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Abstract: In the wake of arresting consumers’ health concerns associated with synthetic antioxidants
used in meat products, kiwifruit peel by-product was explored as a natural antioxidant source in
the current study. A lyophilized kiwifruit peel extract (KPE) at various concentrations of KPE1
(1.5%), KPE2 (3%), and KPE3 (4.5%) was incorporated into formulated beef sausages to compare
the physicochemical, sensory quality, and antioxidant efficacy to the treatments of control (CT 0%
KPE) and butylated hydroxytoluene (BHT 0.01%) during 12 d of refrigerated (4 ± 1 ◦C) storage. The
KPE inclusion levels induced significantly higher yellowness (b*) values than CT and BHT, whereas
no negative influence of KPE was revealed for lightness (L*) and redness (a*). The pH values of
the KPE treatments were reduced, and cooking yield increased significantly (p < 0.05), in line with
the increasing amount of KPE percentages (1.5%, 3%, and 4.5%) compared to CT and BHT samples.
E-nose results showed an enhancement in aroma in KPE treatments, compared to BHT and CT, during
the storage period. KPE3 treatment showed a constant lesser value in 2-Thiobarbituric acid reactive
substances (TBARS) as storage days increased, compared to the CT and BHT samples. Overall, the
KPE is effective for antioxidative capacity, and has the potential to be used as a natural antioxidant in
beef sausage.

Keywords: kiwifruit peel; agro-waste valorization; beef sausages; antioxidant

1. Introduction

Meat possesses a high nutritive value in human diet due to the high proportion of
protein, caloric fat, vitamins, and microelements needed for the proper function of human
metabolic processes [1]. Processed meat commodities, such as sausages, are popular in
the world due to their nutritional values and convenience [2]. However, the oxidation
of lipid and protein caused by a continuous free-radical chain reaction, cell disruption,
oxygen exposure, ultraviolet light, and pro-oxidant eminent vulnerability of meat products,
including beef sausages, has presented challenges [3–5].

Synthetic antioxidant products have the potential carcinogenicity and toxic effects
to pose health risks to consumers [6]. Thus, antioxidant compounds or mixtures from
natural sources that extend food products’ shelf life are in high demand [7]. Exploitation of
natural antioxidants remains a challenge in the meat industry, for “healthy” meat product
development, to avert the health risk concerns associated with synthetic preservative
agents [7]. Kiwifruit peel is a by-product secured from processing kiwifruit into slices and
nectars, yielding approximately 10–16% of the whole-fruit mass, depending on the peeling
method [8]. Indeed, kiwifruits contain many phytonutrients, and several works have
reported the presence of polyphenols [9], vitamin C and E [10], flavonoids [11], and other
bioactive compounds, thereby confirming their antioxidative properties. Some scientific
literature has documented the application of kiwifruit on beef bulgogi textural quality [12],
and the effect of proteolytic enzymes purified from kiwifruit on the tenderness of various
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beef parts [13,14], and food protein digestion [15]. However, research on kiwifruit (edible
part) utilization in the meat industry is scarce, particularly regarding kiwifruit by-products
(peels, pulp, and seeds). Hence, the high bioactive ingredients and easy accessibility of
kiwifruit and its derivatives encouraged the valorization of kiwifruit peels in the current
study. Therefore, the present study was aimed at investigating the antioxidant capacity
of utilizing lyophilized underutilized KPE, and its effects on beef sausage quality, in
comparison with synthetic antioxidant BHT, during refrigerated storage.

2. Materials and Methods
2.1. Materials

The entire study was conducted in the pilot plant and laboratory of the National Center
of Meat Quality and Safety Control, Nanjing Agricultural University (Nanjing, China).
Boneless round beef of 24 h postmortem cut and associated fat (subcutaneous fat and
inter-muscular fat) were purchased from a supermarket (Suguo Supermarket, Xiamanfang,
Nanjing, China) and transported to the laboratory via cold chain. Seasonings in Table 1
used in the beef sausage formulations were supplied by the pilot plant. BHT was acquired
from Henan Wanbang Chemical Technology Co., Ltd. (Zhengzhou, China). Chemicals and
reagents including 2-thiobarbituric acid (TBA) and trichloroacetic acid (TCA) used in the
study were purchased from Sinopharm Chemical Reagent Co., Ltd. (Beijing, China), and
all other chemicals employed were of analytical grade.

