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Abstract

Background: Reliable prediction of stability changes induced by a single amino acid substitution is an important
aspect of computational protein design. Several machine learning methods capable of predicting stability changes
from the protein sequence alone have been introduced. Prediction performance of these methods is evaluated on
mutations unseen during training. Nevertheless, different mutations of the same protein, and even the same
residue, as encountered during training are commonly used for evaluation. We argue that a faithful evaluation can
be achieved only when a method is tested on previously unseen proteins with low sequence similarity to the
training set.

Results: We provided experimental evidence of the limitations of the evaluation commonly used for assessing the
prediction performance. Furthermore, we demonstrated that the prediction of stability changes in previously
unseen non-homologous proteins is a challenging task for currently available methods. To improve the prediction
performance of our previously proposed method, we identified features which led to over-fitting and further
extended the model with new features. The new method employs Evolutionary And Structural Encodings with
Amino Acid parameters (EASE-AA). Evaluated with an independent test set of more than 600 mutations, EASE-AA
yielded a Matthews correlation coefficient of 0.36 and was able to classify correctly 66% of the stabilising and 74%
of the destabilising mutations. For real-value prediction, EASE-AA achieved the correlation of predicted and
experimentally measured stability changes of 0.51.

Conclusions: Commonly adopted evaluation with mutations in the same protein, and even the same residue,
randomly divided between the training and test sets lead to an overestimation of prediction performance.
Therefore, stability changes prediction methods should be evaluated only on mutations in previously unseen non-
homologous proteins. Under such an evaluation, EASE-AA predicts stability changes more reliably than currently
available methods.

Background
Even a single amino acid substitution, a mutation, in a
protein sequence may result in significant changes in
protein stability, structure, and therefore in protein func-
tion as well [1]. Hence, accurate prediction of stability
changes in protein variants is a crucially important task

in computational protein design. Moreover, the ability to
predict stability changes may help us understand the
relationship between protein mutations and inherited
diseases.
As more experimental data about stability changes

became available in the ProTherm database [2], machine
learning methods for predicting stability changes emerged.
Broadly, they can be categorised as structure-based and
sequence-based methods. Structure-based methods [3-8]
require protein three-dimensional structure on the input
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which can be limiting if the experimentally solved struc-
ture is not available. Thus, with the immense amounts of
data coming from the genome sequencing projects, the
sequence-based methods are valuable tools for studying
protein variants. In this work, we focused our attention on
the sequence-based methods.
Traditionally, sequence-based methods make their

predictions based on the amino acid identities of the
mutation site and several neighbouring residues [9-12].
Alternatively, the mutation site and its neighbouring
residues can be encoded with a set of amino acid prop-
erties to account for physicochemical differences among
amino acids [13,14]. In our recent work [15], we pro-
posed a method that combines amino acid identities of
the mutation site neighbourhood with evolutionary and
predicted structural features.
All of the studies referenced above were able to report

a high cross-validation accuracy between 77% and 86%
(Matthews correlation coefficient between 0.39 and 0.65)
when classifying mutations as stabilising or destabilising
[9-15]. Regarding the real-value prediction of stability
changes, the correlation of the predicted and experimen-
tally measured stability changes reached a correlation
coefficient of 0.62 to 0.83 [9-11,15]. Nevertheless, an
assessment study [16] indicated that the prediction per-
formance of these methods on an independent test set is
considerably lower than stated in the original studies.
There might be several aspects to why currently avail-

able methods did not perform well in the independent
assessment. For example, as shown in [10], when the data
set used for training and evaluation did not contain mul-
tiple records for measurements of the same mutation
at different experimental conditions, sensitivity (accuracy
on positive examples) of the proposed method decreased
from 71% to 28%. When the evaluation was further
restricted to only proteins with low sequence similarity
to the training set, sensitivity reached only 15%. These
findings [10,16] suggest that currently available methods
may suffer from over-fitting on the mutations and pro-
teins that they experienced during training. However, the
over-fitting problem is not apparent from the perfor-
mance results reported in the original studies. This may
mean that the evaluation scheme needs to be revisited.
Commonly, stability changes prediction performance is

evaluated using cross-validation which randomly divides
all data set examples into k folds where k−1 folds are used
for training and one fold for testing. This is repeated
k times, each time with a different test fold. Typically, a
stability changes data set consists of 1,000 to 3,000 exam-
ples describing various mutations in up to 90 different
proteins. Upon randomly dividing examples of such a data
set into k folds, different mutations of the same protein,
and even the same residue, can be found among several
folds. This means that even though a prediction method is

tested on mutations unseen during training, different
mutations of the same protein, and even the same residue,
can be found in both training and test folds. This intro-
duces bias if a method is designed using a data set in
which correlation among different mutations of the same
proteinexists. For instance, the data set compiled in this
study contains 1,914 unique mutations in 74 different
non-homologous proteins (960 different residues). In 68
proteins which have more than one mutation record avail-
able, 78% of mutations agree with the prevailing sign of
stability changes for the given protein. This number rises
to 82% when we analyse mutations in each residue posi-
tion with more than one mutation record available.
Because of this correlation in the available data, stability
changes prediction methods should be evaluated solely on
mutations in previously unseen non-homologous proteins.
In this study, we provided experimental evidence of

the limitations of the evaluation commonly used for
assessing the prediction performance. Next, we proposed
an evaluation scheme that can detect over-fitting on
mutations in residues and proteins encountered during
training. To achieve this, the evaluation is done solely
on previously unseen proteins with sequence similarity
below 25%. Finally, to improve the prediction perfor-
mance of our previously proposed method [15], we
identified features which led to over-fitting and further
extended the model with new features. The new method
bases its predictions on Evolutionary And Structural
Encodings with Amino Acid parameters (EASE-AA). We
compared EASE-AA with currently available methods
for both classification and real-value prediction of stabi-
lity changes. Our results show that EASE-AA increases
prediction performance on unseen non-homologous
proteins.

