generate responses directed against VAR2CSA and protect women and their off-

spring from placental malaria.

Adaptive evolution in human populations has furnished to us natural strategies by which to

neutralize malaria parasites in the form of erythrocyte variants. By using the protective pheno-

types to infer essential mechanisms of disease, we can rationally develop new approaches to

preventing and treating this ancient and immiserating disease.
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Box 1. Unanswered questions for protection

1. How does reduced PfEMP1 expression and cytoadherence modify the effects of

hypoxia-induced arrest of maturation in HbAS RBCs?

2. Do host miRNAs influence the quality or quantity of surface antigen expression or

cytoadherence in HbAS RBCs?

3. How do β-globin variants disrupt the assembly of the actin cytoskeleton and

Maurer’s clefts during ring-stage development?

4. Do β-globin variants attenuate the interaction of infected RBCs with host immune

cells?
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