Table 1. Beef sausages formulation.

Ingredients
Sample Groups Amount (%)

CT BHT KPE1 KPE2 KPE3

Meat 77.83 77.82 76.33 74.83 73.33
Added fat 7.00 7.00 7.00 7.00 7.00
Mixed spices 1.25 1.25 1.25 1.25 1.25
Garlic powder 0.80 0.80 0.80 0.80 0.80
Onion powder 1.20 1.20 1.20 1.20 1.20
NaNO2/NaNO3 0.12 0.12 0.12 0.12 0.12
Red pepper powder 0.50 0.50 0.50 0.50 0.50
Black pepper powder 0.50 0.50 0.50 0.50 0.50
NaCl 1.25 1.25 1.25 1.25 1.25
Water 9.55 9.55 9.55 9.55 9.55
BHT - 0.01 - - -
KPE - - 1.50 3.00 4.50
Total 100 100 100 100 100

KPE: lyophilized kiwifruit peel extract, BHT: butylated hydroxytoluene, CT: Control (0% KPE), BHT (0.01% BHT),
KPE1 (1.5% KPE), KPE2 (3% KPE), KPE3 (4.5% KPE), NaCl: Sodium chloride, NaNO2: Sodium nitrite and NaNO3:
Sodium nitrate.

2.2. Production of Lyophilized Kiwifruit Peel Extract

Physiologically matured kiwifruits (Actinidia deliciosa cv. Hayward) were sourced
from an orchard in Zhouzhi county (Xi’an, China) located at 108◦3′50′ ′ east longitude and
34◦17′2′ ′ north latitude. The fruits were selected, washed, and cleaned with distilled water
to eliminate any inorganic material. Peels were separated manually from the edible portions
and lyophilized (Christ Lyo Chamber Guard 121550 PMMA, Beijing BMH Instrument
Co., Ltd.) at −80 ◦C for 72 h. The lyophilized peels were manually shredded and ground to
a powder by an electrical stainless-steel high-speed multifunction grinder (950 W, Huangdai
Instrument Co., Ltd., Shanghai, China). The obtained powder was sieved using a stainless-
steel standard inspection sieve with a nominal mesh aperture (0.3 mm) hand sieve shaker
(Nanjing Xioncheng Screen Factory, Nanjing, China) to obtain a fine powder. The kiwifruit
peel extract was transferred into a plastic bag, sealed, and kept at 4 ◦C until further use.
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2.3. Beef Sausage Preparation

The whole sausage products for the study were prepared based on the formulation in
Table 1. Five different treatments of sausages, each containing the primary ingredient, were
produced with varying percentages of KPE. The control samples (CT) contained 0% KPE,
the BHT samples contained 0.01% BHT—based on the permissible range for food additives
utilization in China in conformity with national food safety standards [16], KPE1 contained
1.5% KPE, KPE2 contained 3% KPE, and KPE3 contained 4.5% KPE. Firstly, the visible
connective tissues were manually trimmed off the meat. Following this, a kitchen blender
(JZR-G608, Zhongshan Jinzheng Electrical Appliance Co., Ltd., Zhongshan, China) was
used to mince the beef along with associated fat for 3 min. Afterward, water was added
and blended for 1 min. Half of the ingredients were added and minced for 2 min. Next, the
second half of the ingredients was introduced to obtain a homogenous sausage emulsion
after mincing for 2 min. Subsequently, the sausage batter was divided into five groups. The
different percentages of BHT and KPE were incorporated, and mixed for 2 min to obtain a
homogenate emulsion of beef sausage.