Methods
Stability changes prediction can be viewed as a machine
learning classification problem if we are only interested
in the direction of the stability change: stabilising (an
increase in the free energy of unfolding) or destabilising
(a decrease in the free energy of unfolding). If we are
concerned with the real-value prediction, it is a regres-
sion problem. In this study, we proposed a method
referred to as EASE-AA: Evolutionary And Structural
Encodings with Amino Acid parameters. EASE-AA
encompasses two models: one trained for classification
and one for regression.

Predictive features for EASE-AA
For machine learning prediction of stability changes,
each mutation needs to be encoded with a number of
predictive features. We combined evolutionary and pre-
dicted structural features with physical amino acid para-
meters to design EASE-AA.
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Evolutionary features
Some residues in a protein sequence are more con-
served within the family of related proteins than others.
Notably, functionally important sites tend to be con-
served. This has been previously exploited for the pre-
diction of deleterious mutations [17-23]. We introduced
a range of evolutionary features for the prediction of
stability changes in our recent work [15]. There, the
best performing model included two evolutionary fea-
tures: SIFT score (S) and mutation likelihood (M).
SIFT [20] predicts whether a mutation affects the func-

tion of a protein. It is calculated from a scaled probability
matrix of possible amino acid substitutions generated
from a multiple sequence alignment of related sequences.
SIFT scores range from 0 to 1 where scores below 0.05
are predicted as deleterious mutations. We ran SIFT
using the Swiss-Prot and TrEMBL databases with
sequences more than 90% identical to the query removed.
The feature mutation likelihood (M) expresses the

probability of the introduced amino acid to appear in the
multiple sequence alignment of related proteins. To cal-
culate this feature, three iterations of PSI-BLAST [24] in
default configuration were used to search the NCBI non-
redundant database. Then, M was extracted from the last
position specific scoring matrix (PSSM). We divided M
by 10 for normalisation so that most values fell within
the range of −1 and 1.
Structural features
It has been shown previously that stability changes pre-
diction can be guided by observing structural properties
describing the secondary structure and accessible surface
area of the mutated residue [25]. However, structural
information is not available in the case of sequence-
based prediction of stability changes. Nevertheless, in
our recent work [15], we found that predicted structural
features can supplement the missing structural informa-
tion. There, the best performing model included features
secondary structure type (SS) and accessible surface area
(ASA) for classification and real-value prediction, respec-
tively. We included both features in EASE-AA and
further extended the model with predicted disorder
probability (D).
We used the multi-step neural network method

SPINE-X [26] for the prediction of the secondary struc-
ture type and accessible surface area of each mutation
site. For the prediction of the disorder probabilities, the
neural network method SPINE-D [27] was used. Since
feature SS describes the mutation site as either a-helix,
b-sheet, or coil, it was represented in three binary inputs
(1 was used to determine the secondary structure type
present, 0 otherwise). Unlike in our previous work where
feature ASA encoded mutation site as buried or exposed,
we included the real value of the predicted accessible sur-
face area in EASE-AA.

Amino acid parameters
Different sets of physical parameters for encoding the sub-
stituted and neighbouring amino acids have been intro-
duced for the prediction of stability changes [4,5,13,14].
Recently, calculating the difference in physical parameters
between the introduced and deleted amino acids was pro-
posed [8]. We followed this methodology and applied it to
seven representative parameters including hydrophobicity,
volume, polarisability, isoelectric point, helix probability,
sheet probability, and a steric parameter (graph shape
index). These parameters were first introduced in [28] and
later applied to the prediction of secondary structure [26].
We used the scaled values of the seven parameters from
[29]. We refer to the predictive feature encompassing the
differences of seven physical parameters for the introduced
and deleted amino acids as amino acid parameters (AAP).
Final set of predictive features
The final set of predictive features for EASE-AA was com-
posed of the following features: S (1 real-value input),
M (1 real-value input), SS (3 binary inputs), ASA (1 real-
value input), D (1 real-value input), AAP (7 real-value
inputs). Compared to our previous work [15], EASE-AA
extends the predictive model with the disorder probability
(D) and seven amino acid parameters (AAP). Moreover,
we excluded 6×20 binary inputs describing the three and
three amino acid neighbours to the left and right from the
mutation site. Also, EASE-AA does not include 20 inputs
encoding the identities of the deleted and introduced
amino acids. This approach resulted in an overall reduc-
tion of the number of input attributes from 145 to only
14. Hence, EASE-AA is presumably more robust against
over-fitting.