A manual sausage-stuffing machine (Sausage maker Enema machine, Zhongshan,
China) was used to manually stuff the sausage batter into a 25 mm diameter synthetic
collagen casing (Baan Thai Food Company, Shanghai, China), which was then hand tied
to obtain 5 cm-long links, approximately. The beef sausages were subjected to a smoking
chamber (T1900 EL 619, FEESMANN, GmbH and Co. KG, 71364 Winnenden, Germany)
and smoked at 80 ± 1 ◦C for 1 h. After smoking, samples were allowed to reach an
ambient temperature. Next, after the cooling process, beef sausages were tightly covered
by polyethylene film (Surong Plastic Products Co., Ltd., Suzhou, China) and shelved at
refrigerated storage (4 ± 1 ◦C), ahead of later analysis. The experiment was done in three
batches on separate days, and each batch was considered as a replicate. Each treatment
was randomly selected for analysis at 0, 3, 6, 9, and 12 d.

2.4. Color Measurement

A portable colorimeter (CR-400, Konica Minolta, Inc., Tokyo, Japan) with illuminant
(D 65), viewing area (0◦), and viewing area diameter (0.13 mm) was employed to attain
the color of beef sausages after 0, 3, 6, 9, and 12 d of refrigerated storage (4 ± 1 ◦C). Before
measurement, the device was calibrated with a white tile (mod CR-A43) as the standard.
Product samples were allowed to bloom color at ambient temperature after being removed
from the refrigerated condition. Randomly, eighteen measurements of three replicates
from each treatment’s exterior and internal locations were analyzed, and mean value was
determined by measuring lightness (L*), redness (a*), and yellowness (b*).

2.5. pH Measurement

A digital pH meter (Thermo-Scientific Trion Series, Milan, Italy) adjusted with (pH 4,
7, and 10) buffer solution was used to determine the pH value of beef sausages after 0, 3, 6,
9, and 12 d of refrigerated preservation (4 ± 1 ◦C).

2.6. Cooking Yield Determination

The cooking yield determined in this study adopted the method of Gao et al. [17]. The
formula below was employed in computing the correspondence of cooked mass to raw
weight values and expounded in percentage:

% Cooking yield =
Cooked weight

Raw weight
× 100

2.7. Lipid oxidation Determination

The TBARS were evaluated with slight moderation upon the protocol of Zhang et al. [18].
TBARS values were expressed as mg malondialdehyde (MDA)/kg of meat sample. The
samples were evaluated in triplicates.
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2.8. Electronic Nose

The technique outlined by Zhang et al. [19] was adopted, with slight modification to
execute the e-nose analysis of the experimental beef sausages stored at 12 d.

2.9. Statistical Analysis

The study considered the completely randomized design (CRD). Three different
batches of sausages were prepared at three different days, and each batch was considered
as the experimental replication. Five treatment groups (CT, BHT, KPE1, KPE2, and KPE3)
of each batch were prepared. The TBtools software (Toolbox for Biologist, v.0.6673; CJ-
Chen, South China Agricultural University, Guangzhou, China) was used to draw the
merged heatmap of e-nose sensors, and the OriginLab program (Version 12.5; OriginLab
Corporation, Northampton, MA, USA) was utilized to perform all analyses. A one-way
analysis of variance (ANOVA) and Tukey’s tests were applied in mean values of multiple
comparisons among the five treatments, to evaluate significant differences.

3. Results and Discussion
3.1. Color

Color is regarded as a criterion for meat and meat product purchase by meat con-
sumers. The effects of the various level of KPE, BHT, and CT on exterior and internal
color are shown in Table 2. The thermal processing of products in the smoke chamber
revealed a significant interaction which altered the surface color of products L*, a*, and b*
significantly, compared to internal color. In addition, the surface a* reduced value during
storage demonstrated that products a* were storage-duration dependent. The results of the
color measurement showed a significant difference (p < 0.05) in L*, a*, and b* of samples
across the 12 d of storage. The L* values in KPE1- and KPE2-treated samples were reduced
significantly throughout storage compared to CT and BHT. The lower values observed
were percentage dependent (1.5%, 3%, and 4.5%) for the KPE in the beef sausage products.
Lightness in food products (meat) is influenced by many determinants, including the
concentration and the pigment type in plant extract, the chemical type of the pigment, and
the meat composition [20]. Similarly, a* values were less in the KPE treatments compared
to CT and BHT. The lesser changes in the product’s surface L*, compared to internal, is
linked to dominance in brightness reflection intensity from the product’s inner part, and
the product’s external opacity, caused by the thermal process. Comparatively, fluctuating
values were recorded in KP1 and KPE3 treatments on d 6 and 12, which may be subjected
to oxidation effect. Hence, the findings of a decrease in a* can be ascribed to the existence
of non-meat ingredients in the KPE, and the polyphenolic compounds present in the KPE
treatments. In addition, the L* and a* values were not significantly different (p > 0.05)
in CT treatments, across storage duration. Therefore, the color alterations of BHT and
KPE treatments may be related to catalyzed iron atoms during KPE pigment oxidation
or denaturation of myoglobin (Mb) molecules by cooking temperature [21]. A significant
increase (p < 0.05) in b* value was revealed in KPE samples compared to CT and BHT
surface and inner color due to the inclusion of KPE concentration in the beef sausages.
Owing to the diverse score recorded in all samples, desirable L*, a*, and b* surface and
inner color factors indicated the stability of the samples’ color traits, regardless of the slight
discoloration in redness in the KPE treatments. Hence, the color variation was attributed to
the KPE concentration incorporated in the beef sausage.
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Table 2. Color of beef sausages during 12 d of refrigerated storage.

Storage Time (Days)
Sample Groups External Color

CT BHT KPE1 KPE2 KPE3

L*
Day 0 53.99 ± 3.40 aA 53.47 ± 2.03 aA 52.52 ± 3.27 aA 48.99 ± 3.31 bA 47.69 ± 3.03 bA

Day 3 53.48 ± 2.38 aA 53.38 ± 1.35 aA 52.46 ± 3.43 aA 48.51 ± 3.89 bA 47.44 ± 3.59 bA

Day 6 53.53 ± 1.34 aA 53.22 ± 3.20 aA 50.05 ± 2.74 bAB 47.61 ± 4.32 cA 46.57 ± 3.83 dA

Day 9 52.97 ± 2.01 aA 52.96 ± 2.47 aA 48.93 ± 4.20 bB 46.27 ± 3.89 cAB 44.95 ± 2.12 dA

Day 12 48.87 ± 1.22 aB 47.39 ± 1.35 bB 44.59 ± 2.50 cC 43.94 ± 2.88 dB 39.89 ± 2.09 eB

a*
Day 0 9.68 ± 1.70 aA 8.87 ± 2.51 bA 7.95 ± 2.27 cA 5.83 ± 1.60 dA 5.32 ± 1.74 dA

Day 3 9.36 ± 2.40 aAB 8.64 ± 2.15 bA 7.62 ± 2.19 cA 5.64 ± 1.06 dAB 5.27 ± 1.00 dA

Day 6 9.24 ± 1.85 aB 7.96 ± 1.85 bB 7.23 ± 2.05 cAB 5.40 ± 1.54 dB 5.07 ± 1.10 eB

Day 9 8.98 ± 1.76 aC 7.81 ± 1.51 bB 6.82 ± 1.85 cB 5.23 ± 1.40 dB 4.83 ± 1.22 eB

Day 12 8.47 ± 2.35 aD 7.46 ± 2.29 abB 6.79 ± 2.23 bAB 5.11 ± 1.18 cB 4.62 ± 1.28 dB

b*
Day 0 11.82 ± 2.08 abA 11.40 ± 1.31 bA 12.04 ± 1.61 abA 12.26 ± 1.47 aA 12.35 ± 1.42 aA

Day 3 11.29 ± 1.18 bAB 11.34 ± 1.58 bA 11.44 ± 1.75 bAB 12.32 ± 1.54 aA 12.29 ± 1.99 aA