Support vector machines
Support vector machines (SVM) [30] are machine learning
algorithms which can approximate non-linear functions by
mapping the inputs to a high-dimensional feature space
using a kernel function and then, solving a linear problem
by finding a maximum margin separating hyperplane. We
adopted the radial basis kernel function because it has
been shown to perform well for predicting stability
changes [10]. To implement our method with SVM, we
used the LIBSVM library [31].
The regularisation parameter C and the radial basis ker-

nel width parameter g need to be chosen to optimise SVM
performance. In the case of real-value prediction, another
parameter (ε), determining the error neglected during
training, is required. For classification, a parameter setting
the weight (w) of the penalty for training error on positive
examples should be set if the number of positive and nega-
tive examples in the data set is unbalanced. For each
experiment, we optimised these parameters by running a
grid search using 10-fold cross-validation on the training
set so that the highest Matthews correlation coefficient
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(MCC) and lowest root mean square error (RMSE) were
reached for classification and real-value prediction, respec-
tively. In the grid search, we considered all possible combi-
nations of C ∈ {2−5, 2−3, . . . , 215}, g ∈ {2−15, 2−13, . . . , 21},
and w ∈ {1, 1.5, 2, 2.5, 3} for classification, and C ∈ {2−1,
20, . . . , 26}, g ∈ {2−15, 2−14, . . . , 20}, and ε ∈ {2−8, 2−7, . . . ,
2−1} for real-value prediction. The range values for C, g,
and ε were taken from the LIBSVM grid search [31] and
extended to suit all methods assessed in this study. We
also considered using a data-driven approach for optimis-
ing the kernel width parameter (g) [32], however, for the
relatively small size of our data set, the grid search was a
sufficient solution.
As mentioned above, we decided to optimise the SVM

performance in terms of MCC in the case of classifica-
tion. MCC is a measure of prediction performance that
provides more relevant information than classification
accuracy in cases when the data set is severely biased
against one class of examples. Since destabilising (nega-
tive) mutations prevail in the available experimental
data (74% in our data set), optimising on MCC allowed
us to achieve a more balanced performance in terms of
correctly predicted both stabilising and destabilising
mutations.

Data sets
We compiled a data set of free energy stability changes
from the ProTherm database [2] (February 2013). There, a
stability change is defined as the difference in the unfold-
ing free energy: ΔΔGu[kcal mol−1] = ΔGu(mutant) − ΔGu

(wild-type). Hence, for the classification problem,
we defined stabilising mutations (ΔΔGu ≥ 0) to be the
positive examples and destabilising mutations (ΔΔGu <0)
to be the negative examples.
We extracted 3,329 mutations with listed stability

changes and cross-checked all the sources where the
measurements came from. We found that incorrect
values (mostly the sign of ΔΔGu) had been entered from
at least 18 sources. We corrected stability changes for all
relevant (>230) mutations in the extracted data set. Next,
we removed all duplicate entries of the same amino acid
substitutions (different concentrations of chemicals, sta-
bility changes of the protein intermediate state, etc.). If
several measurements of the same mutation under the
same experimental conditions were present, we averaged
the stability changes and kept only a single entry. If sev-
eral measurements of the same mutation under different
experimental conditions were present, we kept only the
measurement closest to the physiological pH 7. We
removed the other entries because we believe that there
is not enough data to appropriately model stability
changes of the same mutation under different experimen-
tal conditions. Moreover, stability changes of mutations

differing only in temperature and pH were highly corre-
lated in the extracted data set.
Finally, we identified 74 clusters of homologous

sequences with more than 25% sequence similarity using
BLASTCLUST [33]. If there were several measurements of
the same amino acid substitution within a single cluster,
we kept only the measurement closest to the physiological
pH 7. This process yielded a non-redundant data set of
1,914 mutations in 95 different proteins grouped into 74
non-homologous clusters. We refer to this data set as
S1914. The data set is available in Additional file 1.

Experiments and different evaluation schemes
Three different evaluation schemes were compared in
this study: unseen-mutation, unseen-residue, and unseen-
protein evaluation. The most commonly used evaluation
of sequence-based stability changes prediction methods
is on unseen mutations. There, mutations are randomly
divided into training and test sets (or into cross-
validation folds). This means that different mutations in
the same protein, and even in the same residue, can be
used for training and testing. Because of the correlation
in the available data sets, the most important drawback
of the unseen-mutation evaluation is that even methods
which over-fit on residue positions and proteins from the
training set can achieve high prediction performance on
the test set (or in cross-validation).
The unseen-residue evaluation guarantees that all muta-

tions in the same residue position of a protein (or its
homologue) exist either in the training or the test set (or in
distinct folds for cross-validation). Hence, methods which
over-fit on mutations in residue positions from the training
set are unlikely to achieve good prediction performance on
the test set (or in cross-validation). The unseen-residue eva-
luation has been previously adopted for the design of a
three-state prediction method I-Mutant3.0 [34].
Finally, the strictest assessment we considered was the

unseen-protein evaluation. In this case, all mutations in the
same protein and its homologues were used exclusively for
either training or testing. Thus, if a prediction method
cannot generalise well for mutations in previously unseen
non-homologous proteins, it is unlikely to achieve a good
performance under this evaluation.
Training set, test set, and cross-validation folds
To achieve an unbiased evaluation, we split the S1914 data
set randomly into training and independent test sets with
a ratio of 2 : 1. We repeated this process 10 times produ-
cing 10 different training/test splits. Each training set was
further divided into 10 cross-validation folds. The ratio of
positive and negative examples in the 10 folds and in the
independent test set was kept close to that of the original
data set. Cross-validation using the 10 folds was employed
to optimise the performance of the evaluated methods.
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Then, each method was trained on the whole training set
and tested on the examples in the independent test set.
The whole process was repeated 10 times, utilising the 10
different training/test splits. Finally, the results of the 10
experiments were averaged.
We compared unseen-mutation, unseen-residue, and