Day 6 11.25 ± 1.49 cAB 11.19 ± 1.44 dAB 11.39 ± 2.03 bB 11.97 ± 1.90 aA 12.10 ± 1.88 aA

Day 9 10.95 ± 1.42 cB 10.65 ± 1.02 dB 11.34 ± 1.14 bB 11.84 ± 1.67 aA 11.90 ± 1.59 aA

Day 12 9.98 ± 1.48 dC 9.93 ± 2.11 eC 10.30 ± 1.63 cC 10.66 ± 1.97 bB 10.80 ± 1.62 aB

Sample Groups Internal Color

L*
Day 0 55.73 ± 2.00 aA 55.14 ± 3.80 aA 54.23 ± 4.35 aA 53.27 ± 3.56 bA 52.39 ± 3.50 cA

Day 3 55.01 ± 1.79 aA 54.73 ± 3.17 aA 54.68 ± 3.33 aA 53.15 ± 3.26 bA 52.51 ± 3.93 cA

Day 6 55.76 ± 2.90 aA 53.87 ± 1.53 bB 53.12 ± 3.07 bB 52.95 ± 2.71 cA 51.94 ± 4.48 dB

Day 9 55.64 ± 2.39 aA 53.17 ± 2.28 bB 52.10 ± 4.48 cB 49.03 ± 4.78 bB 48.34 ± 4.88 bC

Day 12 50.79 ± 4.47 aB 47.44 ± 2.63 bC 46.44 ± 4.98 cC 45.63 ± 4.13 dC 42.91 ± 4.45 eD

a*
Day 0 10.54 ± 2.01 aA 9.54 ± 1.73 bA 8.53 ± 1.57 cA 6.15 ± 1.54 dA 5.86 ± 1.29 dA

Day 3 10.29 ± 1.39 aAB 9.39 ± 2.17 bA 8.46 ± 1.67 cA 5.82 ± 1.09 dAB 5.81 ± 1.04 dA

Day 6 10.19 ± 2.78 aB 8.63 ± 1.95 bB 7.45 ± 1.50 cAB 5.56 ± 1.92 dB 5.52 ± 1.10 dB

Day 9 9.68 ± 1.25 aC 8.52 ± 1.60 bB 7.05 ± 1.51 cB 5.61 ± 1.48 dB 5.28 ± 1.22 eB

Day 12 9.28 ± 2.50 aD 8.28 ± 2.00 abB 7.31 ± 1.02 bAB 5.47 ± 1.27 cB 5.47 ± 1.04 cB

b*
Day 0 9.74 ± 1.88 abA 9.53 ± 2.03 bA 11.39 ± 1.94 abA 11.67 ± 1.70 aA 11.84 ± 1.93 aA

Day 3 9.59 ± 1.70 bAB 9.47 ± 1.35 bA 11.17 ± 1.50 abAB 11.77 ± 1.90 aA 11.79 ± 1.80 aA

Day 6 9.48 ± 2.34 cAB 9.18 ± 1.84 dAB 10.68 ± 1.96 bB 11.37 ± 2.03 aA 11.63 ± 2.21 aA

Day 9 9.05 ± 1.54 cB 9.03 ± 1.86 dB 10.63 ± 2.39 bB 11.26 ± 1.78 aA 11.57 ± 2.36 aA

Day 12 8.95 ± 1.83 dC 8.85 ± 1.54 eC 10.04 ± 2.18 cC 10.53 ± 2.66 abB 11.02 ± 2.57 aB

Values are mean ± SD (n = 18). a–e Means values are significantly different (p < 0.05) across the treatments, while
A–D means values are significantly different (p < 0.05) across the storage duration. CT: (0% KPE), BHT: (0.01%),
KPE1: (1.5%), KPE2: (3%), and KPE3: (4.5%) stored at 4 ± 1 ◦C for 12 d.

3.2. pH Evaluation

The pH value of KPE treatments was significantly lower (p < 0.05) compared to CT
and BHT samples during storage, as shown in Table 3. On d 6, the KPE samples showed a
significant pH decline compared to the control. The high content of protein, fat, and water
in meat products makes the meat medium favorable for microbial growth and spoilage
speed [22]. Therefore, the lower pH of meat products generates an acidic medium, leading
to lower water-holding capacity (WHC) with increased cooking and drip losses [23]. The
pH and ionic strength of the meat system can greatly influence the WHC through protein
and water interaction [24]. The pH results are in line with similar significantly reduced pH
results of meat products treated with moringa leaf powder during the storage period [25],
flaxseed, tomato powder [26], and destoned olive cake powder [27]. Hence, the low pH
after KPE treatments implies that KPE may enhance the pH stability of beef sausages.



Antioxidants 2022, 11, 1441 6 of 11

Table 3. pH values of beef sausages during 12 d of refrigerated storage.

Storage Time (Days)
pH

CT BHT KPE1 KPE2 KPE3

Day 0 6.58 ± 0.05 aA 6.50 ± 0.01 bA 6.18 ± 0.01 cA 6.14 ± 0.03 dA 5.88 ± 0.01 eA

Day 3 6.43 ± 0.01 aC 6.42 ± 0.04 aB 6.15 ± 0.02 bB 6.10 ± 0.02 cB 5.81 ± 0.06 dAB

Day 6 6.48 ± 0.01 aB 6.30 ± 0.01 bC 5.96 ± 0.01 cC 5.88 ± 0.04 dC 5.63 ± 0.02 eB

Day 9 6.20 ± 0.02 aD 6.17 ± 0.06 bD 5.78 ± 0.31 cD 5.63 ± 0.29 dD 5.59 ± 0.07 eBC

Day 12 5.85 ± 0.06 aE 5.76 ± 0.30 bE 5.45 ± 0.33 dE 5.51 ± 0.27 cE 5.35 ± 0.08 eC

Values are mean ± SE (n = 3). a–e Means values are significantly different (p < 0.05) across the treatments, while
A–E means values are significantly different (p < 0.05) across the storage duration. CT: (0% KPE), BHT: (0.01%),
KPE1: (1.5%), KPE2: (3%), and KPE3: (4.5%) stored at 4 ± 1 ◦C for 12 d.

3.3. Cooking Yield

In general, the results revealed a significant difference (p < 0.05) in cooking yield
in KPE compared to CT and BHT samples during storage (Table 4). Lesser values were
recorded on the initial day, but a higher decline in values was realized after d 3 in CT
and BHT samples. In contrast, all the KPE-treated samples had consistently high cooking
yield values proportional to the increased KPE percentage in beef sausages. On the other
hand, the cooking yield values comparatively indicated no significant difference (p < 0.05)
in KPE treatments until d 6. This observation was due to the dissipation of moisture in
CT and BHT samples during cooking (thermal process). This may be due to the ability
of KPE to interact in the sausages’ matrix to hold inner water and bind the protein gel
matrix, resulting in protein denaturation inhibition [28]. In addition, Gao et al. [2] reported
that moisture evaporation and fat-melting during the thermal process yield cooking losses.
This finding corroborates with [29] and confirms the binding ability of plant extract, which
increased the stability characteristics in meat products treated with fruit by-products
after cooking.

Table 4. Cooking yield of beef sausages during 12 d of refrigerated storage.

Storage Time (Days)
Cooking Yield (%)

CT BHT KPE1 KPE2 KPE3

Day 0 95.06 ± 1.68 bA 95.01 ± 0.25 bA 97.74 ± 0.38 abA 98.75 ± 0.45 abA 98.95 ± 0.05 aA

Day 3 93.74 ± 0.20 cA 93.02 ± 0.40 cAB 97.51 ± 0.22 bA 98.65 ± 0.01 aA 98.67 ± 0.14 aA

Day 6 89.18 ± 0.06 bB 88.91 ± 2.26 bB 93.15 ± 0.01 abB 96.18 ± 0.01 aB 96.83 ± 1.31 aB

Day 9 88.57 ± 0.70 bB 88.29 ± 0.97 bB 92.71 ± 0.21 abC 93.19 ± 0.34 abC 94.13 ± 2.48 aC

Day 12 87.80 ± 4.57 cB 87.48 ± 0.67 cC 90.71 ± 4.12 bD 93.55 ± 3.65 aC 93.60 ± 0.17 aC

Values are mean ± SE (n = 3). a–c Means values are significantly different (p < 0.05) across the treatments, while
A–D means values are significantly different (p < 0.05) across the storage duration. CT: (0% KPE), BHT: (0.01%),
KPE1: (1.5%), KPE2: (3%), and KPE3: (4.5%) stored at 4 ± 1 ◦C for 12 d.