unseen-protein evaluation schemes in this study. Hence,
splitting into the training and independent test sets as
well as to the cross-validation folds was executed accord-
ing to one of these three evaluation schemes for different
experiments.
Comparison with currently available methods
We compared the prediction performance of our new
method (EASE-AA) with our previously proposed
method [15] which also employs evolutionary and struc-
tural encodings (thus, we refer to it as EASE). To further
show how prediction performance varies when different
evaluation schemes are employed, we evaluated another
two sequence-based methods: I-Mutant2.0 [9] and
MUpro [10]. These two methods had also been included
in an independent assessment study [16]. We did not
compare with I-Mutant3.0 [34] because it predicts stabi-
lity changes into three states (stabilising, destabilising,
and neutral).
To be able to asses I-Mutant2.0 and MUpro under dif-

ferent evaluation schemes, we implemented the two
methods according to their description in the original
publications. Therefore, rather than performing a com-
parison with the actual methods, we performed a com-
parison with the set of predictive features proposed for
I-Mutant2.0 and MUpro. This approach allowed us to
achieve a fair comparison of all four methods by optimis-
ing the SVM parameters and re-training the SVM models
for every experiment on the same training set.
I-Mutant2.0 bases its prediction on the occurrence

frequencies of the sequential neighbourhood, hence, we
refer to our implementation as SEQ-FREQ. MUpro uses
amino acid identities of neighbouring residues, thus, we
refer to our implementation of this method as SEQ-
NEIGHB.

Evaluation measures
The prediction performance in the classification task
was assessed in terms of Matthews correlation coeffi-
cient (MCC), classification accuracy (Q2), sensitivity
(Se), specificity (Sp), positive predictive value (PPV), and
negative predictive value (NPV):

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(1)

Q2 =
TP + TN

TP + FP + TN + FN
× 100 (2)

Se =
TP

TP + FN
× 100 (3)

Sp =
TN

TN + FP
× 100 (4)

PPV =
TP

TP + FP
× 100 (5)

NPV =
TN

TN + FN
× 100, (6)

where TP, TN, FP, and FN refer to the number of true
positives, true negatives, false positives, and false nega-
tives, respectively. Furthermore, we assessed the classifi-
cation performance by plotting the receiver operating
characteristic (ROC) curve and calculating the area
under the ROC curve (AUC). A ROC curve plots the
true positive rate (sensitivity) as a function of the false
positive rate (100 − specificity) at different prediction
thresholds.
For real-value prediction, performance was assessed in

terms of Pearson correlation coefficient (r) and root
mean square error (RMSE):

r =
n

∑
xiyi −

∑
xi

∑
yi√

n
∑

x2
i − (

∑
xi)

2
√

n
∑

y2
i − (

∑
yi)

2 (7)

RMSE =

√
1
n

∑
(xi − yi)

2 (8)

Results
We compared the prediction performance of the two
methods from the literature, I-Mutant2.0 [9] and
MUpro [10] (we refer to our implementations of these
methods as SEQ-FREQ and SEQ-NEIGHB, respectively),
our previously proposed method [15] (denoted as EASE
here), and the method designed in this study (EASE-
AA). We evaluated both classification and real-value
prediction employing the S1914 data set. To achieve a
fair comparison of the four methods, each method was
re-trained and had the SVM parameters optimised (uti-
lising a cross-validation on the training set) for every
experiment.

Comparison of different evaluation schemes
Commonly, stability changes prediction methods are
evaluated using a cross-validation where different muta-
tions of the same protein can be randomly distributed
across different folds. We believe that this approach
leads to a considerable overestimation of the prediction
performance for proteins with low sequence similarity
to the training set. To illustrate this in an experiment,
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we divided our data set into training and independent
test sets in three different ways following the unseen-
mutation, unseen-residue, and unseen-protein evaluation
schemes (Methods). In the unseen-mutation evaluation,
different mutations are randomly distributed between
the training and test sets, whereas the unseen-residue
(unseen-protein) evaluation guarantees that all mutations
in the same residue position (same protein) exist either
in the training or the test set. Also, we performed a
10-fold cross-validation on the training set for each
training/test split. In this case, the 10 folds were created
by randomly dividing all mutations. This means that the
cross-validation was performed in an unseen-mutation
evaluation fashion regardless of the evaluation scheme
used for the independent test.
Table 1 compares the cross-validation and independent

test classification performance of the four assessed meth-
ods using the three different evaluation schemes. In cross-
validation, EASE yielded the highest Matthews correlation

coefficient (MCC) of 0.45. EASE-AA achieved an MCC of
0.43, while it was 0.41 and 0.33 for SEQ-NEIGHB and
SEQ-FREQ, respectively. The area under the ROC curve
(AUC) ranged from 0.75 to 0.81 for the four methods.
For the independent test, we used three different eva-

luation schemes: unseen-mutation, unseen-residue, and
unseen-protein. The unseen-mutation evaluation resulted
only in a marginally lower performance compared to the
cross-validation results (an MCC and AUC decrease of
up to 0.05 and 0.01, respectively). However, if the unseen-
residue or unseen-protein evaluation was employed, the
performance of all four methods decreased considerably
when compared to the cross-validation results. The lar-
gest decline was for SEQ-NEIGHB. In this case, the MCC
decreased by 0.27 (from 0.41 to 0.14) for both unseen-
residue and unseen-protein evaluations. Our new method
(EASE-AA) experienced the smallest decrease in predic-
tion performance. EASE-AA’s MCC declined by 0.09 and
0.08 (from 0.43 to 0.34 and 0.35) for predictions on
unseen residues and unseen proteins, respectively.
The receiver operating characteristic (ROC) curves in

Figure 1 compare the true positive rate of EASE and
EASE-AA as a function of the false positive rate for the
unseen-mutation and unseen-protein evaluation. We were
interested in studying the decrease in the independent test
performance between the two evaluation schemes. While
in the case of EASE-AA, the area under the ROC curve
(AUC) declined only by 0.02 for the unseen-protein evalua-
tion, EASE yielded an AUC decrease of 0.11. The ROC
curves of EASE and EASE-AA for the unseen-residue
evaluation were similar to those for the unseen-protein
evaluation (not shown in the figure).

Table 1 Comparison of the four methods using the three
different evaluation schemes for classification

Method Evaluation MCC Q2 Se Sp PPV NPV AUC

SEQ-
NEIGHB

cross-
validation*

0.41 77.65 55.09 85.57 57.35 84.45 0.78

unseen-
mutation

0.36 75.80 51.16 84.48 53.74 83.08 0.78

unseen-
residue

0.14 71.65 21.28 89.42 41.52 76.30 0.67

unseen-
protein

0.14 69.09 29.45 83.13 38.21 76.89 0.67

SEQ-
FREQ

cross-
validation*

0.33 72.63 57.37 77.98 48.00 83.92 0.75

unseen-
mutation

0.29 69.27 58.64 73.02 43.36 83.36 0.74

unseen-
residue

0.22 69.30 43.40 78.44 41.54 79.70 0.68

unseen-
protein

0.18 65.71 47.70 72.09 37.71 79.55 0.66

EASE cross-
validation*

0.45 78.54 60.95 84.72 58.33 86.08 0.81

unseen-
mutation

0.41 77.05 57.91 83.80 55.74 84.96 0.81

unseen-
residue

0.26 73.26 37.63 85.84 48.40 79.59 0.72

unseen-
protein

0.23 71.27 39.76 82.44 44.50 79.44 0.70

EASE-AA cross-
validation*

0.43 76.69 63.35 81.37 54.43 86.35 0.80

unseen-
mutation

0.38 74.71 60.64 79.66 51.23 85.17 0.79

unseen-
residue

0.34 73.23 56.11 79.27 48.86 83.65 0.76

unseen-
protein

0.35 73.24 58.79 78.36 49.04 84.30 0.77

* cross-validation folds were created by dividing mutations randomly (unseen-
mutation cross-validation)

Figure 1 ROC curves performance of EASE and EASE-aa using
two different evaluation schemes. The true positive rate of EASE
and EASE-AA is shown as a function of the false positive rate at
different prediction thresholds. These are independent test results
using the unseen-mutation and unseen-protein evaluation. While for
EASE-AA the area under the ROC curve (AUC) declined only by 0.02
when comparing the unseen-mutation and unseen-protein
evaluation, EASE yielded a decrease of 0.11.
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The results from the real-value prediction experiment
showed the same trend in the relative comparison of the
four methods under the three different evaluation
schemes (Table 2). Prediction performance decreased
when comparing the results from the unseen-mutation
with the unseen-residue or unseen-protein evaluation.
The smallest decrease in prediction performance was
yielded by EASE-AA. Also, EASE-AA was the best per-
forming method in predicting real-value stability
changes in previously unseen residues and unseen
proteins.

Training and evaluation on previously unseen non-
homologous proteins
We discovered that the unseen-mutation evaluation
leads to overestimating the prediction performance for
previously unseen residues as well as for previously
unseen proteins (Tables 1 and 2). Interestingly, the pre-
diction performance on unseen residues was similar to
that on unseen proteins. Therefore, we employed the
unseen-protein evaluation to further analyse the predic-
tion performance of the four methods.
One of the reasons for the suboptimal performance in

predicting unseen proteins could be that we optimised
the four methods employing the unseen-mutation cross-
validation (different mutations of the same protein can
appear in different folds). To optimise the compared
methods more appropriately to predict stability changes
in unseen proteins, we split the training set into 10
folds so that none of the folds shared homologous
sequences (unseen-protein cross-validation).