3.4. TBARS

According to Zhang et al. [19] and Li and Liu [30], lipid oxidation contributes to meat
products’ deterioration in quality, due to compounds produced after free radicals’ chain
reactions. Figure 1 shows the production of TBARS in stored beef sausages. Significant
changes were observed in all the treatments, predominantly on d 6 of storage, as d 0 and
3 values revealed slight variations. This slight stability evidenced the deficient level of
secondary oxidative products in the early days of storage. Instead, a significant change
(p < 0.05) was observed in CT, BHT, and KPE treatments on d 9 and 12 of storage, leading to
a steady rise in the treatments’ TBARS values. This signifies hydro-peroxide mechanisms,
which result in higher TBARS formation [31]. However, the TBARS values of the KPE
samples were lower compared to the CT sample, relative to the increasing storage days.
The higher TBARS values of the CT samples evidence a higher level of lipid oxidation,
which can significantly cause deterioration in the beef sausage’s quality. Lipid content and
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composition of fatty acid connect to oxidative stability directly, and in that process, a high
lipid and polyunsaturated fatty acids (PUFA)/saturated fatty acid (SFA) ratio increases
meat lipid oxidation [32]. Hence, the result of higher oxidation products revealed in the
CT samples is in agreement with the positive correlation between fat content and lipid
oxidation [33]. In addition, the oxidation inhibition of KPE treatments may be attributed to
flavonoids and phenolic content, which scavenge the oxidation process of free radicals that
initiate auto-oxidation by contributing a hydrogen atom from a phenolic hydroxyl group
(-OH) [34].
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Figure 1. TBARS results of beef sausages during 12 d of refrigerated storage. Values are mean ± SE
(n = 3). a–c Means values are significantly different (p < 0.05) across the treatments, while A–E means
values are significantly different (p < 0.05) across the storage duration. CT: (0% KPE), BHT: (0.01%),
KPE1: (1.5%), KPE2: (3%), and KPE3: (4.5%) stored at 4 ± 1 ◦C for 12 d.

In contrast, the TBARS values of BHT treatments were slightly lower than KPE1 and
KPE2 treatments. This may have resulted from a considerable ineffectiveness of the low
level of the KPE in the beef sausage. According to Kalogianni et al. [35], diverse antiox-
idants exhibited varying thresholds based on pro-oxidant and meat matrix. In addition,
Khan et al. [16] reported that natural antioxidants exhibited different potency in meat prod-
ucts stored under various storage conditions. However, TBARS values of KPE3 treatment
showed a lesser value with increasing storage days, when compared to the BHT samples.
This reveals that the inhibitory effect of KPE against lipid peroxidation was dose-dependent,
with 4.5% KPE demonstrating the least TBARS value.