Table 3 summarises the cross-validation and indepen-
dent test results from the classification experiment employ-
ing the unseen-protein evaluation. For cross-validation, the
highest Matthews correlation coefficient (MCC) of 0.37
was achieved by our new method (EASE-AA). This result
represents a relative improvement of 48% (an absolute
improvement of 0.12) to the second best method (SEQ-
FREQ). When we evaluated the four methods on the inde-
pendent test set, the prediction performance decreased for
all methods only marginally. EASE-AA, the best perform-
ing method, reached an MCC of 0.36 with a relative
improvement of 50% (an absolute improvement of 0.12)
compared to the second best method (SEQ-FREQ).
Positive (negative) predictive value (PPV, NPV) refers

to the proportion of mutations predicted as stabilising
(destabilising) that are truly stabilising (destabilising).
EASE-AA yielded PPV and NPV of 46.85% and 85.85%,
respectively. These results represent absolute improve-
ments of 9.52 and 2.13 percentage points when compared
to SEQ-FREQ. The respective improvements compared
to EASE were 5.19 and 6.17 percentage points.
The ROC curves in Figure 2 compare the true positive

rate of the four methods as a function of the false positive
rate at different prediction thresholds. The figure demon-
strates the benefit in terms of the number of correctly
predicted positive examples upon employing our method
(EASE-AA). EASE-AA achieved an AUC of 0.78, while
EASE, SEQ-FREQ, and SEQ-NEIGHB yielded an AUC of
0.69, 0.70, and 0.65, respectively.
We estimated the statistical significance of EASE-AA’s

improvements in the MCC and AUC over the 10 replica-
tions of independent testing using a student t-test. The
null hypothesis stated that there was no statistical differ-
ence in the MCC (AUC) for EASE-AA and each of the
three compared methods. The p-values associated with
this null hypothesis were all less than 0.0005.

Table 2 Comparison of the four methods using the three
different evaluation schemes for real-value prediction

Method Evaluation r RMSE

SEQ-NEIGHB cross-validation* 0.63 1.38

unseen-mutation 0.59 1.46

unseen-residue 0.37 1.60

unseen-protein 0.34 1.62

SEQ-FREQ cross-validation* 0.56 1.47

unseen-mutation 0.53 1.53

unseen-residue 0.40 1.60

unseen-protein 0.33 1.67

EASE cross-validation* 0.68 1.30

unseen-mutation 0.64 1.38

unseen-residue 0.44 1.55

unseen-protein 0.40 1.60

EASE-AA cross-validation* 0.58 1.44

unseen-mutation 0.55 1.50

unseen-residue 0.53 1.46

unseen-protein 0.50 1.50
* cross-validation folds were created by dividing mutations randomly (unseen-
mutation cross-validation)

Table 3 Classification performance of the four methods
optimised for the unseen-protein evaluation

Method Evaluation MCC Q2 Se Sp PPV NPV AUC

SEQ-
NEIGHB

0.18 65.84 46.67 72.55 37.34 79.52 0.64

SEQ-
FREQ

unseen-
protein

0.25 63.33 65.71 62.50 38.05 83.87 0.69

EASE cross-
validation

0.24 70.99 42.40 81.01 43.91 80.05 0.68

EASE-AA 0.37 72.72 65.35 75.31 48.12 86.11 0.76

SEQ-
NEIGHB

0.16 64.77 45.64 71.55 36.24 78.79 0.65

SEQ-
FREQ

unseen-
protein

0.24 61.95 66.97 60.18 37.33 83.72 0.70

EASE independent
test

0.22 69.28 43.58 78.38 41.66 79.68 0.69

EASE-AA 0.36 71.53 65.76 73.57 46.85 85.85 0.78
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The results from the real-value prediction experiment
employing the unseen-protein evaluation are summarised
in Table 4. As in the case of classification, EASE-AA per-
formed the best yielding a correlation coefficient (r) of
0.51 and root mean square error (RMSE) of 1.48. These
results represent relative improvements of 24% for r (an
absolute improvement of 0.10) and 5% for RMSE (an abso-
lute improvement of 0.08) to the second method (EASE).
Comparing the results when the unseen-mutation

cross-validation (Tables 1 and 2) and the unseen-protein
cross-validation (Tables 3 and 4) were used for model
optimisation, there does not seem to be a considerable
difference in the unseen-protein independent test perfor-
mance. The only exception was SEQ-FREQ which
seemed to benefit from the appropriate model optimisa-
tion. SEQ-FREQ’S correlation coefficients increased by
0.06 (MCC) and 0.03 (r) for classification and real-value
prediction, respectively.

Prediction performance for different types of mutations
EASE-AA outperformed the other three methods (EASE,
SEQ-FREQ, and SEQ-NEIGHB) in predicting stability

changes in unseen proteins. We were interested in how
this improvement varied for different types of mutations.
We investigated how accurate (in terms of MCC) each
of the four compared methods was in predicting muta-
tions in residues of different secondary structure types
(a-helix, b-sheet, and coil) and accessible surface area
assignments (exposed and buried). Residues were
defined as exposed if at least 25% of their surface was
accessible to the solvent and as buried otherwise.
Furthermore, we explored the accuracy of predicting
mutations inducing ‘small’ (ΔΔGu ∈ [−1, 1]) and ‘large’
(|ΔΔGu| >1 kcal mol−1) stability changes.
Figure 3 shows the Matthews correlation coefficient