3.5. Electronic Nose

Figure 2 presents e-nose results of beef sausages, and Table 5 indicates the chemical
sensor (10) array response. A significant difference (p < 0.05) was noticed based on the
increased e-nose values with storage days. On d 0, a statistical difference (p < 0.05) was
seen in CT samples compared to BHT and KPE treatments. The response tendency of CT
samples exhibited a fluctuating sensor sensitivity value in (W1S) and (W3S) sensitivity to
methane and aliphatic, respectively. However, the WIS response from the e-nose of the
CT sample was inconsistent on d 0 and d 12 on the heatmap, which may be associated
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with oxidizing gas emission suppression, since volatile organic compounds (VOCs) contain
both unstable reducing and oxidizing agents. In addition, different responses in volatile
substance sensors showed no significant differences (p > 0.05) in BHT and KPE treatment at
d 3 and d 6 of storage. All treatments responded less to sensitivity towards (W2W) aromatic
sulfur compounds at d 3 and d 6 of storage, with d 0, 9, and 12 indicating slight variation
in sensors’ sensitivities. Water-soluble compositions and lipids are the two substantive
precursors of meat flavor. Therefore, Milliard reaction between amid amino and carbonyl
compounds, reducing sugar, and lipid breakdown products during the heat process and
pathways interactions yield aroma volatility [36]. Hence, this may be a possible factor in
the (W2W) result. Further, no sensitivity detection of (W1S) methane in the environment
with a broad range was present in CT, BHT, and KPE samples from d 0 to d 6, until d 9. Yet,
W1S was slightly higher in BHT samples, but less in KPE treatments, comparatively. This
corresponds to the degree of KPE percentage in the beef sausage products. The BHT and
KPE treatments affected (W1C) sensitivity to aromatic compounds, (W5S) sensitivity to
nitrogen oxides, (W3C) sensitivity to ammonia and aromatic compounds, (W6S) sensitivity
to hydrogen, (W5C) sensitivity to alkenes and aromatic compounds, (W1W) sensitivity to
sulfur compounds, and (W2S) sensitivity to alcohols and a broad range of incompletely
aromatic compounds, demonstrated by the heatmap color dynamics. In contrast, a fluc-
tuating sensitivity of CT samples to W3S was detected. Lipid oxidation produces several
hundred VOCs, including aldehydes, alcohol, aliphatic hydrocarbons, ketones, esters, and
carboxylic acids [37]. Therefore, Maillard reaction and the oxidation of unsaturated fatty
acid generate volatile compound in meat, thereby contributing to meat flavor and odor
development [38]. The mechanism of KPE impacted the sensory trait of beef sausages due
to changes revealed in the aroma profile. The result reveals that e-nose was dependent
on W1C, W5S, W5C, W3C, W1W, and W2S sensors, indicating the presence of several
VOCs, higher in KPE compared to CT and BHT samples. Finally, samples’ sensor responses
exhibited a varying and stable VOCs intensity in storage days at different response patterns.
However, a positive relation of e-nose pathway in KPE treatments exhibited a high trend
for a positive role in aroma characteristics, compared to CT and BHT samples.
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Antioxidants 2022, 11, 1441 9 of 11

Table 5. Information on 10 chemical sensor array responses.

Chemical Sensor Chemical Sensor Class Descriptions

W1S Broad methane Sensitive to methane
W5S Broad range Sensitive to nitrogen oxides
W1W Sulfur organics Sensitive to organic sulfides
W6S Hydrogen Sensitive to hydrogen compounds
W3S Methane aliphatic Sensitive to methane and aliphatic
W3C Aromatic Sensitive to ammonia, aromatic molecules
W2S Broad alcohols Sensitive to alcohols, ketones, and aldehydes
W1C Aromatic Sensitive to aromatic and benzene compounds
W2W Sulfur chloride Sensitive to organic-sulfides and organic-chloride
W5C Aromatic aliphatic Sensitive to methane, propane, and aliphatic non-polar molecules

4. Conclusions

Findings from this present study revealed that KPE did not negatively influence the L*
and a* color values, yet the b* values were higher compared to CT and BHT, due to KPE
pigment oxidation. In addition, KPE lowered pH values, and the cooking yield results
were improved for the KPE treatments compared to CT and BHT treatments, due to KPE’s
ability to interact by holding inner water and binding with the sausage protein gel matrix.
KPE retarded lipid oxidation of beef sausages due to phenolic compound in KPE. The
KPE treatments contributed to a higher aroma profile from e-nose results than CT and
BHT treatments, which had a high VOC presence in KPE. Conclusively, KPE addition
may improve the quality characteristics of beef sausages. However, further study of the
antimicrobial effect of KPE on beef sausage safety is recommended.
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