(MCC) of the four compared methods as a function of
the different types of mutations that we investigated.
Regarding different secondary structure types, EASE-AA
achieved an MCC of 0.37, 0.43, 0.27 for the helical,
sheet, and coil residues, respectively. The largest relative
improvement to the second best method (SEQ-FREQ)
of 80% (an absolute improvement of 0.12) was achieved
for coil residues. Interestingly, coil residues were the
most difficult to predict for all four methods. For helical
and sheet residues, our new method yielded relative
improvements of 37% and 39%, respectively (absolute
improvements of 0.10 and 0.12). All four methods were
able to predict buried mutations more reliably than the
exposed ones. The MCC values achieved by EASE-AA
for the exposed and buried residues were 0.27 and 0.40,
respectively. The respective relative (absolute) improve-
ments to the second best method (SEQ-FREQ) were
59% (0.10) and 38% (0.11). Regarding the performance
for mutations with different magnitudes of stability
changes, all methods yielded a better performance for
mutations causing ‘large’ stability changes. For this cate-
gory, EASE-AA achieved an MCC of 0.39, while it was
0.27 for the category of ‘small’ stability changes. The rela-
tive (absolute) improvements for the ‘small’ and ‘large’
categories were 69% (0.11) and 34% (0.10), respectively.
Overall, EASE-AA achieved improvements in every

category included in the comparison. Moreover, since
the absolute improvements were quite balanced among
the different types of mutations (ranging from 0.10 to
0.12), EASE-AA yielded higher relative improvements
for mutation types which appeared to be more difficult
to predict for all of the four compared methods (coils,
exposed residues, and ‘small’ stability changes).

Predictive features and the improvements yielded by
EASE-AA
We found that EASE-AA consistently outperformed our
previous work (EASE) when predicting mutations in
unseen proteins. Hence, we were interested in how each
design step of EASE-AA contributed towards the final
improvement. Figure 4 compares the cross-validation

Figure 2 ROC curves performance of the four methods using
the unseen-protein evaluation. The true positive rate of the four
methods is shown as a function of the false positive rate at different
prediction thresholds. These are unseen-protein independent test
results. EASE-AA, EASE, SEQ-FREQ, and SEQ-NEIGHB yielded the area
under the ROC curve (AUC) of 0.78, 0.69, 0.70, and 0.65, respectively.

Table 4 Real-value prediction performance of the four
methods optimised for the unseen-protein evaluation

Method Evaluation r RMSE

SEQ-NEIGHB 0.35 1.67

SEQ-FREQ unseen-protein 0.36 1.67

EASE cross-validation 0.42 1.62

EASE-AA 0.51 1.54

SEQ-NEIGHB 0.34 1.61

SEQ-FREQ unseen-protein 0.36 1.60

EASE independent test 0.41 1.56

EASE-AA 0.51 1.48
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performance on the training set in terms of Matthews
correlation coefficient (MCC) and the area under the
ROC curve (AUC) for EASE, EASE-AA, and two ‘inter-
mediate’ methods (D+ASA+EASE AND AAP+D+ASA+
EASE).
First, we extended EASE with two predicted structural

features, accessible surface area (ASA) and disorder
probability (D). However, the improvement in the cross-
validation performance was only marginal. Next, the
seven physical amino acid parameters (AAP) were
added. The inclusion of AAP yielded a relative improve-
ment of 24% (an absolute improvement 0.06) in terms
of MCC. Finally, we suspected that the 140 input attri-
butes encoding the deleted, introduced, and neighbour-
ing amino acids implemented in EASE may have been

leading to over-fitting on residue positions encountered
during training. After excluding these 140 inputs
(EASE-AA), there was a relative improvement of 19%
(an absolute improvement of 0.06) in terms of MCC.
It has been shown previously that structural features

[25] and amino acid parameters [13] can be used for the
prediction of stability changes. To our best knowledge,
evolutionary features have been used only in our previous
work [15]. Therefore, we studied the relationship between
the evolutionary information and experimentally measured
stability changes. We plotted the median of stability
changes in the S1914 data set as a function of the PSSM
scores for the mutation likelihood (the same as feature M)
and conservation likehood (C) (Figure 5). This plot reveals
that as the median of stability changes increases, so does
the value of M, whereas the value of C decreases. Hence,
the relationship shown in Figure 5 demonstrates that there
is a higher number of destabilising mutations when the
mutation likelihood is low and residue conservation high.
On the contrary, stabilising mutations tend to prevail for
mutations which are common in the family of related
proteins.

Discussion
Our main interest was to asses the prediction of stability
changes in previously unseen non-homologous proteins.
We found that while high prediction performance can be
achieved when different mutations of the same protein
and residue positions are randomly divided for training
and evaluation, it is challenging to predict stability changes
in previously unseen proteins. Therefore, our results pro-
vide experimental evidence that the commonly adopted
unseen-mutation evaluation lead to an over-estimation of
the prediction performance. To address the prediction of
stability changes in unseen proteins, we extended our

Figure 3 Prediction performance of the four methods for different types of mutations. Matthews correlation coefficient (MCC) of SEQ-
NEIGHB, SEQ-FREQ, EASE, and EASE-AA is shown as a function of the secondary structure type of the mutated residue, accessible surface area of
the mutated residue (threshold of 25% for an exposed residue), and magnitude of the stability change. These are unseen-protein independent
test results.

Figure 4 Performance of different variations of our method
during the design of EASE-aa. The unseen-protein cross-validation
performance [Matthews correlation coefficient (MCC) and the area
under the ROC curve (AUC)] is shown for four different variations of
our method. The difference between AAP+D+ASA+EASE and EASE-
AA is the removal of the 140 input attributes defining the identities
of the deleted, introduced, and neighbouring amino acids.
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previous work [15] and proposed a new method (EASE-
AA) which was able to outperform the other three meth-
ods in our comparison (Figure 2). For classification, EASE-
AA achieved a Matthews correlation coefficient (MCC) of
0.36 (Table 3). For real-value prediction, Pearson correla-
tion coefficient (r) reached the value of 0.51 (Table 4).
Although such a performance may seem relatively low,
these results represent relative improvements to the sec-
ond best method of 50% (MCC) and 24% (r). We believe
that one of the limiting factors in yielding more reliable
predictions is the scarcity of stabilising mutations and dis-
tinct non-homologous proteins available for training.
Moreover, as noted elsewhere [5], the variety of available
experimental data is quite unbalanced (for instance, 26%
of amino acid substitutions were to alanine in our data
set).
Comparing the three different evaluation schemes, all

four methods achieved a considerably higher prediction
performance when the unseen-mutation evaluation was
used (Table 1). This could be attributed to the correla-
tion that exists among different mutations of the same
residue in the available experimental data. Because this
correlation cannot be exploited when evaluation is done
solely on residues unseen during training, prediction
performance of all four methods decreased considerably
upon employing the unseen-residue evaluation. The
unseen-protein evaluation further guarantees that all
mutations of the same protein are used either for train-
ing or evaluation. Performance of all four methods
changed only marginally when comparing the results

from the unseen-residue and unseen-protein evaluation.
This is most likely because of the absence of ‘protein-
wide’ predictive features in the four compared methods.
Hence, the unseen-residue evaluation was just as chal-
lenging as the one on unseen proteins.
When comparing performance of EASE-AA with our

previously proposed method [15], the reasons for the
improvements are twofold. Firstly, we excluded features
encoding the identities of the deleted, introduced, and
neighbouring amino acids because they led to over-fitting
on residues and proteins encountered during training
(Figure 4). Secondly, we incorporated the differences in
seven representative physical parameters for the deleted
and introduced amino acids (feature AAP). For instance,
the difference in the physical parameter encoding the
volume of an amino acid can suggest if the mutation may
induce strain in the protein structure due to the large
size of the introduced residue. Similarly, a change in the
hydrophobicity can suggest an introduction of disturbing
interactions in the hydrophobic core of the protein.
Our new method adopts the evolutionary predictive fea-

tures proposed in our previous work [15]. Actually, the
observation that functionally important sites tend to be
evolutionary conserved has been previously exploited for
the prediction of deleterious mutations [20]. However,
there are other reasons than the location of functional
sites for the existence of conserved regions. For example,
conserved regions play an important part in stabilising the
structure of a protein [35]. We demonstrated that the rela-
tionship between evolutionary predictive features derived

Figure 5 Relationship between evolutionary conservation and stability changes. The median of experimentally measured stability changes
in the S1914 data set is shown as a function of the PSSM scores defining mutation and conservation likehood. The plot reveals that there is a
higher number of destabilising mutations when the mutation likelihood is low and residue conservation high, while stabilising mutations tend
to prevail for substitutions which are common in the family of related proteins.
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from PSSM and experimentally measured stability changes
from our data set agree with these general assumptions
about sequence conservation (Figure 5).
It seems that the most difficult mutations to predict are

either located in coil and exposed residues or those which
cause only small stability changes (within the range of −1
and 1 kcal mol−1). Prediction performance of all four
methods in these three categories was lower than for any
other category of different types of mutations that we
investigated (Figure 3). These findings are in agreement
with the results reported in a study about a neural network
structure-based method [3]. Also, it has been shown pre-
viously that different interactions govern stability changes
in exposed and buried residues [36]. Regarding the predic-
tion of ‘small’ stability changes, naturally, it is harder to
differentiate among subtle changes. Moreover, experimen-
tal data is affected by the error of measurement which can
be as large as ±0.48 kcal mol−1 [37]. Hence, the strict clas-
sification of the ‘small’ stability changes as stabilising or
destabilising can be misleading [34,13].
Overall, our new method, EASE-AA, achieved

improvements in all categories of different types of
mutations that we investigated. Moreover, EASE-AA
yielded higher relative improvements for the types of
mutations which were the most challenging to predict
for all four compared methods. These results demon-
strate the robustness of the performance of our new
method in predicting stability changes in previously
unseen non-homologous proteins.

Conclusions
In this work, we demonstrated how performance varies
depending on the evaluation scheme employed. This is
most likely because the machine learning methods are
prone to over-fitting on mutations in residues and pro-
teins encountered during training. When the evaluation
on previously unseen non-homologous proteins was used,
currently available methods could not reliably predict
stability changes. To address this problem, we designed
a new method which is based on Evolutionary And
Structural Encodings with Amino Acid parameters
(EASE-AA). Compared to our previous work [15], fea-
tures leading to over-fitting were removed and the
model was extended with differences in seven physical
amino acid parameters.
EASE-AA achieved a Matthews correlation coefficient of

0.36 and was able to classify correctly 66% of the stabilis-
ing and 74% of the destabilising mutations. For real-value
prediction, EASE-AA achieved a correlation between pre-
dicted and experimentally measured stability changes of
0.51. Even though this performance may seem relatively
low, EASE-AA predicts stability changes in unseen pro-
teins more accurately than the other three methods in our
comparison. This further highlights another important

finding of this study that the prediction performance of
currently available methods is often overestimated due to
randomly dividing different mutations of the same protein,
and even the same residue, for training and evaluation.
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